KR100726143B1 - - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain - Google Patents

- A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain Download PDF

Info

Publication number
KR100726143B1
KR100726143B1 KR1020060076841A KR20060076841A KR100726143B1 KR 100726143 B1 KR100726143 B1 KR 100726143B1 KR 1020060076841 A KR1020060076841 A KR 1020060076841A KR 20060076841 A KR20060076841 A KR 20060076841A KR 100726143 B1 KR100726143 B1 KR 100726143B1
Authority
KR
South Korea
Prior art keywords
pdgf
yeast
gene
secretion
pygmf
Prior art date
Application number
KR1020060076841A
Other languages
Korean (ko)
Inventor
염도영
문민우
김도영
구본탁
Original Assignee
주식회사 인 바이오넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인 바이오넷 filed Critical 주식회사 인 바이오넷
Priority to KR1020060076841A priority Critical patent/KR100726143B1/en
Application granted granted Critical
Publication of KR100726143B1 publication Critical patent/KR100726143B1/en
Priority to PCT/KR2007/003888 priority patent/WO2008020701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/49Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A yeast is provided to mass-express platelet-derived growth factor(PDGF) by using an optimum secretion factor for overproduction of the PDGF, thereby capable of reducing the manufacturing cost and being useful for establishing high efficiency secretion system of various high valued protein products. The yeast producing and secreting PDGF-B with high efficiency is characterized in that it is co-transformed by a PDGF-B gene and a secretion factor gene derived from human kidney. In the yeast, the PDGF-B gene is existent in a vector pYGMF-PB and the secretion factor gene is existent in a vector pACT2. The yeast is Y2805Deltagall//pYGMF-PB/pACT2. The method for preparing the yeast comprises the steps of: (a) after isolating and cloning the PDGF-B, introducing it into an expression vector; (b) after transforming yeast with the expression vector, culturing it and then isolating a first transformed yeast in which the PDGF-B is expressed; and (c) after transforming the first transformed yeast with a human cDNA library, isolating a second transformed yeast in which the PDGF-BB is extracellularly secreted.

Description

재조합 인체 혈소판 유래 성장인자(PDGF-BB)를 고효율로 생산·분비하는 균주 및 상기 균주의 제작방법{A New Strain Highly Producing PDGF-BB, and a Method for Constructing the Strain}A strain for producing and secreting a recombinant human platelet-derived growth factor (PDV-F) with high efficiency and a method for producing the strain {A New Strain Highly Producing PDGF-BB, and a Method for Constructing the Strain}

도 1은 본 발명에 의한 효모 형질전환체를 제작하는 과정을 보여주는 개략 흐름도.1 is a schematic flowchart showing a process for producing a yeast transformant according to the present invention.

도 2는 인간의 각 조직 유래 cDNA library와 HELA 세포 library를 기질로 하여 PDGF-B 유전자를 PCR 기법으로 증폭한 전기영동 사진.Figure 2 is an electrophoresis picture of amplified PDGF-B gene by the PCR method using the cDNA library and HELA cell library derived from each human tissue.

도 3은 증폭한 PDGF 유전자를 기질로 하여 PCR 기술을 이용해 PDGF-B 성숙유전자만을 다시 PCR 기법으로 증폭한 전기영동 사진.Figure 3 is an electrophoresis picture of amplified PDGF-B mature gene again using the PCR technique using amplified PDGF gene as a substrate.

도 4는 효모 발현 벡터인 YEGα-HIR525에 PDGF-B(WM) 유전자를 클로닝여 제조한 pYGMF-PB 벡터 지도.Figure 4 is a pYGMF-PB vector map prepared by cloning the PDGF-B (WM) gene in the yeast expression vector YEGα-HIR525.

도 5는 pYGMF-PB 형질전환 효모에 의해 생산된 PDGF-B이 효모의 체내에서 분비되지 않음을 보여주는 SDS-PAGE 결과 사진.Figure 5 is a photograph of the SDS-PAGE results showing that PDGF-B produced by pYGMF-PB transgenic yeast is not secreted in the body of yeast.

도 6은 pYGMF-PB 형질전환 효모의 PDGF-B 유전자 발현을 보여주는 SDS-PAGE 결과 사진.Figure 6 is a photograph of the SDS-PAGE results showing the PDGF-B gene expression of pYGMF-PB transgenic yeast.

도 7은 PDGF-BB 단량이량체의 발현 차이를 확인하기 위하여 마우스 항-인간 PDGF 항체, 염소 항-마우스 IgG-AP를 이용한 웨스턴 블러팅 결과 사진.Figure 7 is a photograph of Western blotting results using a mouse anti-human PDGF antibody, goat anti-mouse IgG-AP to confirm the difference in expression of PDGF-BB monomer.

도 8은 형질전환체의 PDGF-BB 발현·분리량의 정성분석 결과사진.8 is a qualitative analysis result photograph of PDGF-BB expression and separation amount of a transformant.

도 9는 본 발명에 의한 이중 형질전환체 Y2805△gal1 /pYGMF-PB/pS-26 균주의 PDGF-BB 생산시험 결과를 보여주는 그래프.Figure 9 is a graph showing the PDGF-BB production test results of the double transformant Y2805 Δgal1 / pYGMF-PB / pS-26 strain according to the present invention.

