KR100739903B1 - Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof - Google Patents

Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof Download PDF

Info

Publication number
KR100739903B1
KR100739903B1 KR1020010052416A KR20010052416A KR100739903B1 KR 100739903 B1 KR100739903 B1 KR 100739903B1 KR 1020010052416 A KR1020010052416 A KR 1020010052416A KR 20010052416 A KR20010052416 A KR 20010052416A KR 100739903 B1 KR100739903 B1 KR 100739903B1
Authority
KR
South Korea
Prior art keywords
copper
alkoxyisobutylisonitrile
tetrakis
tetrafluoroborate
compound
Prior art date
Application number
KR1020010052416A
Other languages
Korean (ko)
Other versions
KR20020073083A (en
Inventor
임중인
김순회
손미원
양재성
이종진
고준일
곽우영
정낙신
정재민
Original Assignee
동아제약주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아제약주식회사 filed Critical 동아제약주식회사
Priority to KR1020010052416A priority Critical patent/KR100739903B1/en
Publication of KR20020073083A publication Critical patent/KR20020073083A/en
Application granted granted Critical
Publication of KR100739903B1 publication Critical patent/KR100739903B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법 및 상기 화합물을 포함하는 방사성 물질 표지용 조성물에 관한 것으로서, 메탈릴할라이드를 출발물질로 하여 알콕시화 단계, 아자이드화 단계, 아민화 단계, 이소니트릴화 단계를 거쳐 2-알콕시이소부틸이소니트릴을 제조하고, 상기 2-알콕시이소부틸이소니트릴을 구리 화합물과 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 제조하는 방법 및 이를 함유한 조성물에 관한 것이며, 상기 방법에 의하면 종래 이소니트릴화 단계에서 사용하던 인체에 유해한 디포스겐을 사용하지 않고 안전하고 고수율로 화합물을 얻을 수 있고 또 본 발명의 방사성물질 표지용 조성물은 장기간 보존하여도 방사성물질 표지효율이 우수하다.The present invention relates to a method for preparing a tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative represented by the following Chemical Formula 1 and to a radioactive material labeling composition comprising the compound, and a metalryl halide As a starting material, 2-alkoxyisobutylisonitrile was prepared through an alkoxylation step, azation step, amination step, and isonitrileation step, and the 2-alkoxyisobutylisonitrile was reacted with a copper compound to give tetra The present invention relates to a method for preparing a kiss (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative and a composition containing the same. It is possible to obtain a compound in a safe and high yield without using, and the radioactive material labeling composition of the present invention Zone and also is excellent in radioactive labeling efficiency.

Cu((CH3)2C(OR)CH2NC)4BF4 Cu ((CH 3 ) 2 C (OR) CH 2 NC) 4 BF 4

(상기 식에서 R은 명세서 내에서 정의한 바와 같다.)(Wherein R is as defined in the specification).

Description

테트라키스(2-알콕시이소부틸이소니트릴)구리(Ⅰ)테트라플루오로보레이트 유도체의 제조방법 및 상기 화합물을 포함하는 새로운 방사성물질 표지용 조성물 {Method of preparing tetrakis(2-alkoxyisobutylisonitrile)copper(I)tetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof}Method for preparing tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative and composition for labeling a new radioactive substance comprising the compound borate derivatives and new composition containing them for labeling agent of radioactive materials

본 발명은 하기 화학식 1로 표시되는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법에 관한 것으로, 메탈릴할라이드를 출발물질로 하여 알콕시화 단계, 아자이드화 단계, 아민화 단계, 이소니트릴화 단계를 거쳐 2-알콕시이소부틸이소니트릴을 제조하고, 상기 2-알콕시이소부틸이소니트릴을 구리 화합물과 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 제조하는 방법에 관한 것이다. 또한 본 발명은 상기 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 포함하는 새로운 방사성물질 표지용 조성물에 관한 것이다.The present invention relates to a method for preparing a tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative represented by the following Chemical Formula 1, wherein the alkoxylation step and azide are performed using a metalyl halide as a starting material. 2-alkoxyisobutylisonitrile is prepared by a step of amination, amination and isonitrile, and the 2-alkoxyisobutylisonitrile is reacted with a copper compound to make tetrakis (2-alkoxyisobutylisonitrile) copper. (I) a method for producing a tetrafluoroborate derivative. The present invention also relates to a novel radioactive material labeling composition comprising the tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative.

화학식 1 Formula 1                         

Cu((CH3)2C(OR)CH2NC)4BF4 Cu ((CH 3 ) 2 C (OR) CH 2 NC) 4 BF 4

(상기 식에서 R은 C1-C4의 저급 알킬기 또는 가지 달린 알킬기이다.)
(Wherein R is a C 1 -C 4 lower alkyl or branched alkyl group)

방사성 의약품(radiopharmaceuticals)은 방사성 동위원소와 착화합물을 이룰 수 있는 구조를 갖고 있으며 질병의 진단 및 치료, 또는 의학적 연구의 목적으로 폭넓게 사용된다.Radiopharmaceuticals have a structure capable of complexing with radioisotopes and are widely used for the diagnosis and treatment of diseases or for medical research.

본 발명의 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 화합물은 99m테크네튬(이하, "99mTc"라 한다)과 착화합물을 이루어 생체의 리포좀 또는 소포 및 지질막을 포함하는 여러 세포에 대해 효과적인 표지화 특성을 나타내며, 여러 기관의 조직, 특히 심장에서의 이상을 발견하기 위한 효과적인 이미지화제로 사용된다.Tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate compounds of the present invention are complexed with 99m technetium (hereinafter referred to as " 99m Tc") to include liposomes or vesicles and lipid membranes of a living body. It exhibits effective labeling properties for several cells and is used as an effective imaging agent for detecting abnormalities in tissues of various organs, especially the heart.

상기 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트는 2-알콕시이소부틸이소니트릴과 구리의 착화합물로 이루어져 있으며, 2-메톡시이소부틸이소니트릴의 제조방법은 크게 하기와 같이 3가지 방법으로 요약될 수 있다.The tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate consists of a complex compound of 2-alkoxyisobutylisonitrile and copper, and the production method of 2-methoxyisobutylisonitrile is largely as follows. It can be summarized in three ways as follows.

1. 버그스타인 등에 의해 개발된 방법으로 하기 반응식 1과 같다(유럽특허 제 233,368호).1. A method developed by Bergstein et al. Is shown in Scheme 1 (European Patent No. 233,368).

Figure 112001021938895-pat00001
Figure 112001021938895-pat00001

상기 반응식 1에 나타낸 바와 같이, 2-아미노-2-메틸-1-프로판올 및 메틸하이드록시이소부티레이트를 각각 출발 물질로 하는 A 및 B 의 합성방법은 각기 4단계 및 5단계로 이루어져 있다. 그러나 A의 합성방법은 수율이 5.9%이고, B의 합성방법은 8.1%로 매우 낮은 편이고, 특히 마지막 단계에서 사용하는 "디포스겐"은 인체에 유해한 맹독성 물질로 반응의 조작이 매우 까다로워 산업상으로 이용이 어렵다.
As shown in Scheme 1, the synthesis of A and B using 2-amino-2-methyl-1-propanol and methylhydroxyisobutyrate as starting materials, respectively, consists of four and five steps, respectively. However, the synthesis method of A has a yield of 5.9%, and the synthesis method of B is very low at 8.1%. In particular, the "diphosgene" used in the last step is a poisonous substance that is harmful to the human body. Difficult to use

2. 라마린겜 등에 의해 개발된 방법으로 하기 반응식 2와 같다(미국특허 제4,864,051호). 2. A method developed by Lamaringem et al. Is shown in Scheme 2 (US Pat. No. 4,864,051).                         

Figure 112001021938895-pat00002
Figure 112001021938895-pat00002

상기 반응식 2에 나타낸 바와 같이, 2-하이드록시이소부틸로니트릴을 출발물질로 하는 제조방법은 4단계로 이루어져 있으며 전체 수율이 26%로 상기 방법에 비해서 비교적 높은 편이나, 이방법 또한 마지막 단계에서 인체에 유해한 "디포스겐"을 사용하는 문제점을 가지고 있다.
As shown in Scheme 2, the preparation method using 2-hydroxyisobutylonitrile as a starting material is composed of four steps and the total yield is 26%, which is relatively higher than the above method, but this method is also performed in the last step. There is a problem of using "diphosgene" harmful to the human body.

3. 리테웨이 등에 의해 개발된 방법으로 하기 반응식 3과 같다(미국특허 제5,210,270호).3. The method developed by Riteway et al. Is the same as Scheme 3 (US Pat. No. 5,210,270).

Figure 112001021938895-pat00003
Figure 112001021938895-pat00003

상기 반응식 3에 나타낸 바와 같이, 이소부틸렌을 출발물질로 하는 제조방법은 4단계로 이루어지고 전체 수율이 46%로 기존의 방법과 비교시 매우 높다. 그러나 출발물질로 사용되고 있는 이소부틸렌이 발화성이 높은 기체로 반응시 장시간 포집시켜야 하는 등의 사용시 조작이 까다로운 문제점을 가지고 있다.
As shown in Scheme 3, the production method using isobutylene as a starting material is composed of four steps and the overall yield is 46%, which is very high compared with the existing method. However, isobutylene, which is used as a starting material, has a problem of being difficult to operate when used such as having to collect for a long time when reacting with a highly flammable gas.