본 발명은 재조합 생산이 어려운 인체 유래 단백질인 PDGF(혈소판 유래 성장인자; Platelet-derived growth factor)-B 단종이량체를 효모 발현시스템을 이용해 생산 시 그 생산성을 증가시킬 수 있는 최적분비인자를 발굴하는 방법과 분비인자를 이용한 생산성 증가에 관한 것이다.The present invention uses PDGF (platelet-derived growth factor) -B monodimer, which is a human-derived protein, which is difficult to produce in recombinant production, to find an optimal secretion factor that can increase its productivity during production using a yeast expression system. It is about increasing productivity using methods and secretion factors.

효모 사카로마이세스 세레비시에(Saccharomyces cerevisiae)는 주류나 제빵산업용 외에도 여러 유용물질인 단백질, 핵산, 효소, 지질, 비타민, 미네랄 등의 원료로 사용되는 인체에 무해한 GRAS(Generally Recognized As Safe)급의 미생물이며 (Roman 등, Food Biotechnology,1992,6:225) 유전자 조작의 용이성과 발현벡터 등 관련 외래 단백질, 특히 인간유래 단백질처럼 고등세포 유래 단백질 생산을 위한 제반 시스템이 잘 구축되어 있다. 또한 고등세포와 유사한 단백질 분비기능과 당쇄 부가 기능 및 해독 후 수식 기능을 수행할 수 있는 장점을 가지고 있어 대장 균을 통한 재조합 단백질 생산이 곤란한 고등세포 유래 단백질의 발현 및 생산에 주로 이용되는 미생물이다. Yeast Saccharomyces cerevisiae is a GRAS (Generally Recognized As Safe) grade that is harmless to human body used as raw materials for proteins, nucleic acids, enzymes, lipids, vitamins, minerals, etc. It is a microorganism (Roman et al., Food Biotechnology, 1992, 6: 225) and has a well-established system for the production of higher-cell-derived proteins, such as genes and related foreign proteins such as expression vectors, especially human-derived proteins. In addition, it is a microorganism mainly used for the expression and production of higher cell-derived proteins, which are difficult to produce recombinant proteins through Escherichia coli, because they have the advantages of similar protein secretion function, sugar chain addition function, and post-translational modification function.

PDGF-A 유전자는 7번 염색체에 한정되어 위치하며 PDGF-B 유전자와 아미노산 서열의 동일성은 56%이다. PDGF에는 PDGF-A와 PDGF-B 체인에 의해서 세 가지 이량체 형태인 PDGF-AA, PDGF-AB 그리고 PDGF-BB로 존재하며(Hammacher 등, J.Biol.Chem, 1988, 263) PDGF가 합성되고 유리되는 근원은 혈소판으로 알려져 있으나 현재 다양한 세포에서 유리되고 있다(Canalis등, Academic Press Inc. U.S.A. 1996). 최근 PDGF-C 체인과 D 체인에 대한 보고가 있으며 이에 대한 연구가 활발히 진행되고 있다(Heldin 등, Arch. Biochem. Biophys, 2002, 398:2). PDGF는 등전점이 9.8이며 분자량 30kDa의 조절성 단백질로서 생물학적 기능은 민무늬근육세포 및 섬유모세포의 분열과 분화를 유도하고, 생리학적으로 조직손상의 복구, 염증, 종양형성 등에 관여하는 것으로 알려지고 있다(Heldin과 Westermark, ,Cell. regul., 1, 1990 ;Bowen-Pope 등, Trends Genetics, 7,1991). 임상학적으로는 화상으로 창상치유, 당뇨성 족부 궤양 치료에 효과가 탁월한 것으로 알려져 있으며 상처 치유에 관여하는 여러 성장인자들 중 PDGF만이 in vivo에서 상처 치유를 증대하는 것으로 확인되었다. 서로 다른 PDGF 이성질체중 가장 강력한 이성질체는 PDGF-BB 단종이량체로 알려져 있으며 PDGF-BB(82-190 아미노산)가 세포 표면에서 공통적으로 발현 되었으므로 만성 상처치료에 집중적으로 이용되었다(J. Trauma, 1996, 41, Science, 1988, 240). 현재 PDGF gel은 becaplermin(상품명 Regranex) 제품이 전량 수입되어 판매되고 있으며 37만원/15g(PDGF 함량 0.01%)에 판매되는 고가의 제품이다. 국내에서는 대웅제약의 EGF(Epidermal growth factor) 스프레이가 유일하나 족부 궤양 치료에 있어서는 PDGF가 전세계적으로 효과가 검증되어 있다. 이러한 산업적 중요성 때문에 PDGF의 생산성 향상에 많은 관심이 모아지고 있으나 그 생산량은 극히 미미한 실정이다. 사카로마이세스 세레비시에에서 PDGF-BB를 발현 분비형으로 제조하였으나 배양 후에도 대부분 세포내에 존재하였고 Arg32에 부분적인 단백질 분해가 일어났다(US 4,769,328,1999). 이러한 분해를 막기 위해 R28S와 R32P로 치환한 결과 야생형에 비해 발현양도 증가하고 생물학적 활성도 약간 증가하였으나 여전히 분비가 잘 되지 않았다. 현재까지 사카로마이세스 세레비시에에서 재조합 단백질의 분비능을 증진시키기 위해 다양한 분비인자 연구가 진행되고 있는데 크게 소포체에서 새로 합성된 단백질 접힘을 돕는 트랜스형 샤페론 연구와 과 발현된 단백질이 소포체에서 서로 응집되는 것을 막기 위한 시스형 단백질 융합인자 연구로 나눌 수 있다. 효모에서 분비 단백질의 분비 및 성숙과정을 돕는 단백질로 폴데이즈(Foldase)와 샤페론이 있는데 정상적인 세포의 배양에서는 이러한 매개 단백질이 부족하지 않으나 재조합 균주의 경우 외래 단백질을 대량 발현하기 때문에 매개단백질이 일종의 병목(bottle-neck)이 될 가능성이 있으므로 재조합 단백질의 분비를 향상시키는 숙주공학으로 단백질 접힘을 매개하는 폴데이즈와 샤페론의 과 발현 방법이 표 1에서와 같이 알려져 있다. The PDGF-A gene is located confined to chromosome 7, and the identity of the PDGF-B gene and amino acid sequence is 56%. PDGF exists in three dimeric forms, PDGF-AA, PDGF-AB and PDGF-BB by PDGF-A and PDGF-B chains (Hammacher et al., J. Biol. Chem, 1988, 263). The source of release is known as platelets, but is currently released in various cells (Canalis et al., Academic Press Inc. USA 1996). Recently, the PDGF-C chain and the D chain have been reported and researches are being actively conducted (Heldin et al., Arch. Biochem. Biophys, 2002, 398: 2). PDGF has an isoelectric point of 9.8 and is a regulatory protein with a molecular weight of 30 kDa. Biological function is known to induce the division and differentiation of striated myocytes and fibroblasts, and to be physiologically involved in the repair of tissue damage, inflammation and tumor formation. Heldin and Westermark,, Cell. Regul., 1, 1990; Bowen-Pope et al., Trends Genetics, 7,1991). Clinically, burns are known to be effective in treating wound healing and diabetic foot ulcers. Among the growth factors involved in wound healing, only PDGF enhances wound healing in vivo . The strongest isomer of the different PDGF isomers is known as the PDGF-BB monodimer, and PDGF-BB (82-190 amino acids) is commonly expressed on the cell surface and has been used extensively in the treatment of chronic wounds (J. Trauma, 1996, 41, Science, 1988, 240). Currently, PDGF gel is imported and sold in full quantity of becaplermin (trade name Regranex), and it is an expensive product sold for 370,000 won / 15g (0.01% PDGF content). Daewoong Pharmaceutical's EGF (Epidermal Growth Factor) spray is the only one in Korea, but PDGF has been proven worldwide in treating foot ulcers. Due to this industrial importance, much attention is paid to the productivity improvement of PDGF, but the production amount is very small. PDGF-BB was produced as an expression secretion in Saccharomyces cerevisiae, but was mostly intracellular after culture and partial proteolysis occurred in Arg 32 (US 4,769,328,1999). Substitution with R28S and R32P to prevent this degradation resulted in increased expression and slightly increased biological activity compared to wild-type but still not secreted well. To date, various secretion factors have been studied in Saccharomyces cerevisiae to enhance the secretory capacity of recombinant proteins. Trans-type chaperone studies that help fold newly synthesized proteins in the endoplasmic reticulum and overexpressed proteins aggregate in the endoplasmic reticulum. It can be divided into cis-type protein fusion factor studies to prevent them. Proteins that help secrete and mature secretory proteins in yeast include Foldase and chaperone. In normal cell culture, these mediators do not lack these media, but recombinant strains express large amounts of foreign proteins. Because of the potential for bottle-neck, overexpression methods of Fall Days and chaperones that mediate protein folding in host engineering to enhance secretion of recombinant proteins are shown in Table 1.