이에 본 발명자들은 안전하고 고수율로 2-알콕시이소부틸이소니트릴을 제조하고자 노력한 결과, 메탈릴할라이드를 출발물질로 하여 알콕시화 반응단계, 아자이드화 단계, 환원 단계 및 이소니트릴화 단계를 거쳐 고수율로 2-알콕시이소부틸이소니트릴을 제조하고 이 화합물을 구리 화합물과 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 제조하였으며, 이것으로 기존 제조방법의 유독한 시약 및 기체의 사용을 배제하여 합성이 안전하고 높은 수율의 제조공정이 이루어졌다. 또한 이 화합물을 포함하는 새로운 방사성물질 표지용 조성물은 장기간 보존후에도 방사성물질 표지효율이 감소되지 아니함을 발견하여 본 발명을 완성하였다.
Accordingly, the present inventors have tried to prepare 2-alkoxyisobutylisonitrile in a safe and high yield. As a result, as a starting material, the metal alkoxylation reaction step, the azidization step, the reduction step and the isonitrileation step are carried out. 2-alkoxyisobutylisonitrile was prepared in a yield, and the compound was reacted with a copper compound to prepare tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative. The elimination of the use of toxic reagents and gases resulted in a safe and high yield manufacturing process. In addition, the new radioactive material labeling composition containing the compound was found to not reduce the radiolabeling efficiency even after long-term storage has completed the present invention.

본 발명의 목적은 메탈릴할라이드를 출발물질로 하여 반응의 수율이 뛰어나고 비교적 짧은 단계의 제조공정으로 2-알콕시이소부틸이소니트릴을 제조하고, 여기에 적당한 금속착물을 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 제조하는 방법을 제공하는 것이다. It is an object of the present invention to prepare 2-alkoxyisobutylisonitrile in a relatively short stage of production process with excellent yield of reaction using metalyl halide as a starting material, and react a suitable metal complex to tetrakis (2-alkoxy). It is to provide a method for producing isobutyl isonitrile) copper (I) tetrafluoroborate derivative.                         

또한 본 발명의 목적은 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체, 환원제 및 안정화제를 함유하는 방사성물질 표지용 조성물을 제공하는 것이다.
It is also an object of the present invention to provide a composition for labeling radioactive substances containing tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivatives, reducing agents and stabilizers.

상기한 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

1) 메탈릴할라이드(2)를 출발물질로 적당한 알코올 용매하에 머큐릭아세테이트, 수산화나트륨, 소디움보로히드라이드와 순차적으로 반응시켜 알콕시화 하는 단계 (단계 1);1) alkoxylation by sequentially reacting the metalryl halide (2) with mercury acetate, sodium hydroxide, sodium borohydride in a suitable alcohol solvent as a starting material (step 1);

2) 단계 1의 알콕시 화합물(3)을 적당한 용매 하에서 소디움 아자이드와 반응시켜 아자이드화 하는 단계 (단계 2); 2) reacting the alkoxy compound (3) of step 1 with sodium azide in an appropriate solvent (step 2);

3) 단계 2의 아자이드 화합물(4)을 리튬알루미늄하이드라이드 존재하에 아민화 하는 단계 (단계 3);3) amination of the azide compound (4) of step 2 in the presence of lithium aluminum hydride (step 3);

4) 단계 3의 아민 화합물(5)을 클로로포름 및 상이동 촉매(Phase transfer catalyst) 존재하에 무기염기를 이용하여 이소니트릴화 하는 단계 (단계 4);4) isonitrile the amine compound (5) of step 3 using an inorganic base in the presence of chloroform and a phase transfer catalyst (step 4);

5) 단계 4의 이소니트릴 화합물(6)을 구리 화합물(7)과 반응시켜 (단계 5) 화학식 1로 표시되는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법을 제공한다.
5) Reaction of the isonitrile compound (6) of step 4 with the copper compound (7) (step 5) of tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative represented by the formula (1) It provides a manufacturing method.

Figure 112001021938895-pat00004
Figure 112001021938895-pat00004

상기 식에서 R은 C1-C4의 저급 알킬기 또는 가지 달린 알킬기이고, X는 할로겐 원소이며, R'는 C1-C4의 저급 알킬기이다.In the above formula, R is a C 1 -C 4 lower alkyl group or a branched alkyl group, X is a halogen element, and R 'is a C 1 -C 4 lower alkyl group.

바람직하기로는 R은 메틸기, 에틸기, 프로필기 또는 부틸기이고, X는 클로라이드, 브롬 또는 요오드 이고, R'는 에틸기 또는 프로필기이다.
Preferably R is methyl, ethyl, propyl or butyl, X is chloride, bromine or iodine and R 'is ethyl or propyl.

또한 본 발명은, In addition, the present invention,

1) 메탈릴할라이드(2)를 출발물질로 적당한 알코올 용매하에 머큐릭아세테이트, 수산화나트륨, 소디움보로히드라이드와 순차적으로 반응시켜 알콕시화 하는 단계 (단계 1);1) alkoxylation by sequentially reacting the metalryl halide (2) with mercury acetate, sodium hydroxide, sodium borohydride in a suitable alcohol solvent as a starting material (step 1);

2) 단계 1의 알콕시 화합물(3)을 적당한 용매하에서 소디움 아자이드와 반응시켜 아자이드화 하는 단계 (단계 2); 2) reacting the alkoxy compound (3) of step 1 with sodium azide in an appropriate solvent (step 2);

3) 단계 2의 아자이드 화합물(4)을 리튬알루미늄하이드라이드 존재하에 아민 화합물(5)로 아민화하는 단계 (단계 3); 3) Amination of the azide compound (4) of step 2 with the amine compound (5) in the presence of lithium aluminum hydride (step 3);                     

4) 단계 3의 아민 화합물(5)을 클로로포름 및 상이동 촉매(Phase transfer catalyst) 존재하에 무기염기를 이용하여 이소니트릴화 하여 (단계 4) 화학식 6으로 표시되는 2-알콕시이소부틸이소니트릴의 제조방법을 제공한다.4) Preparation of 2-alkoxyisobutylisonitrile represented by Chemical Formula 6 by isonitrile the amine compound (5) of step 3 using an inorganic base in the presence of chloroform and a phase transfer catalyst (step 4). Provide a method.

Figure 112001021938895-pat00005
Figure 112001021938895-pat00005

*(상기 식에서 R, R' 및 X는 상기에서 정의한 바와 같다.)
* (Wherein R, R 'and X are as defined above)

이하 본 발명을 각 단계별로 설명하면 다음과 같다.Hereinafter, the present invention will be described in each step.

단계 1 : 알콕시화 단계Step 1: alkoxylation step

Figure 112001021938895-pat00006
Figure 112001021938895-pat00006

(상기 식에서 R 및 X는 상기에서 정의한 바와 같다.)
(Wherein R and X are as defined above).

단계 1에서는 상업적으로 유용한 메탈릴할라이드(2)를 출발물질로 알코올용 매 하에 옥시수은화-탈수은화 반응을 거쳐 알콕시화 하여 2-알콕시이소부틸할라이드(3)을 제조한다.In step 1, alkoxylated commercially available metalallyl halide (2) is alkoxylated through an oxyhydration-dehydration reaction under an alcohol solvent to prepare 2-alkoxyisobutyl halide (3).

옥시수은화-탈수은화 반응은 이중결합 부위에 알콕시기를 도입시킬 수 있는 유용한 반응으로, 메탈릴할라이드(2)를 적당한 알코올 용매하에 머큐릭아세테이트, 수산화나트륨, 소디움보로히드라이드와 순차적으로 반응시켜 알콕시기를 도입한다.Oxyhydration-dehydration reaction is a useful reaction that can introduce an alkoxy group to the double bond site, by reacting the metalyl halide (2) with mercury acetate, sodium hydroxide, sodium borohydride sequentially in a suitable alcohol solvent An alkoxy group is introduced.

이때 사용되는 알코올용매의 탄소수에 따라서 2-알콕시이소부틸할라이드(3)에 도입되는 알콕시기를 변경시킬 수 있으며, 본 발명에서는 C1-C4의 알킬기 또는 가지달린 알킬기가 포함된 알코올용매를 사용하고 바람직하기로는 메탄올, 에탄올, 프로판올 또는 부탄올 중에서 선택된 것을 사용한다.
In this case, the alkoxy group introduced into the 2-alkoxy isobutyl halide (3) may be changed according to the carbon number of the alcohol solvent used. In the present invention, an alcohol solvent including an alkyl group or a branched alkyl group of C 1 -C 4 is used. Preferably, one selected from methanol, ethanol, propanol or butanol is used.

단계 2 : 아자이드화 단계Step 2: Azidation Step

Figure 112001021938895-pat00007
Figure 112001021938895-pat00007

(상기 식에서 R 및 X는 상기에서 정의한 바와 같다.)
(Wherein R and X are as defined above).