Figure 112006057965462-pat00001
Figure 112006057965462-pat00001

샤페론은 단백질이 제대로 3차 구조를 갖도록 접히는데 문제가 있을 경우 미성숙 단백질에 결합할 뿐만 아니라 추가적인 샤페론과 폴데이즈의 발현을 유도하는 세포내의 정상적 과정으로서 외래단백질을 발현할 때도 적용된다. 외래단백질 생산시 단백질이 제대로 접히지 않을 경우 단백질의 생산성을 낮추며 경우에 따라서 이러한 문제가 샤페론과 같은 세포내의 helper 단백질을 과 발현함으로서 해결된 예가 많이 보고되고 있다. 그러나 목표 단백질의 종류에 따라서 효과가 없거나 오히려 역효과가 나타난 예도 표 2와 같이 다수 보고되었다.Chaperone is used to express foreign proteins as a normal intracellular process that not only binds to immature proteins but also induces the expression of additional chaperones and Fall Days if there is a problem of folding the protein properly to have a tertiary structure. When protein is not properly folded during foreign protein production, many cases have been reported to solve this problem by overexpressing helper proteins in cells such as chaperone. However, a number of examples of ineffective or rather adverse effects depending on the type of target protein were reported as shown in Table 2.

Figure 112006057965462-pat00002
Figure 112006057965462-pat00002

그러므로 위 서술한 바와 같이 단백질의 분비촉진을 위해 개발된 샤페론의 효과가 단백질의 종류에 따라서 상이한 결과를 나타냄을 알 수 있다. 이러한 문제는 현재까지 전통생리학을 근거로 개발된 기존 단백질 분비 생산시스템이 모든 단백질에 대해 범용으로 적용하지 못하기 때문이며 기존 시스템만으로는 전혀 재조합 생산이 불가능한 단백질이 다수 있기 때문에 이를 효율적으로 해결하기 위해서는 기존의 일률적 효모 재조합 단백질 분비시스템을 획기적으로 개선할 수 있도록 목표 단백질의 구조 및 특성에 따른 맞춤형(tailer-made) 샤페론등의 분비인자 개발이 절대적으로 필요하다. 아직까지 PDGF-BB 단종이량체를 효과적으로 생산하는데 도움을 주는 분비인자에 대한 실험 확인, 분석 보고한 예는 없다. Therefore, as described above, it can be seen that the effect of chaperone developed for protein secretion shows different results depending on the type of protein. This problem is due to the fact that existing protein secretion production systems developed on the basis of traditional physiology are not universally applicable to all proteins, and there are many proteins that cannot be recombinantly produced by the existing system alone. In order to significantly improve the uniform yeast recombinant protein secretion system, it is absolutely necessary to develop secretory factors such as tailer-made chaperones according to the structure and properties of the target protein. To date, no experimental confirmation or analysis of secretion factors has been reported to help produce PDGF-BB monodimer.