단계 2에서는 단계 1에서 제조된 2-알콕시이소부틸할라이드(3)를 적당한 용매내에서 친핵성 치환반응을 거쳐 아자이드화 하여 2-알콕시이소부틸아자이드(4)를 제조한다. In step 2, the 2-alkoxyisobutyl halide (3) prepared in step 1 is subjected to nucleophilic substitution in a suitable solvent to azide to prepare 2-alkoxyisobutyl azide (4).                     

단계 2에서 사용가능한 용매는 디메틸술폭사이드, 디메틸포름아미드, 1-메틸-2-피롤리디논 등이 있으며, 120∼180℃에서 5∼15 시간 동안 반응시키는 것이 바람직하다.
Solvents usable in step 2 include dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidinone, and the like, and are preferably reacted at 120 to 180 ° C. for 5 to 15 hours.

단계 3 : 아민화 단계Step 3: Amination Step

Figure 112001021938895-pat00008
Figure 112001021938895-pat00008

(상기 식에서 R은 상기에서 정의한 바와 같다.)
(Wherein R is as defined above.)

단계 3에서는 단계 2에서 제조된 2-알콕시이소부틸아자이드(4)를 리튬알루미늄하이드라이드를 이용하여 2-알콕시이소부틸아민(5)을 제조한다. In step 3, 2-alkoxyisobutyl azide (4) prepared in step 2 is prepared using lithium aluminum hydride to prepare 2-alkoxyisobutylamine (5).

이때 반응은 0∼5℃에서 30∼60분 동안 반응시키는 것이 바람직하다.
At this time, the reaction is preferably reacted for 30 to 60 minutes at 0 ~ 5 ℃.

단계 4 : 이소니트릴화 단계Step 4: isonitrilation step

Figure 112001021938895-pat00009
Figure 112001021938895-pat00009

(상기 식에서 R은 상기에서 정의한 바와 같다.)
(Wherein R is as defined above.)

단계 4에서는 단계 3에서 제조된 2-알콕시이소부틸아민(5)을 클로로포름 및 상이동 촉매(Phase transfer catalyst) 존재하에 무기염기를 첨가하여 이소니트릴화 하여 2-알콕시이소부틸이소니트릴(6)을 제조한다.In step 4, the 2-alkoxyisobutylamine (5) prepared in step 3 is subjected to isonitization by adding an inorganic base in the presence of chloroform and a phase transfer catalyst to form 2-alkoxyisobutylisonitrile (6). Manufacture.

본 발명에서 상이동 촉매는 R"4NX로 표시되는 테트라알킬암모늄할라이드 화합물로서, 이때 R"는 C1∼C4의 알킬기이고 X는 할로겐족의 원소이며, 바람직하기로는 테트라알킬암모니움클로라이드, 테트라알킬암모니움브로마이드, 테트라알킬암모니움요오드 또는 테트라알킬암모니움하이드록사이드를 사용한다. In the present invention, the phase transfer catalyst is a tetraalkylammonium halide compound represented by R ″ 4 NX, wherein R ″ is a C 1 to C 4 alkyl group and X is a halogen group element, preferably tetraalkylammonium chloride, tetra Alkyl ammonium bromide, tetraalkyl ammonium iodine or tetraalkyl ammonium hydroxide are used.

본 발명에서 2-알콕시이소부틸아민(5)을 클로로포름에 용해시키고 적당한 상이동 촉매 및 무기염기를 첨가하여 유기용매의 환류온도에서 1∼3 시간동안 반응시켜 2-알콕시이소부틸이소니트릴(6)을 제조한다. In the present invention, 2-alkoxyisobutylamine (5) is dissolved in chloroform, a suitable phase transfer catalyst and an inorganic base are added, and reacted for 1 to 3 hours at reflux temperature of the organic solvent. To prepare.

이때 무기염기로는 수산화나트륨, 수산화칼륨을 사용하고 바람직하기로는 수산화나트륨을 사용한다.
At this time, sodium hydroxide and potassium hydroxide are used as the inorganic base, and sodium hydroxide is preferably used.

단계 5 : 착화합물 제조단계Step 5: complex compound preparation

Figure 112001021938895-pat00010
Figure 112001021938895-pat00010

(상기 식에서 R, X 및 R'는 상기에서 정의한 바와 같다.)
(Wherein R, X and R 'are as defined above).

단계 5에서는 단계 4에서 제조된 2-알콕시이소부틸이소니트릴(6)을 적당한 용매하에서 테트라키스(알킬니트릴)구리(Ⅰ)테트라플루오로보레이트(7)와 반응시켜 화학식 1로 표시되는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)를 제조한다.
In step 5, the 2-alkoxyisobutylisonitrile (6) prepared in step 4 is reacted with tetrakis (alkylnitrile) copper (I) tetrafluoroborate (7) in a suitable solvent to form tetrakis represented by the formula (1). 2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1) was prepared.

*구체적으로 2-알콕시이소부틸이소니트릴(6) 1 당량에 대하여 테트라키스(알킬니트릴)구리(Ⅰ)테트라플루오로보레이트(7) 0.2∼0.3 당량, 바람직하기로는 0.25 당량을 첨가하여 0∼30℃에서 10∼60분간 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)를 제조한다.Specifically, 0.2 to 0.3 equivalent, preferably 0.25 equivalent, of tetrakis (alkylnitrile) copper (I) tetrafluoroborate (7) to 1 equivalent of 2-alkoxyisobutylisonitrile (6) is added to 0-30. It is made to react at 10 degreeC for 10 to 60 minutes, and tetrakis (2-alkoxy isobutyl isonitrile) copper (I) tetrafluoro borate derivative (1) is manufactured.

테트라키스(알킬니트릴)구리(Ⅰ)테트라플루오로보레이트는 바람직하기로는 테트라키스(아세토니트릴)구리(Ⅰ)테트라플루오로보레이트 또는 테트라키스(프로피오니트릴)구리(Ⅰ)테트라플루오로보레이트를 사용한다. Tetrakis (alkylnitrile) copper (I) tetrafluoroborate preferably uses tetrakis (acetonitrile) copper (I) tetrafluoroborate or tetrakis (propionitrile) copper (I) tetrafluoroborate do.

또한 용매는 알코올 용매를 사용하며 바람직하기로는 메탄올 또는 에탄올을 사용한다.
The solvent also uses an alcohol solvent, preferably methanol or ethanol.

상술한 바와 같이, 본 발명은 메탈릴할라이드(2)를 출발물질로 하여 반응의 수율이 뛰어나고 비교적 짧은 4단계의 제조공정으로 2-알콕시이소부틸이소니트릴(6)을 제조하고, 여기에 적당한 구리 화합물(7)과 반응시켜 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도 체(1)를 제조한다.
As described above, the present invention provides 2-alkoxy isobutyl isonitrile (6) in a four-step manufacturing process having excellent yield of reaction and relatively short production time using metall halide (2) as a starting material, and suitable copper Reaction with compound (7) produces tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1).

또한 본 발명은 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1), 환원제 및 안정화제를 함유하는 방사성물질 표지용 조성물을 제공한다.The present invention also provides a composition for labeling radioactive substances containing tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1), a reducing agent and a stabilizer.

본 발명에서 제조된 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)는 방사성 물질과 착화합물을 만들 수 있는데, 이것은 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1), 환원제 및 안정화제를 함유하는 조성물의 형태로 공급되며, 환자에게 투여직전에 방사성물질 또는 그의 수용액과 혼합하여 사용한다.Tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivatives (1) prepared in the present invention can form complexes with radioactive materials, which is tetrakis (2-alkoxyisobutylisonitrile) It is supplied in the form of a composition containing a copper (I) tetrafluoroborate derivative (1), a reducing agent and a stabilizer and used in admixture with a radioactive substance or an aqueous solution thereof immediately before administration to a patient.

테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)가 방사성물질 표지용으로 작용하기 위해서는 환원제가 필요하다. 환원제로는 이 분야에서 통상적으로 사용되는 환원제를 첨가할 수 있으며, SnX2가 바람직하다. 상기 X는 할로겐, 아세테이트, 술페이트, 옥살레이트, 또는 숙시네이트 중에서 선택된 것을 사용하고, 바람직하기로는 염화주석, 아세트산 주석, 옥살산 주석 및 숙신산 주석 중에서 선택하여 사용한다. In order for the tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1) to function for radiolabeling, a reducing agent is required. As the reducing agent, a reducing agent commonly used in this field may be added, and SnX 2 is preferable. X is selected from halogen, acetate, sulfate, oxalate, or succinate, and preferably selected from tin chloride, tin acetate, tin oxalate and tin succinate.