이에 본 발명자들 PDGF-BB 단종이량체 생산에 도움을 주는 샤페론등의 맞춤형 분비인자를 인간 유전체로부터 검출하여 그 효과를 증명하였다. Accordingly, the present inventors have detected a custom secreted secretion factor such as chaperon from the human genome to help produce PDGF-BB monodimer and prove its effect.

본 발명은 효모를 이용하여 인체 단백질의 일종인 PDGF 분비인자를 이용하여 과 발현 분비시스템을 개발하는 것을 목적으로 한다. 또 한 가지 재조합 단백질의 과량 생산을 위한 효모 분비 시스템을 확립하여 목적 단백질을 구조와 특성에 맞게 발현시키고 비용 절감을 통해 산업화에 응용할 수 있도록 하는 기술력 확보를 목적으로 한다. 목표단백질에 적합한 분비 시스템을 개발하는 경우 생산 비용 절감이 크며 본 연구에서 대상으로 하는 고부가가치의 인체 혈소판 성장 인자의 대량 분비 시스템 개발 뿐 아니라 다양한 고부가 가치의 단백질 제품이 고효율 분비 체계 확립이 가능하며 국내 자체 기술로 인해 인체 의약용 재조합 단백질의 고 분비시스템 개발과 각 분비융합 인자에 대한 지적 재산권 획득이 가능하게 된다. 또한 효모를 이용한 대량 생산 발현 및 분비시스템을 이용하여 다양한 생명체의 게놈프로젝트에서 확보된 유전체 염기서열 및 단백질 소재의 구조나 기능 분석뿐만 아니라 향후의 의약적, 산업적으로 중요한 제품의 대량 생산을 위해 유용하게 사용될 수 있을 것이다.An object of the present invention is to develop a hyperexpression secretion system using PDGF secretion factor, a kind of human protein using yeast. In addition, by establishing a yeast secretion system for the excessive production of recombinant proteins to express the desired protein in accordance with the structure and properties, and to secure the technology that can be applied to industrialization through cost reduction. In case of developing a secretion system suitable for the target protein, the production cost is greatly reduced.In addition to the development of a mass secretion system of high value-added human platelet growth factor, various high value-added protein products can be established in Korea. Its own technology enables the development of high secretion systems of human pharmaceutical recombinant proteins and the acquisition of intellectual property rights for each secretion fusion factor. In addition, it is useful for mass production of medicinal and industrially important products in the future as well as analysis of the structure and function of genome sequences and protein materials obtained from genome projects of various living organisms using the mass production expression and secretion system using yeast. Could be used.

본 발명은 PDGF-B를 고효율로 생산할 수 있는 균주 개발을 위해 단백질 분비과정에 관여하는 다양한 분비인자를 유전자 단위에서 초고속 검색을 통해 발굴하고 최적화함으로써 혁신적인 분비시스템을 개발하고자 하였다.The present invention was intended to develop an innovative secretion system by discovering and optimizing various secretion factors involved in the protein secretion process through ultrafast search in the gene unit for the development of strains capable of producing PDGF-B with high efficiency.