본 발명의 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)가 방사성물질을 표지하기 위하여서는 환원제인 주석(Ⅱ) 화합물이 필요하며, 상기 주석(Ⅱ) 화합물은 시간이 경과함에 따라 2가의 주석이 4가의 주석으로 산화되므로 환원력이 저하되어 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)의 방사성물질에 대한 표지효율을 떨어뜨리므로[Tofe AJ, Francis MD. In vitro stabilization of a low-tin bone-imaging agent (99mTc-Sn-HEDP) by ascorbic acid. J., Nucl., Med., 1976;17(9):820-5] 상기 주석(Ⅱ) 화합물의 안정성을 높이기 위해 안정화제를 첨가한다. 안정화제로는 이 분야에서 통상적으로 사용되는 안정화제는 아스코르빈산, 시스테인, 겐티신산 (gentisic acid) 또는 에탄올 를 사용할 수 있으며, 바람직하기로는 아스코르빈산(Ascorbic acid)을 사용한다. 아스코르빈산은 낮은 농도에서 2가 주석의 산화를 억제하여 방사성 물질의 방사화학적 표지효율을 높게 유지하는 역할을 할 수 있다. 그결과 제조되는 진단용 키트의 유효기간이 연장되고 방사성 물질과의 표지시 표지 안정성이 증가된다.
In order for the tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1) of the present invention to label radioactive substances, a tin (II) compound which is a reducing agent is required, and the tin (II) Since the compound oxidizes divalent tin to tetravalent tin over time, the reducing power is reduced, so that the label for the radioactive material of tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1) Decreases efficiency [Tofe AJ, Francis MD. In vitro stabilization of a low-tin bone-imaging agent ( 99m Tc-Sn-HEDP) by ascorbic acid. J. , Nucl ., Med ., 1976 ; 17 (9): 820-5] Stabilizers are added to increase the stability of the tin (II) compound. As a stabilizer, a stabilizer commonly used in this field may be ascorbic acid, cysteine, gentisic acid or ethanol, and preferably ascorbic acid. Ascorbic acid may play a role in maintaining high radiochemical labeling efficiency of radioactive material by inhibiting oxidation of divalent tin at low concentrations. The result is an extended shelf life of the diagnostic kits produced and an increased label stability upon labeling with radioactive material.

본 발명에서 제조된 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)는 환원제 및 안정화제와 혼합하여 무균 바이알에 주입하여 동결건조한 후 키트로 제공될 수 있다.Tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative (1) prepared in the present invention may be mixed with a reducing agent and a stabilizer, injected into a sterile vial, lyophilized, and then provided as a kit. .

상기 동결건조된 진단용 키트는 방사성 물질인, 예를 들어, 99m테크네튬을 표지하여 착화합물을 형성하며, 본 발명의 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체(1)의 99m테크네튬의 착화합물은 생체의 리포좀 또는 소포 및 지질막을 포함하는 여러 세포에 대해 효과적인 표지화 특성을 나 타내며, 또한 여러 기관의 조직 특히 심장에서의 이상을 발견하기 위한 효과적인 이미지화제로 사용될 수 있다.
The lyophilized diagnostic kit is labeled with a radioactive material, for example 99m technetium to form a complex, the tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative of the present invention (1 The 99m technetium complex of) exhibits effective labeling properties for many cells, including liposomes or vesicles and lipid membranes in vivo, and can also be used as an effective imaging agent for detecting abnormalities in tissues of various organs, especially the heart. .

이하 본 발명을 실시예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

다만 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다.However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention.

분자구조는 적외선 분광법(IR), 자외선-가시광선 분광법(UV-VIS), 핵자기공명 스펙트럼(NMR), 질량분석법(MA), 대표적인 화합물의 원소분석 계산치와 실측치의 비교 등에 의해 확인하였으며, 화합물의 순도는 HPLC 분석법에 의해 확인하였다.
The molecular structure was confirmed by infrared spectroscopy (IR), ultraviolet-visible light spectroscopy (UV-VIS), nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MA), and elemental analysis of representative compounds and comparison of actual values. The purity of was confirmed by HPLC analysis.

<제조예 1> 테트라키스(프로피오니트릴)구리(I)테트라플루오로보레이트의 제조Preparation Example 1 Preparation of Tetrakis (propionitrile) copper (I) tetrafluoroborate

Figure 112001021938895-pat00011
Figure 112001021938895-pat00011

Cu(BF4)2·xH2O (2.6 g, 11.0 mmol)를 프로피오니트릴 6 ml에 녹인 후 프로피오니트릴의 환류온도인 97 ℃까지 온도를 올린 후 바로 냉각하였다. 이 반용액에 구리 파우더를 반응액의 청색이 희미해질 때까지 가한 후 30분 교반한 다음, 반응을 종결시켰다. 상기 얻어진 반응액을 여과한 후 그 여액을 농축하여 얻어진 잔사에 에테르를 가하여 고체화한 후 여과, 건조시켜 상기 목적하는 테트라키스(프로피 오니트릴)구리(I)테트라플루오로보레이트 3.9 g(96%)를 얻었다.
After dissolving Cu (BF 4 ) 2 .xH 2 O (2.6 g, 11.0 mmol) in 6 ml of propionitrile, the temperature was raised to 97 ° C., the reflux temperature of propionitrile, and then cooled immediately. Copper powder was added to this semi-solution until the blue color of the reaction solution became faint, followed by stirring for 30 minutes, and then the reaction was terminated. The reaction solution was filtered, the filtrate was concentrated, ether was added to the residue, followed by solidification, followed by filtration and drying to obtain 3.9 g (96%) of the desired tetrakis (propionitrile) copper (I) tetrafluoroborate. Got.

<실시예 1> 테트라키스(2-메톡시이소부틸이소니트릴)구리(I)테트라플루오로보레이트(세스타미비)의 제조Example 1 Preparation of Tetrakis (2-methoxyisobutylisonitrile) Copper (I) Tetrafluoroborate (Setamibi)

(단계 1) : 2-메톡시이소부틸클로라이드의 제조(Step 1): Preparation of 2-methoxyisobutyl chloride

Figure 112001021938895-pat00012
Figure 112001021938895-pat00012

머큐릭아세테이트(74 g, 232.2 mmol)를 메탄올 300 ml에 녹인 용액에 메탈릴클로라이드(20 g, 220.9 mmol)를 서서히 적가한 후, 실온에서 1시간동안 교반하였다. 이어서 반응액을 0∼5 ℃로 냉각시킨 후 메탄올 200 ml에 수산화나트륨(21 g, 525 mmol)을 녹인 용액을 상기 반응액에 30분에 걸쳐 서서히 적가한 다음 실온에서 1시간 동안 교반하였다. 상기 반응액을 다시 0∼5℃로 냉각시킨 후 소디움보로히드라이드(5.5 g, 145 mmol)를 여러번 나누어 서서히 투입하였다. 이어서 반응액의 온도를 실온으로 올린 후 2시간 동안 교반하였다. 다시 반응액의 온도를 0∼5℃로 냉각한 후 상기 반응액에 포화구연산수용액 300 ml를 서서히 가한 후 에테르로 추출하였다. 유기층을 포화중조수용액 및 포화소금물로 세척한 후 무수황산마그네슘(MgSO4)으로 탈수시킨 다음, 여과후 그 여액을 낮은 온도에서 농축하여 상기 목적화합물인 2-메톡시이소부틸클로라이드 25 g(92.3%)을 얻었다. Metallic chloride (20 g, 220.9 mmol) was slowly added dropwise to a solution of mercury acetate (74 g, 232.2 mmol) in 300 ml of methanol, followed by stirring at room temperature for 1 hour. Subsequently, the reaction solution was cooled to 0-5 ° C., and a solution of sodium hydroxide (21 g, 525 mmol) in 200 ml of methanol was slowly added dropwise to the reaction solution over 30 minutes, followed by stirring at room temperature for 1 hour. The reaction solution was cooled again to 0-5 ° C. and sodium borohydride (5.5 g, 145 mmol) was added several times. Then, the temperature of the reaction solution was raised to room temperature and stirred for 2 hours. After cooling the temperature of the reaction solution to 0 ~ 5 ℃ slowly added 300 ml of saturated citric acid aqueous solution to the reaction solution and extracted with ether. The organic layer was washed with saturated aqueous sodium bicarbonate solution and saturated brine, dehydrated with anhydrous magnesium sulfate (MgSO 4 ), and then the filtrate was concentrated at a low temperature to give 25 g of 2-methoxyisobutyl chloride as a target compound (92.3%). )

1H-NMR (200 MHz, CDCl3) : δ 1.23(s, 6H), 3.22(s, 3H), 3.45(s, 2H) 1 H-NMR (200 MHz, CDCl 3 ): δ 1.23 (s, 6H), 3.22 (s, 3H), 3.45 (s, 2H)

IR(neat) : 2959.5, 2820.1, 1415.1, 1359.9, 1064.8, 734.5 cm-1
IR (neat): 2959.5, 2820.1, 1415.1, 1359.9, 1064.8, 734.5 cm -1

(단계 2) : 2-메톡시이소부틸아자이드의 제조(Step 2): Preparation of 2-methoxyisobutyl azide

Figure 112001021938895-pat00013
Figure 112001021938895-pat00013

상기 단계에서 얻어진 2-메톡시이소부틸클로라이드(16.7 g, 136.3 mmol)를 디메틸술폭사이드 120 ml에 녹인 후, 소디움아자이드(26.6 g, 409.2 mmol)를 첨가한 다음 180 ℃에서 12시간 동안 교반하였다. 반응종료후 냉각하고 에테르를 가한 후 포화구연산수용액, 포화중조수용액 및 포화소금물 순으로 세척한 후 유기층을 무수황산마그네슘으로 탈수하였다. 이어서 여과후 그 여액을 1/2정도 농축하여 별다른 정제없이 반응에 그대로 사용하였다.2-methoxyisobutyl chloride (16.7 g, 136.3 mmol) obtained in the above step was dissolved in 120 ml of dimethyl sulfoxide, sodium azide (26.6 g, 409.2 mmol) was added, followed by stirring at 180 ° C. for 12 hours. . After completion of the reaction, the mixture was cooled, ether was added, washed with saturated citric acid solution, saturated sodium bicarbonate solution and saturated salt water in that order, and the organic layer was dehydrated with anhydrous magnesium sulfate. Subsequently, the filtrate was concentrated about 1/2 after filtration and used for the reaction as it was without any purification.

1H-NMR(200 MHz, CDCl3) : δ 1.18(s, 6H), 3.18(s, 2H), 3.22(s, 3H)
1 H-NMR (200 MHz, CDCl 3 ): δ 1.18 (s, 6H), 3.18 (s, 2H), 3.22 (s, 3H)

(단계 3) : 2-메톡시이소부틸아민의 제조(Step 3): Preparation of 2-methoxyisobutylamine

Figure 112001021938895-pat00014
Figure 112001021938895-pat00014

반응기에 LiAlH4(10.3 g, 271.4 mmol)를 넣은 다음 에테르 150 ml를 가하여 0∼5 ℃로 냉각하였다. 여기에 상기 단계에서 얻어진 2-메톡시이소부틸아자이드를 서서히 적가한 다음 0∼5℃에서 30분 동안 교반하였다. 반응종결 후 물 10.3 ml, 15% 수산화나트륨 수용액 10.3 ml, 물 30.9 ml을 차례로 서서히 적가한 다음, 실온에서 20분간 강하게 교반하였다. 반응종료후 생성된 고체를 여과하고 상기 고체에 에테르 50 ml를 가하여 세척하였다. 여과액 및 세척액을 낮은 ??도(0-5℃)에서 농축한 후 그 잔사를 120∼125℃에서 단순증류를 통해 2-메톡시이소부틸아민 10.4g(74.0%)을 얻었다.LiAlH 4 (10.3 g, 271.4 mmol) was added to the reactor, and 150 ml of ether was added thereto, followed by cooling to 0-5 ° C. To the 2-methoxyisobutyl azide obtained in the above step was slowly added dropwise and stirred for 30 minutes at 0 ~ 5 ℃. After the reaction was completed, 10.3 ml of water, 10.3 ml of 15% aqueous sodium hydroxide solution, and 30.9 ml of water were slowly added dropwise thereto, followed by vigorous stirring at room temperature for 20 minutes. After the reaction was completed, the resulting solid was filtered and washed with 50 ml of ether. The filtrate and washings were concentrated at a low ?? degree (0-5 ° C.) and the residue was then simply distilled at 120-125 ° C. to give 10.4 g (74.0%) of 2-methoxyisobutylamine.

1H-NMR(200 MHz, CDCl3) : δ1.09(s, 6H), 1.61(s, 2H), 2.56(s, 2H), 3.13(s,3H)
1 H-NMR (200 MHz, CDCl 3 ): δ1.09 (s, 6H), 1.61 (s, 2H), 2.56 (s, 2H), 3.13 (s, 3H)

(단계 4) : 2-메톡시이소부틸이소니트릴의 제조(Step 4): Preparation of 2-methoxyisobutylisonitrile

Figure 112001021938895-pat00015
Figure 112001021938895-pat00015

상기 단계에서 얻어진 2-메톡시이소부틸아민(20 g, 194 mmol)을 클로로포름 200 ml에 녹인 후 테트라-n-부틸암모니움브로마이드(6.25 g, 19.4 mmol)를 첨가하였다. 여기에 물 100 ml에 수산화나트륨(31 g, 775 mmol)을 녹인 용액을 서서히 적가한 다음, 1시간 동안 환류 교반하였다. 반응종료후 실온으로 냉각한 후 생긴 층을 분리한 후, 수층을 메틸렌클로라이드를 사용하여 재추출하였다. 층분리 후 선택된 유기층 및 수층에서 추출된 유기층을 혼합하여 그 혼합액을 포화소금물로 세척한 다음 무수황산마그네슘으로 탈수 및 여과하였다. 이어서 그 여액을 농축하여 생긴 잔사를 감압증류(25mmHg, 55∼60 ℃)하여 상기 목적하는 2-메톡시이소부틸이소니트릴 13.7 g(62.5%)을 얻었다.2-methoxyisobutylamine (20 g, 194 mmol) obtained in the above step was dissolved in 200 ml of chloroform, and then tetra-n-butylammonium bromide (6.25 g, 19.4 mmol) was added. A solution of sodium hydroxide (31 g, 775 mmol) in 100 ml of water was slowly added dropwise thereto, followed by stirring under reflux for 1 hour. After completion of the reaction, after cooling to room temperature, the resulting layer was separated, and the aqueous layer was reextracted with methylene chloride. After separation of the layers, the selected organic layer and the organic layer extracted from the aqueous layer were mixed, the mixture was washed with saturated brine, dehydrated with anhydrous magnesium sulfate and filtered. The filtrate was then concentrated under reduced pressure (25 mmHg, 55-60 ° C.) to give 13.7 g (62.5%) of the desired 2-methoxyisobutylisonitrile.

1H-NMR(200 MHz, CDCl3) : δ 1.25(s, 6H), 3.23(s, 3H), 3.35(t, 2H) 1 H-NMR (200 MHz, CDCl 3 ): δ 1.25 (s, 6H), 3.23 (s, 3H), 3.35 (t, 2H)

IR(neat) : 2829.5, 2148.5, 1459.7, 1370.0 cm-1
IR (neat): 2829.5, 2148.5, 1459.7, 1370.0 cm -1

(단계 5) : 테트라키스(2-메톡시이소부틸이소니트릴)구리(I)테트라플루오로보레이트(세스타미비)의 제조(Step 5): Preparation of tetrakis (2-methoxyisobutylisonitrile) copper (I) tetrafluoroborate (cetamibi)

Figure 112001021938895-pat00016
Figure 112001021938895-pat00016

상기 제조예 1에서 얻어진 테트라키스(프로피오니트릴)구리(I)테트라플루오로보레이트(1.5 g, 4.05 mmol)를 메탄올 20 ml에 녹인 후, 상기 단계에서 얻어진 2-메톡시이소부틸이소니트릴(1.83 g, 16.2 mmol)을 서서히 적가하여 실온에서 1시 간 동안 교반하였다. 반응종료후 반응액을 농축하여 얻어진 잔사에 에테르를 서서히 가하여 고체를 생성시켰다. 생성된 고체를 여과, 건조시켜 상기 목적하는 테트라키스(2-메톡시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 2.32g(95.0%)를 얻었다. Tetrakis (propionitrile) copper (I) tetrafluoroborate (1.5 g, 4.05 mmol) obtained in Preparation Example 1 was dissolved in 20 ml of methanol, followed by 2-methoxyisobutylisonitrile (1.83). g, 16.2 mmol) was slowly added dropwise and stirred at room temperature for 1 hour. After the reaction was completed, ether was gradually added to the residue obtained by concentrating the reaction solution to give a solid. The resulting solid was filtered and dried to give 2.32 g (95.0%) of the desired tetrakis (2-methoxyisobutylisonitrile) copper (I) tetrafluoroborate.

1H-NMR(200 MHz, CDCl3) : δ 1.25(s, 6H), 3.22(s, 3H), 3.57(s, 2H) 1 H-NMR (200 MHz, CDCl 3 ): δ 1.25 (s, 6H), 3.22 (s, 3H), 3.57 (s, 2H)

13C-NMR(200 MHz, CDCl3) : δ 22.4, 49.9, 51.6, 73.2 13 C-NMR (200 MHz, CDCl 3 ): δ 22.4, 49.9, 51.6, 73.2

원소분석(C24H44N4O4CuBF4) : 이론치 C : 47.806 H : 7.355 N : 9.292Elemental analysis (C 24 H 44 N 4 O 4 CuBF 4 ): Theoretical C: 47.806 H: 7.355 N: 9.292

실측치 C : 47.416 H : 7.219 N : 9.359
Found C: 47.416 H: 7.219 N: 9.359

<실시예 2> 2-메톡시이소부틸아자이드의 제조Example 2 Preparation of 2-methoxyisobutyl azide

출발물질로 메탈릴브로마이드를 이용하여 중간체인 2-메톡시이소부틸아자이드를 제조하였다.As a starting material, intermediate 2-methoxyisobutyl azide was prepared using metalryl bromide.

(단계 1) : 2-메톡시이소부틸브로마이드의 제조(Step 1): Preparation of 2-methoxyisobutyl bromide

Figure 112001021938895-pat00017
Figure 112001021938895-pat00017

메탈릴브로마이드(20 g, 148.1 mmol)를 이용하여 상기 실시예 1의 단계 1과 동일한 방법으로 2-메톡시이소부틸브로마이드 23.3 g(94.2%)를 얻었다. 23.3 g (94.2%) of 2-methoxyisobutyl bromide was obtained by the same method as Step 1 of Example 1 using metalryl bromide (20 g, 148.1 mmol).                     