먼저 기존에 알려져 있던 인간의 PDGF 염기서열을 바탕으로 하여 프라이머(Primer)를 제작하고 PDGF가 많이 발현되는 조직을 찾고자 여러 조직의 cDNA library를 이용하여 PCR 을 수행하였다. 그 결과 신장의 cDNA library에서 PDGF 유전자를 얻을 수 있었다. 이렇게 분리한 PDGF 유전자를 주형으로 PDGF-B 성숙 유전자인 PDGF-B(WM) 유전자를 다시 증폭하여 효모 발현벡터인 YEGα-HIR525(Galactose-induced secretion vector, Choi 등, Appl,. Microbiol. Biotechnol., 1994, 42)에 클로닝(cloning) 하였고 클로닝 유무는 플라스미드 DNA을 추출한 후 염기서열 결정으로 확인하였다. 이렇게 제조된 재조합체는 pYGMF-PB로 명명하였고 이를 효모 숙주세포인 Y2805 gal1 균주에 형질전환 시키고 형질전환의 유무 역시 플라스미드 DNA 추출과 염기서열 결정을 통해 확인하였다. 비록 벡터 내 교배인자 알파 분비시그널(MFα leader)을 함유하고 있었지만 예상처럼 PDGF-BB는 세포 외(extra-cellular) 분비가 잘 되지 않았다. 효모 발현 시스템의 경우 인체 유전자를 효과적으로 발현시킬 수 있는 장점이 있으나 단백질의 종류나 특성에 따라서 엄청난 분비 생산성의 차이를 나타내므로 목표 단백질의 특성에 따른 맞춤형 발현 및 분비 시스템의 도입이 절대적으로 필요하였다. 그래서 인체 PDGF-BB 발현을 증가시킬 수 있는 트랜스 샤페론(Trans-chaperone)과 같은 분비인자를 도입하였다. PDGF-BB의 발현을 증가시킬 수 있는 샤페론 등 분비인자 탐색 및 검출은 인체 신장 cDNA library를 이용하였다. 효모 Y2805△gal1 /pYGMF-PB 균주에 클론텍사에서 구매한 cDNA library를 같이 형질전환 시킨 후 나온 형질전환체(transformant)는 배양하여 dot blot과 효소면역법(enzyme-linked immunosorbent assay)을 통하여 형질전환 여부를 확인하고, 이는 다시 실험의 재연성을 확인한 후 PDGF와 같이 발현시키는 경우 기존의 PDGF-BB를 단독 발현시키는 것보다 발현 양을 증가시킬 수 있었다. 본 발명의 전체적 흐름을 도 1에 나타내었다. First, primers were prepared based on the known PDGF sequences of humans, and PCR was performed using cDNA libraries of various tissues to find tissues in which PDGF was expressed. As a result, PDGF gene was obtained from kidney cDNA library. Using the isolated PDGF gene as a template, PDGF-B (WM) gene, a PDGF-B mature gene, was amplified again and the yeast expression vector YEGα-HIR525 (Galactose-induced secretion vector, Choi et al., Appl, Microbiol. Biotechnol., 1994, 42) was cloned (cloning) and the presence or absence of the cloning was confirmed by sequencing the plasmid DNA extracted. The recombinant thus prepared was named pYGMF-PB and transformed into Y2805 Δ gal1 strain, a yeast host cell, and the presence or absence of transformation was also confirmed by plasmid DNA extraction and sequencing. Although it contained a cross-linker alpha secretion signal (MFα leader) in the vector, PDGF-BB, as expected, did not have extra-cellular secretion. The yeast expression system has the advantage of effectively expressing human genes. However, since it shows tremendous difference in secretion productivity according to the type and characteristics of protein, introduction of customized expression and secretion system according to the characteristics of target protein is absolutely necessary. So we introduced secretory factors such as trans-chaperone that can increase human PDGF-BB expression. Human kidney cDNA library was used for the detection and detection of secretion factors such as chaperone that can increase the expression of PDGF-BB. After transforming the yeast Y2805 Δgal1 / pYGMF-PB strain with the cDNA library purchased from Clontech Co., Ltd., the transformant was cultured and then transformed through dot blot and enzyme-linked immunosorbent assay. After confirming the reproducibility of the experiment, it was possible to increase the amount of expression than expressing PDGF-BB alone when expressed with PDGF. The overall flow of the invention is shown in FIG.

한편 단백질 PDGF-B를 생산한다는 것은 그의 단종이량체인 PDGF-BB를 생산한다는 것과 같은 의미이므로 이하에서는 편의에 따라 PDGF-B와 PDGF-BB를 혼용하여 표현한다.On the other hand, since the production of the protein PDGF-B means the same as producing the end-dimer PDGF-BB, hereinafter, the expression of PDGF-B and PDGF-BB for convenience.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 실시예는 본 발명을 설명하기 위해 예시적으로 열거한 것일 뿐 이에 의해 본 발명의 기술적 사상의 범위나 내용이 변경되거나 축소되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. The embodiments are only listed by way of example to illustrate the present invention, thereby not changing or reducing the scope or content of the technical spirit of the present invention.

실시예 1 : 인체 cDNA library로부터 PDGF-B(WM) 유전자의 분리 및 발현벡터의 제조Example 1 Isolation of PDGF-B (WM) Gene from Human CDNA Library and Preparation of Expression Vector

(1) PDGF-B(WM) 유전자의 분리(1) Isolation of PDGF-B (WM) Gene

PDGF가 많이 발현되는 조직을 알아보기 위해 인간의 뇌, 간, 신장조직 cDNA library와 세포주의 일종인 HELA 세포 library로를 이용하여 PCR을 수행하였다. PCR에 사용한 primer는 FPDGF(5'-ATGAATCGCTGCTGGGCGCTCTTC-3'; 서열번호 1)와 RPDGF(5'-CTAGGCTCCAAGGGTCTCCTTCAG-3'; 서열번호 2)를 이용하여 95℃에서 30초, 60℃에서 45초, 72℃에서 30초로 30 cycle 반복하였다. PCR 산물을 통상의 방법으 로 전기영동 하여 밴드를 확인하였다(도 2). 도에서 레인 M은 크기 표시자(size marker; 이하 동일함), 레인 1은 인간의 뇌 유래 cDNA library, 레인 2는 인간의 간 유래 cDNA library, 레인 3은 인간의 신장 유래 cDNA library, 레인 4는 HELA 세포 유래 cDNA library이다. 도에서 볼 수 있듯이, 인간의 신장 유래 cDNA library에서 PDGF-B 유전자가 발현됨을 확인하였다.PCR was performed using the human brain, liver, and kidney tissue cDNA libraries and HELA cell library, a kind of cell line, to identify tissues with high PDGF expression. Primers used for PCR were FPDGF (5'-ATGAATCGCTGCTGGGCGCTCTTC-3 '; SEQ ID NO: 1) and RPDGF (5'-CTAGGCTCCAAGGGTCTCCTTCAG-3'; SEQ ID NO: 2) at 95 ° C for 30 seconds, at 60 ° C for 45 seconds, 72 30 cycles were repeated for 30 seconds at ℃. PCR products were electrophoresed in a conventional manner to confirm the band (Fig. 2). In the figure, lane M is the size marker (hereinafter identical), lane 1 is a human brain-derived cDNA library, lane 2 is a human liver-derived cDNA library, lane 3 is a human kidney-derived cDNA library, and lane 4 is a HELA cell derived cDNA library. As can be seen in the figure, it was confirmed that PDGF-B gene was expressed in human kidney-derived cDNA library.

아가로스겔 추출 키트(Solgent Co. Ltd)을 이용하여 전기영동 결과 아가로스 겔에서 인간의 신장 유래 cDNA library의 PDGF-B 유전자를 추출하였다. 획득한 DNA를 pGEM T-easy 클로닝 벡터에 16℃, 4시간 동안 ligation한 후 대장균 DH5α균주에 형질전환하여 획득한 대장균 군락 중 5개 콜로니를 무작위로 선별하여 서열번호 1 및 2로 된 프라이머 세트를 이용하여 PCR기법으로 증폭한 후 전기영동하여 클로닝 여부를 확인하였다. PDGF-B 유전자가 도입된 상기 재조합체를 pPDGF-WF라 명명하였다. pPDGF-WF를 주형으로 프라이머 FPDMF(5'-AAT TCT AGA ATG AAT CGC TGC TGG GCG CTC TTC-3'; 서열번호 3)와 RPDMF(5'-AAT GTC GAC CTA GGC TCC AAG GGT CTC CTT CAG-3'; 서열번호 4)를 이용해 PCR 기법으로 증폭한 성숙 PDGF-B 유전자 산물(도 3 참조)은 PDGF-B(WM)라 명명하고, 염기서열을 분석하였다(서열번호 5). 도 3은 증폭한 PDGF 유전자를 기질로 하여 PCR 기술을 이용해 PDGF-B 성숙유전자만을 다시 증폭한 결과로 증폭된 유전자 산물은 PDGF-B(WM:Wild mature)이라 명명하였다. 도에서 레인 1은 인체유래 PDGF-B 유전자로 형질전환된 대장균 DH5α균주 유래의 DNA를 의미한다.As a result of electrophoresis using agarose gel extraction kit (Solgent Co. Ltd), PDGF-B gene of human kidney-derived cDNA library was extracted from agarose gel. The obtained DNA was ligation into the pGEM T-easy cloning vector at 16 ° C. for 4 hours, and five colonies of E. coli colonies obtained by transforming E. coli DH5α strain were randomly selected to obtain a primer set of SEQ ID NOs: 1 and 2. After amplification by using a PCR technique and electrophoresis was confirmed whether cloning. The recombinant into which the PDGF-B gene was introduced was named pPDGF-WF. pPDGF-WF as a template Primer FPDMF (5'-AAT TCT AGA ATG AAT CGC TGC TGG GCG CTC TTC-3 '; SEQ ID NO: 3) and RPDMF (5'-AAT GTC GAC CTA GGC TCC AAG GGT CTC CTT CAG-3 The mature PDGF-B gene product (see FIG. 3), amplified by PCR using SEQ ID NO: 4), was named PDGF-B (WM) and analyzed for nucleotide sequence (SEQ ID NO: 5). Figure 3 is amplified PDGF gene as a substrate as a result of amplifying only the PDGF-B mature gene again using PCR technology, the amplified gene product was named PDGF-B (WM: Wild mature). Lane 1 in the Figure means DNA derived from E. coli DH5α strain transformed with human-derived PDGF-B gene.

(2) PDGF-B(WM) 유전자 발현벡터의 제조(2) Preparation of PDGF-B (WM) Gene Expression Vector

PDGF-B(WM) 클로닝을 위해 먼저 효모 발현벡터인 YEGα-HIR525 벡터를 30㎕, 10X BSA 6㎕, buffer 6㎕, BamHⅠ3㎕, SalⅠ3㎕을 넣고 최종 부피를 60㎕로 맞춘 후 37℃에서 5시간 동안 반응시키고 전기영동 하였다. 전기영동을 하여 얻은 약 5.6kb fragment와 GAL10 프로모터와 교배인자 알파 분비시그널를 함유한 약 980bp fragment을 각각 겔에서 추출 정제하여 DNA을 확보하였다. 이 중 980bp fragment DNA을 20㎕, Buffer 6㎕, XbaⅠ 6㎕, 10X BSA 6㎕ 넣고 최종 부피를 60㎕로 맞춘 후 37℃에서 5시간 반응하고 전기영동 하였다. 여기에서 약 760bp fragment을 겔에서 추출, 정제하여 DNA을 확보하였다. PCR 증폭한 PDGF-B(WM) DNA을 30㎕, buffer 6㎕, SalⅠ 3㎕, XbaⅠ 3㎕, 10X BSA 6㎕을 넣고 최종 부피를 60㎕로 맞춘 후 37℃에서 5시간 반응하고 전기영동 하였다. 그 후 약 300bp 위치에 있는 fragment을 겔에서 추출, 정제하여 DNA을 확보하였다. After PDGF-B (WM) for the first cloning 30㎕ yeast expression vector YEGα-HIR525 vector, into a 10X BSA 6㎕, buffer 6㎕, B amH Ⅰ3㎕, S al Ⅰ3㎕ align the final volume to 60㎕ The reaction was carried out at 37 ° C. for 5 hours and electrophoresed. About 5.6 kb fragment obtained by electrophoresis and about 980 bp fragment containing GAL10 promoter and cross-factor alpha secretion signal were extracted and purified from gel, respectively, to obtain DNA. Among them, 20 μl of 980bp fragment DNA, 6 μl of buffer, 6 μl of X baI , and 6 μl of 10 × BSA were added to 60 μl of final volume, followed by reaction at 37 ° C. for 5 hours and electrophoresis. Here, about 760bp fragment was extracted and purified from a gel to secure DNA. PCR amplification 30㎕ a PDGF-B (WM) DNA, buffer 6㎕, S al Ⅰ 3㎕, 3 μl of X ba I and 6 μl of 10X BSA were added and the final volume was adjusted to 60 μl, followed by reaction at 37 ° C. for 5 hours and electrophoresis. After that, the fragment at about 300bp was extracted from the gel and purified to obtain DNA.