1H-NMR(200 MHz, CDCl3) : δ 1.31(s, 6H), 3.24(s, 3H), 3.41(s, 2H)
1 H-NMR (200 MHz, CDCl 3 ): δ 1.31 (s, 6H), 3.24 (s, 3H), 3.41 (s, 2H)

(단계 2) : 2-메톡시이소부틸이소니트릴의 제조(Step 2): Preparation of 2-methoxyisobutylisonitrile

Figure 112001021938895-pat00018
Figure 112001021938895-pat00018

상기 단계에서 얻어진 2-메톡시이소부틸브로마이드를 실시예 1의 단계 2와 동일한 방법으로 수행하여 2-메톡시이소부틸아자이드를 얻었다.
2-methoxyisobutyl bromide obtained in the above step was carried out in the same manner as in Step 2 of Example 1 to obtain 2-methoxyisobutyl azide.

(단계 3) : 2-메톡시이소부틸아민의 제조(Step 3): Preparation of 2-methoxyisobutylamine

반응식 14Scheme 14

Figure 112001021938895-pat00019
Figure 112001021938895-pat00019

상기 단계에서 얻어진 2-메톡시이소부틸아자이드를 실시예 1의 단계 3과 동일한 방법으로 수행하여 2-메톡시이소부틸아민을 얻었다.
2-methoxyisobutyl azide obtained in the above step was carried out in the same manner as in Step 3 of Example 1 to obtain 2-methoxyisobutylamine.

(단계 4) : 2-메톡시이소부틸이소니트릴의 제조(Step 4): Preparation of 2-methoxyisobutylisonitrile

반응식 15Scheme 15

Figure 112001021938895-pat00020
Figure 112001021938895-pat00020

상기 단계에서 얻어진 2-메톡시이소부틸아민을 실시예 1의 단계 4와 동일한 방법으로 수행하여 2-메톡시이소부틸이소니트릴을 얻었다.
2-methoxyisobutylamine obtained in the above step was carried out in the same manner as in Step 4 of Example 1, to obtain 2-methoxyisobutylisonitrile.

<실시예 3> 동결건조된 키트의 제조Example 3 Preparation of Lyophilized Kit

본 발명의 화합물이 포함된 키트를 제조하기 위하여 하기와 같이 실시하였다.To prepare a kit containing the compound of the present invention was carried out as follows.

본 발명의 테트라키스(2-메톡시이소부틸이소니트릴)구리(Ⅰ)테트라플루오로보레이트를 바이알에 주입하고 일정량의 염화제일주석, L-시스테인, 구연산나트륨, 만니톨을 첨가하였다. 여기에 아스코르빈산(Ascorbic acid) 0 ㎍, 7.5 ㎍, 75 ㎍을 각각 첨가하여 저용존산소 증류수에 녹인 후 질소가스를 주입시켜 바이알의 내부를 질소로 치환한 다음 40시간 동안 동결건조하여 동결건조된 키트를 제조하였다.
Tetrakis (2-methoxyisobutylisonitrile) copper (I) tetrafluoroborate of the present invention was injected into a vial and an amount of stannous chloride, L-cysteine, sodium citrate, and mannitol were added. Ascorbic acid (0 ㎍, 7.5 ㎍, 75 ㎍) was added thereto, dissolved in low dissolved oxygen distilled water, and nitrogen gas was injected to replace the inside of the vial with nitrogen, followed by freeze drying for 40 hours. Prepared kits.

상기 키트의 구성성분은 다음과 같다.The components of the kit are as follows.

본 발명의 테트라키스(2-메톡시이소부틸이소니트릴)구리(Ⅰ)테트라플루오로보레이트 화합물·························1.0 mgTetrakis (2-methoxyisobutylisonitrile) copper (I) tetrafluoroborate compound of the present invention ... 1.0 mg

염화제일주석·······················0.075 mg Tin chloride Chloride: 0.075 mg ··················· 0.075 mg                     

L-시스테인·························1.0 mgL-cysteine 1.0 mg

구연산나트륨························2.6 mg Sodium citrate ... 2.6 mg

만니톨····························20 mg 20 mg of mannitol ····················

아스코르빈산·················· 0 ㎍, 7.5 ㎍, 75 ㎍
Ascorbic acid: 0 μg, 7.5 μg, 75 μg

<실험예 1> 아스코르빈산 첨가에 의한 Experimental Example 1 By Addition of Ascorbic Acid 99m99m Tc 세스타미비의 방사화학적 표지효율 Radiochemical Labeling Efficiency of Tc Sestamibi

상기 실시예 3에서 제조된 동결건조된 키트를 이용하여 99m테크네튬을 표지하여 방사성 의약품을 제조하고 표지효율을 측정하였다. Using a lyophilized kit prepared in Example 3 to label 99m technetium to prepare a radiopharmaceutical and to measure the labeling efficiency.

동결건조된 키트에 방사성 소디움 퍼테크네이트 2 mL(3 mCi)를 넣고 15분동안 95∼100℃에서 반응시켜 99m테크네튬을 표지하였다. 이때 방사화학적 표지효율을 측정하기 위하여 고정상으로 Whatman No 1과 ITLC-SG(Instant thin-layer chromatography -silicagel), 이동상으로는 아세톤과 생리식염수를 사용하여 크로마토그래피를 수행하였고, 결과는 TLC 스캐너로 확인하였고(표 1) 안정화제로 첨가한 아스코르빈산은 방사성 표지화 효율에 영향을 미치지 않음을 확인하였다. 2 mL (3 mCi) of radioactive sodium pertechnate was added to the lyophilized kit and reacted at 95-100 ° C. for 15 minutes to label 99m technetium. At this time, to measure the radiochemical labeling efficiency, chromatography was performed using Whatman No 1 and Instant thin-layer chromatography-silicagel (ITLC-SG) as a stationary phase, and acetone and physiological saline as the mobile phase, and the results were confirmed by a TLC scanner. was confirmed (Table 1) does not affect the ascorbic acid radioactive labeling efficiency was added as a stabilizer.

아스코르빈산 첨가에 의한99mTc 세스타미비의 방사화학적 표지효율 Radiochemical Labeling Efficiency of 99m Tc Cestamibi by Addition of Ascorbic Acid 아스코르빈산의 함량Ascorbic Acid Content 바이알 수Vial can 방사화학적 표지효율 (%)Radiochemical Labeling Efficiency (%) 99mTc-MIBI 99m Tc-MIBI 미반응99mTcO4 - Unreacted 99m TcO 4 - 콜로이드Colloid 본 발명의 조성물Compositions of the Invention 0 ㎍0 μg 33 98.0 ±0.098.0 ± 0.0 0.0 ±0.00.0 ± 0.0 2.0 ±0.12.0 ± 0.1 7.5 ㎍7.5 μg 33 98.7 ±0.698.7 ± 0.6 0.0 ±0.00.0 ± 0.0 1.3 ±0.11.3 ± 0.1 75 ㎍75 μg 33 99.0 ±0.099.0 ± 0.0 0.0 ±0.00.0 ± 0.0 1.0 ±0.01.0 ± 0.0 실험결과는 평균 ± 표준편차  The experimental results are mean ± standard deviation

<실험예 2> 환원제로 아스코르빈산 첨가에 의한 Experimental Example 2 By Addition of Ascorbic Acid as Reducing Agent 99m99m Tc 세스타미비의 방사화학적 표지효율 Radiochemical Labeling Efficiency of Tc Sestamibi

환원제로서 아스코르빈산만 첨가된 동결건조된 키트를 이용하여 99m테크네튬을 표지하여 방사성 의약품을 제조하고 표지효율을 측정하였다. Using a lyophilized kit to which only ascorbic acid was added as a reducing agent, 99m technetium was labeled to prepare a radiopharmaceutical, and the labeling efficiency was measured.

본 발명의 테트라키스(2-메톡시이소부틸이소니트릴)구리(Ⅰ)테트라플루오로보레이트를 바이알에 주입하고 일정량의 구연산나트륨, 만니톨을 첨가하였다. 여기에 아스코르빈산(Ascorbic acid) 0 ㎍, 7.5 ㎍, 75 ㎍을 각각 첨가하여 저용존산소 증류수에 녹인 후 질소가스를 주입시켜 바이알의 내부를 질소로 치환한 다음 40시간 동안 동결건조하여 동결건조된 키트를 제조하였다. Tetrakis (2-methoxyisobutylisonitrile) copper (I) tetrafluoroborate of the present invention was injected into a vial and a certain amount of sodium citrate and mannitol were added. Ascorbic acid (0 ㎍, 7.5 ㎍, 75 ㎍) was added thereto, dissolved in low dissolved oxygen distilled water, and nitrogen gas was injected to replace the inside of the vial with nitrogen, followed by freeze drying for 40 hours. Prepared kits.

동결건조된 키트에 방사성 소디움 퍼테크네이트 2 mL(3 mCi)를 넣고 15분동안 95∼100℃에서 반응시켜 99m테크네튬을 표지하였다. 이때 방사화학적 표지효율을 측정하기 위하여 고정상으로 Whatman No 1과 ITLC-SG (Instant thin-layer chromatography -silicagel), 이동상으로는 아세톤과 생리식염수를 사용하여 크로마토그래피를 수행하였고, 결과는 TLC 스캐너로 확인시(표 2), 아스코르빈산을 환원제로 사용할 때 표지효율이 1%미만으로 환원활성이 전혀 없음을 확인하였다. 2 mL (3 mCi) of radioactive sodium pertechnate was added to the lyophilized kit and reacted at 95-100 ° C. for 15 minutes to label 99m technetium. At this time, chromatography was performed using Whatman No 1 and Instant thin-layer chromatography (silicagel) (ITLC-SG) as a stationary phase and acetone and physiological saline as a mobile phase to measure radiochemical labeling efficiency. When using ascorbic acid as a reducing agent ( Table 2 ), the labeling efficiency was less than 1% and it was confirmed that there was no reducing activity at all.

아스코르빈산을 환원제로 사용할 때99mTc 세스타미비의 방사화학적 표지효율 Radiochemical Labeling Efficiency of 99m Tc Cestamibi with Ascorbic Acid as Reducing Agent 아스코르빈산의 함량Ascorbic Acid Content 바이알 수Vial can 방사화학적 표지효율 (%)Radiochemical Labeling Efficiency (%) 99mTc-MIBI 99m Tc-MIBI 미반응99mTcO4 - Unreacted 99m TcO 4 - 콜로이드Colloid 비교예 조성물Comparative composition 0 ㎍0 μg 33 0.0 ±0.00.0 ± 0.0 98.0 ±0.398.0 ± 0.3 2.0 ±0.02.0 ± 0.0 7.5 ㎍7.5 μg 33 0.7 ±0.10.7 ± 0.1 94.0 ±0.694.0 ± 0.6 5.3 ±0.15.3 ± 0.1 75 ㎍75 μg 33 0.0 ±0.00.0 ± 0.0 96.5 ±0.496.5 ± 0.4 3.5 ±0.13.5 ± 0.1 실험결과는 평균 ± 표준편차  The experimental results are mean ± standard deviation

<실험예 3> 아스코르빈산 첨가에 의한 Experimental Example 3 By Addition of Ascorbic Acid 99m99m Tc 세스타미비의 가속시험에서의 안정성 Stability of Accelerated Test of Tc Sestamibi

본 발명의 화합물이 포함된 99mTc 세스타미비의 가속시험시 안정성을 알아보기 위하여 하기와 같이 실시하였다. In order to determine the stability during the accelerated test of 99m Tc sestamibi containing the compound of the present invention was carried out as follows.

상기 실험예 2에서 제조된 99mTc 세스타미비를 40℃±2℃, 상대습도 75±5%의 가속시험 조건하에 보존하였다. 가속시험 후 6개월 째에 안정화제로 첨가한 아스코르빈산의 활성을 측정하기 위해 염화제일주석의 함량을 측정하여 하기 표 3에 나타내었다. 그 결과 환원활성을 갖는 Sn+2의 함량은 아스코르빈산을 첨가한 경우 염화제일주석의 함량이 2∼3배 보존된 것을 확인하였다. 이러한 결과로 아스코르빈산의 첨가는 염화제일주석의 산화를 방지함으로서 바이알의 안정성을 증가시킨 것으로 평가되었다. 또한 방사성 표지화 효율은 개시시와 유사한 효과를 나타내었다. 또한 가속시험 9개월 후 방사성표지화 효율을 측정하여 표 4에 나타내었다. 위의 조건은 실온보존 약물의 경우 약4배 정도의 장기보존시험을 예상할 수 있는 조건으로 가속시험 후 9개월째까지 실시한 99mTc-sestamibi의 방사화학적 표지효율을 측정한 결과 아스코르빈산을 첨가한 경우 표지화효율이 5 - 8배 증가함을 학인하였다. The 99m Tc sestamibi prepared in Experimental Example 2 was stored under accelerated test conditions of 40 ℃ ± 2 ℃, relative humidity 75 ± 5%. In order to measure the activity of ascorbic acid added as a stabilizer at 6 months after the accelerated test, the content of tin tin chloride was measured and shown in Table 3 below. As a result, it was confirmed that the content of Sn +2 having reducing activity was preserved 2 to 3 times of the content of tin chloride when ascorbic acid was added. As a result, the addition of ascorbic acid was evaluated to increase the stability of the vial by preventing the oxidation of stannous chloride. In addition, the radiolabeling efficiency showed a similar effect as the onset. In addition, the radiolabeling efficiency was measured 9 months after the accelerated test and is shown in Table 4 . The above conditions are expected to be about 4 times the long-term preservation test for the room temperature preservation drug. Ascorbic acid was added as a result of measuring the radiochemical labeling efficiency of 99m Tc-sestamibi conducted up to 9 months after the accelerated test. In one case, the labeling efficiency increased by 5-8 times.

아스코르빈산첨가에 의한 환원제인 염화제일주석의 안정성 Stability of TiN Chloride as a Reducing Agent by Addition of Ascorbic Acid 아스코르빈산의 함량Ascorbic Acid Content 바이알 수Vial can 염화제일주석 함량(Sn(I), %)Tin chloride content (Sn (I),%) 본 발명의 조성물Compositions of the Invention 0 ㎍0 μg 33 13.4 ± 0.5413.4 ± 0.54 7.5 ㎍7.5 μg 33 41.8 ± 0.9241.8 ± 0.92 75 ㎍75 μg 33 30.8 ± 0.8430.8 ± 0.84 실험결과는 평균 ± 표준편차  The experimental results are mean ± standard deviation

99mTc 세스타미비의 방사화학적 표지효율 Radiochemical Labeling Efficiency of 99m Tc Sestamibi 아스코르빈산의 함량Ascorbic Acid Content 바이알 수Vial can 방사화학적 표지효율 (%)Radiochemical Labeling Efficiency (%) 99mTc-MIBI 99m Tc-MIBI 미반응99mTcO4 - Unreacted 99m TcO 4 - 콜로이드Colloid 본 발명의 조성물Compositions of the Invention 0 ㎍0 μg 22 10.010.0 70.070.0 20.020.0 7.5 ㎍7.5 μg 22 58.658.6 41.541.5 0.00.0 75 ㎍75 μg 22 92.092.0 0.00.0 8.08.0 실험결과는 평균 ± 표준편차  The experimental results are mean ± standard deviation

상기 표 4에 따르면, 방사화학적 표지효율이 최초 제조된 경우(표 1)와 유사한 표지효율을 나타내어 유효기간을 연장시킬 수 있음을 확인하였으며, 이상의 결과는 세스타미비 제제의 안정성을 증가시키기 위하여 염화제일주석의 산화를 방지하는 안정화제로서 아스코르빈산의 첨가가 바람직함을 알 수 있었다.
According to Table 4 , it was confirmed that the radiochemical labeling efficiency can be extended to show a labeling efficiency similar to that of the first manufacturing ( Table 1 ), and the above results are chlorinated in order to increase the stability of the cestamabi formulation. It was found that addition of ascorbic acid is preferable as a stabilizer for preventing oxidation of tin tin.

따라서, 상술한 바와 같이 본 발명의 제조방법은 종래의 제조방법에 비해 인체에 유해한 디포스겐을 사용하지 아니하므로, 안전하고 고수율로 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체를 얻을 수 있으며, 반응단계가 단축되어 산업적으로 이용가치가 증가될 것이다. 또한 본 발명의 화합물, 환원제 및 안정화제로 이루어진 방사성물질 표지용 조성물은 동결건조된 키트로 제조가 가능하고 장기간 보존하여도 방사성물질 표지효율이 우수하였다.Therefore, as described above, the manufacturing method of the present invention does not use diphosgene, which is harmful to the human body, compared to the conventional manufacturing method, and thus, tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetra is safe and high in yield. Fluoroborate derivatives can be obtained, and the reaction step will be shortened to increase industrial value. In addition, the radiolabeling composition consisting of the compound, the reducing agent and the stabilizer of the present invention can be prepared as a lyophilized kit and excellent in radiolabeling efficiency even after long-term storage.

Claims (17)