이렇게 준비한 5.6kb, 760bp, 300bp의 DNA fragment을 three-pieces ligation 하였다. 각각의 DNA와 ligation buffer 3㎕, T4 DNA ligase 3㎕을 넣고 최종 volume을 30㎕으로 맞춘 후 16℃에서 16시간 동안 반응하였다.Thus prepared 5.6kb, 760bp, 300bp DNA fragments were three-pieces ligation. 3 l of each DNA, ligation buffer, and 3 l of T4 DNA ligase were added and the final volume was adjusted to 30 l, followed by reaction at 16 ° C. for 16 hours.

반응이 완료된 Ligation mixture를 대장균 DH5α competent cell과 섞어준 후 electroporation하고 LB(1% NaCl, 1% tryptone, 0.5% yeast extract)와 섞어서 37℃에서 1시간 배양 후 암피실린이 첨가된 LB plate에 스프레딩 하여 콜로니를 확보하였다. 이렇게 확보한 콜로니를 무작위로 선별하여 플라스미드 DNA 분리 후 염기서열 결정하여 PDGF-B(WM) 유전자 클로닝을 확인하였고 이를 pYGMF-PB로 명명하 였다. 발현벡터 pYGMF-PB의 주요부 맵을 도 4에 나타내었다.The reaction mixture was mixed with E. coli DH5α competent cell, electroporation, mixed with LB (1% NaCl, 1% tryptone, 0.5% yeast extract), incubated for 1 hour at 37 ℃, and then spread on Ampicillin-added LB plate. Colonies were obtained. The colonies thus obtained were randomly selected and sequenced after plasmid DNA isolation to confirm PDGF-B (WM) gene cloning and named as pYGMF-PB. The main part map of the expression vector pYGMF-PB is shown in FIG.

실시예 2 : 효모 Y2805Example 2: Yeast Y2805 △gal1△ gal1 를 숙주로 이용한 PDGF-BB 단백질의 발현 실험 Expression Experiment of PDGF-BB Protein Using As Host

(1) 형질전환 효모의 제작(1) Production of transgenic yeast

Y2805△gal1 competent cell만을 만들기 위해 Y2805△gal1 단일 콜로니를 YPD(2% pepton, 1% yeast extract) 3ml에 접종한 후 30℃에서 밤새 배양하였다. 밤새 배양한 종 배양액을 YPD 50㎖에 1% 접종한 후 OD600값이 0.4~0.6정도 되도록 30℃에서 배양하고 3000 rpm, 5분간 원심분리 하였다. 여기에 1X TE/LiAc 25ml을 넣고 현탁한 후 3000 rpm, 5분간 원심분리 한 후 pellet을 다시 1X TE/LiAc 500㎕에 현탁하고 100㎕씩 분주하여 4℃에 보관하였다. Y2805 Δgal1 single colony was inoculated in 3 ml of YPD (2% pepton, 1% yeast extract) incubated overnight at 30 ° C. to make only Y2805 Δgal1 competent cells. After incubating overnight culture of 1% in YPD 50ml incubated at 30 ℃ so that the OD 600 value 0.4 ~ 0.6 and centrifuged at 3000 rpm, 5 minutes. Then, 25 ml of 1X TE / LiAc was added and suspended, followed by centrifugation at 3000 rpm for 5 minutes, and the pellet was again suspended in 500 µl of 1X TE / LiAc, and 100 µl was dispensed and stored at 4 ° C.

pYGMF-PB 플라스미드 DNA 10㎕, Competent cell 100㎕, Salmon sperm DNA 10㎕, PEG/LiAc 600㎕을 섞어준 후 30℃에서 30분간 반응하고 DMSO 70㎕을 넣고 42℃에서 15분간 heat-shock하였다. 3000 rpm, 5분간 원심분리 후 증류수 200㎕에 현탁하여 Ura- plate에 도말하고 30℃에서 2~3일간 배양하여 형질전환체를 확보하였다.10 μl of pYGMF-PB plasmid DNA, 100 μl of Competent cell, 10 μl of Salmon sperm DNA, and 600 μl of PEG / LiAc were reacted for 30 minutes at 30 ° C., 70 μl of DMSO was added and heat-shocked at 42 ° C. for 15 minutes. After centrifugation at 3000 rpm for 5 minutes, the cells were suspended in 200 μl of distilled water, plated on a Ura-plate, and incubated at 30 ° C. for 2-3 days to obtain a transformant.