1) 메탈릴할라이드(2)를 출발물질로 하고 C1-C4의 저급 또는 가지 달린 알코올 용매하에서 머큐릭아세테이트, 수산화나트륨, 소디움보로히드라이드와 순차적으로 반응시켜 알콕시화 하는 단계 (단계 1);1) alkoxylation by sequentially reacting metall halide (2) with mercury acetate, sodium hydroxide and sodium borohydride in a C 1 -C 4 lower or branched alcohol solvent (step 1 ); 2) 단계 1의 알콕시 화합물(3)을 소디움 아자이드와 반응시켜 아자이드화 하는 단계 (단계 2); 2) reacting the alkoxy compound (3) of step 1 with sodium azide to azide (step 2); 3) 단계 2의 아자이드 화합물(4)을 리튬알루미늄하이드라이드 존재하에 아민기로 환원시키는 단계 (단계 3);3) reducing the azide compound (4) of step 2 to an amine group in the presence of lithium aluminum hydride (step 3); 4) 단계 3의 아민 화합물(5)을 클로로포름 및 상이동 촉매(Phase transfer catalyst) 존재하에 무기염기를 이용하여 이소니트릴화 하는 단계 (단계 4);4) isonitrile the amine compound (5) of step 3 using an inorganic base in the presence of chloroform and a phase transfer catalyst (step 4); 5) 단계 4의 이소니트릴 화합물(6)을 구리 화합물(7)과 반응시켜 제조하는 (단계 5) 단계로 이루어진 것을 특징으로 하는 화학식 1로 표시되는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법.5) Tetrakis (2-alkoxyisobutylisonitrile) copper represented by the formula (1), characterized in that the step (4) is prepared by reacting the isonitrile compound (6) of step 4 with a copper compound (7). (I) A method for producing a tetrafluoroborate derivative. 반응식 4Scheme 4
Figure 112007006793848-pat00021
Figure 112007006793848-pat00021
상기 식에서 R은 C1-C4의 저급 알킬기 또는 가지 달린 알킬기이고, X는 할로겐 원소이며, R'는 C1-C4의 저급 알킬기이다.In the above formula, R is a C 1 -C 4 lower alkyl group or a branched alkyl group, X is a halogen element, and R 'is a C 1 -C 4 lower alkyl group.
삭제delete 제 1 항에 있어서, 단계 1의 C1-C4의 저급 또는 가지 달린 알코올은 메탄올, 에탄올, 프로판올 또는 부탄올인 것을 특징으로 하는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법.2. The tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluor according to claim 1, wherein the lower or branched alcohol of C 1 -C 4 of step 1 is methanol, ethanol, propanol or butanol. Process for the preparation of roborate derivatives. 제 1 항에 있어서, 단계 4의 상이동 촉매는 R"4NX의 구조식으로 표시되며, 이때 R"는 C1∼C4의 알킬기이고 X는 할로겐족의 원소인 것을 특징으로 하는 테트라 키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법. The catalyst of claim 1, wherein the phase transfer catalyst of step 4 is represented by the structural formula of R ″ 4 NX, wherein R ″ is an alkyl group of C 1 to C 4 and X is an element of halogen group. Method for producing alkoxy isobutyl isonitrile) copper (I) tetrafluoroborate derivative. 제 1 항에 있어서, 단계 4의 상이동 촉매는 테트라알킬암모니움클로라이드, 테트라알킬암모니움브로마이드, 테트라알킬암모니움요오드 또는 테트라알킬암모니움하이드록사이드 중에서 선택된 것을 특징으로 하는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법. The tetrakis (2-alkoxy) of claim 1, wherein the phase transfer catalyst of step 4 is selected from tetraalkylammonium chloride, tetraalkylammonium bromide, tetraalkylammonium iodine or tetraalkylammonium hydroxide. Method for preparing isobutylisonitrile) copper (I) tetrafluoroborate derivatives. 제 1 항에 있어서, 단계 4의 무기염기는 수산화나트륨 및 수산화칼륨 중에서 선택된 것을 특징으로 하는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법. The method for preparing tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivatives according to claim 1, wherein the inorganic base of step 4 is selected from sodium hydroxide and potassium hydroxide. 제 1 항에 있어서, 단계 5는 2-알콕시이소부틸이소니트릴 1 당량에 대하여 테트라키스(알킬니트릴)구리(Ⅰ)테트라플루오로보레이트 0.25 당량을 첨가하여 0∼30℃에서 10∼60분간 반응시켜 제조하는 것을 특징으로 하는 테트라키스(2-알콕시이소부틸이소니트릴)구리(I)테트라플루오로보레이트 유도체의 제조방법.The method of claim 1, wherein step 5 is carried out by adding 0.25 equivalent of tetrakis (alkylnitrile) copper (I) tetrafluoroborate to 1 equivalent of 2-alkoxyisobutylisonitrile and reacting at 0 to 30 ° C for 10 to 60 minutes. A process for producing a tetrakis (2-alkoxyisobutylisonitrile) copper (I) tetrafluoroborate derivative, which is prepared. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020010052416A 2001-03-13 2001-08-29 Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof KR100739903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010052416A KR100739903B1 (en) 2001-03-13 2001-08-29 Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020010012877 2001-03-13
KR20010012877 2001-03-13
KR1020010052416A KR100739903B1 (en) 2001-03-13 2001-08-29 Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070033398A Division KR100755171B1 (en) 2001-03-13 2007-04-04 A new composition containing tetrakis(2-alkoxyisobutylisonitrile)copper(I)tetrafluoroborate derivatives for labelling agent of radioactive materials

Publications (2)

Publication Number Publication Date
KR20020073083A KR20020073083A (en) 2002-09-19
KR100739903B1 true KR100739903B1 (en) 2007-07-16

Family

ID=27697227

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020010052416A KR100739903B1 (en) 2001-03-13 2001-08-29 Method of preparing tetrakis2-alkoxyisobutylisonitrilecopperItetrafluoro borate derivatives and new composition containing them for labelling agent of radioactive materials thereof
KR1020070033398A KR100755171B1 (en) 2001-03-13 2007-04-04 A new composition containing tetrakis(2-alkoxyisobutylisonitrile)copper(I)tetrafluoroborate derivatives for labelling agent of radioactive materials

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020070033398A KR100755171B1 (en) 2001-03-13 2007-04-04 A new composition containing tetrakis(2-alkoxyisobutylisonitrile)copper(I)tetrafluoroborate derivatives for labelling agent of radioactive materials

Country Status (1)

Country Link
KR (2) KR100739903B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113791B1 (en) 2009-09-07 2012-02-27 한국과학기술연구원 Novel potassium azidoaryltrifluoroborate derivatives and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007238B1 (en) * 2008-08-28 2011-01-13 이화여자대학교 산학협력단 Rhodamine derivative bearing binaphthyl group, method for preparing the same, and method for detecting copper ion using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210270A (en) 1991-11-25 1993-05-11 Institute Of Nuclear Energy Research Method for synthesis and 99m C labelling of 2-alkoxyisobutylisonitrile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093105A (en) * 1991-04-09 1992-03-03 Merck Frosst Canada, Inc. Radiopharmaceutical bacteriostats

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210270A (en) 1991-11-25 1993-05-11 Institute Of Nuclear Energy Research Method for synthesis and 99m C labelling of 2-alkoxyisobutylisonitrile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113791B1 (en) 2009-09-07 2012-02-27 한국과학기술연구원 Novel potassium azidoaryltrifluoroborate derivatives and method for producing the same

Also Published As

Publication number Publication date
KR20070040780A (en) 2007-04-17
KR20020073083A (en) 2002-09-19
KR100755171B1 (en) 2007-09-04

Similar Documents

Publication Publication Date Title
AU2002323417B2 (en) Stilbene derivatives and their use for binding and imaging amyloid plaques
KR940011456B1 (en) Ether isonitriles and radiolabeled complexes thereof
AU2002323417A1 (en) Stilbene derivatives and their use for binding and imaging amyloid plaques
AU640350B2 (en) Novel tc-99m complexes
EP0304780A1 (en) Process for labelling substances with technetium or rhenium
US5276147A (en) Compounds and complexes useful in medical imaging
KR100755171B1 (en) A new composition containing tetrakis(2-alkoxyisobutylisonitrile)copper(I)tetrafluoroborate derivatives for labelling agent of radioactive materials
Sano et al. 1-(3′-[125I] iodophenyl)-3-methy-2-pyrazolin-5-one: preparation, solution stability, and biodistribution in normal mice
US4885100A (en) Tris(isonitrile)copper(I) adducts for preparing radionuclide complexes
JPS5932457B2 (en) radioiodinated amine
US5693324A (en) Tris(isonitrile) copper(I) sulfates for preparing radionuclide complexes
FI85859C (en) FOERFARANDE FOER FRAMSTAELLNING AV RADIONUKLIDKOMPLEX AV METALL / ISONITRILADDUKTER.
EP0546233B1 (en) Method for synthesis and 99mTc labelling of 2-alkoxyisobutylisonitrile
JPH01305087A (en) (2s)-(5-amino-1, 2-dihydro-2-methyl-3- phenylpyrid (3, 4-b) pyradin-7-yl)carbamic ethyl ester
Xia et al. Synthesis of pyridyl derivatives for the future functionalization of biomolecules labeled with the fac-[188 Re (CO) 3 (H 2 O) 3]+ precursor
Kniess et al. Nicotinamide‐substituted complexes as redox markers. 1. Synthesis and UV investigation of rhenium and technetium mixed‐ligand systems
US9023315B2 (en) Tricarbonyl complexes with tridentate chelators for myocardium imaging
US6071492A (en) Cardiac tropism radiopharmaceutical products incorporating a nitride complex of a transition metal and having a rapid myocardial clearance
US5008418A (en) Tris(isonitrile)copper(I) adducts for preparing radionuclide complexes
US5028699A (en) Process for preparing Tc-99m tris(isonitrile) copper complexes
Auzeloux et al. Technetium‐99m radiolabelling of an N‐amino‐alkyl‐benzamide nitrido‐and oxo‐technetium bis (aminoethanethiol) derivative synthesis and biological results. Potential melanoma tracer agents
KR20160144352A (en) A kit for preparing a radiopharmaceutical
KR20020093404A (en) Novel N,N&#39;-disubstituted diaminedithiol radioactive metal complexes for labelling and imaging agents, and novel N,N&#39;-disubstituted diaminedithiol ligands
SK279625B6 (en) Diagnostic agent
HU202321B (en) Diagnostic reagent set markable with tc of 99 mass no. and process for producing iso- nitryl-ethers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
LAPS Lapse due to unpaid annual fee