(2) PDGF-BB 단백질의 발현 분석(2) Expression Analysis of PDGF-BB Protein

형질전환된 콜로니를 무작위 선별한 후 YPDG(2% pepton, 1% yeast extract, 1% galactose)배지에 접종하여 48시간 동안 배양한 후 세포파쇄 추출물과 배양상등액으로 나누어 실험하였다. 세포파쇄 추출물 준비는 배양한 cell을 OD값 측정을 하 여 세포 양을 맞춘 후 원심분리하고 Tris/PMSF 100㎕을 넣고 교반하였다. 12000 rpm, 5분간 원심분리 한 후 상등액을 제거하고 여기에 Tris/PMSF 30㎕을 넣고 동량의 glass beads을 넣어 교반하였다. 여기에 다시 Tris/PMSF 200㎕을 넣고 12000 rpm, 5분간 원심분리 한 후 상등액을 5X sample buffer와 섞어 변성시켜 SDS-PAGE을 수행하였다(도 5). 도 5에서 레인 1~4는 각각 효모 Y2805△gal1 배양 상등액, 효모 Y2805△gal1 /YEGα-HIR525 배양 상등액, 효모 Y2805△gal1 /pYGMF-PB 배양 상등액 및 효모 Y2805△gal1 /pYGMF-PB 세포파쇄 추출액을 나타낸다.Transformed colonies were randomly selected and inoculated in YPDG (2% pepton, 1% yeast extract, 1% galactose) medium and incubated for 48 hours. Cell disruption extract was prepared by measuring the OD value of the cultured cells to adjust the amount of cells and centrifuged, Tris / PMSF 100μ was added and stirred. After centrifugation at 12000 rpm for 5 minutes, the supernatant was removed, and 30 μl of Tris / PMSF was added thereto, followed by stirring with an equal amount of glass beads. 200 μl of Tris / PMSF was added thereto and centrifuged at 12000 rpm for 5 minutes, followed by denaturation by mixing the supernatant with 5X sample buffer (FIG. 5). Lanes 1 to 4 in the yeast Y2805 Δgal1 culture supernatant, yeast Y2805 Δgal1 / YEGα-HIR525 culture supernatant, yeast Y2805 Δgal1 / pYGMF-PB culture supernatant and yeast Y2805 Δgal1 / pYGMF-PB cell disruption extract, respectively Indicates.

도 5에서 확인된 밴드가 PDGF-B(WM) 단백질에 의한 것인지를 면역반응법을 통해 다시 한번 확인하였다. 이를 위해 마우스 항-인간 PDGF 항체, 염소 항-마우스 IgG-AP를 이용하여 웨스턴 블러팅 기술을 이용해 PDGF-BB 단량이량체의 발현 차이를 분석하였다.It was confirmed once again by the immunoassay whether the band identified in Figure 5 is due to PDGF-B (WM) protein. To this end, the expression difference of PDGF-BB monomer was analyzed using Western blotting technique using mouse anti-human PDGF antibody, goat anti-mouse IgG-AP.

배양 상등액은 브레드포드 방법을 이용해 단백질 정량 하고 동량의 100% Cold Acetone을 넣고 ice에 30분간 방치하였다. 그런 후 4℃, 13000 rpm에서 15분간 원심분리하고 pellet을 70% EtOH로 세척하고 1X PBS에 현탁하여 농축하였다. 세포파쇄 추출물과 마찬가지로 5X sample buffer와 섞어 변성시켜 SDS-PAGE을 수행하였다. SDS-PAGE 겔에 전개 후 coomassie blue로 염색하여 band을 확인하고 NC(Nitrocellulose) membrane에 transfer Membrane에 Blocking solution(5% skim milk in 1X TBS)을 넣은 후 상온에서 2시간 동안 blocking 시켰다. Blocking solution을 제거한 후 Blocking solution에 녹인 primary antibody (Mouse Anti-PDGF, monoclonal)을 1:2000의 배율로 넣고 4℃에서 밤새 shaking incubation 하였 다. 밤새 shaking incubation한 membrane을 TTBS(0.05% Tween 20 in 1X TBS)로 10분씩 3번 washing후 Secondary antibody (Anti-mouse IgG)을 1:4000의 배율로 넣고 상온에서 2시간 동안 shaking incubation 하였다. Membrane을 TTBS로 washing한 후 Detection buffer에 NBT, BCIP을 넣고 암소에서 발색하였다. Anti-human PDGF antibody을 이용하여 Western blotting을 함으로써 PDGF-BB 발현양의 차이를 확인하였다(도 6). 도에서 각 레인은 도 5와 동일하다.The culture supernatant was quantified by the Bradford method and added to the same amount of 100% Cold Acetone and left on ice for 30 minutes. After centrifugation at 4 ℃, 13000 rpm for 15 minutes, the pellet was washed with 70% EtOH, suspended in 1X PBS and concentrated. SDS-PAGE was performed by denaturing with 5X sample buffer as in the cell disruption extract. After developing on the SDS-PAGE gel, the band was confirmed by staining with coomassie blue, and a blocking solution (5% skim milk in 1X TBS) was added to the transfer membrane to the NC (Nitrocellulose) membrane, and then blocked at room temperature for 2 hours. After removing the blocking solution, the primary antibody (Mouse Anti-PDGF, monoclonal) dissolved in the blocking solution was added at a ratio of 1: 2000 and shaken incubation overnight at 4 ° C. After overnight shaking incubation membrane was washed three times for 10 minutes with TTBS (0.05% Tween 20 in 1X TBS), and then the secondary antibody (Anti-mouse IgG) was added at a ratio of 1: 4000 and shaked incubated for 2 hours at room temperature. After washing the membrane with TTBS, NBT and BCIP were added to the detection buffer and developed in the dark. Western blotting using anti-human PDGF antibody confirmed the difference in the amount of PDGF-BB expression (Fig. 6). Each lane is the same as in FIG. 5.

실시예 3 : PDGF-BB 발현·분비를 증가시키는 새로운 분비인자 탐색Example 3 Exploration of new secretion factors that increase PDGF-BB expression and secretion

(1) 분비인자 탐색을 위한 이중 형질전환체의 제작(1) Construction of double transformant for secretion factor search

PDGF의 발현을 증가시킬 수 있는 분비인자 선별을 하기 위해서 먼저 인간 PDGF을 분리한 조직이며 Mesodermal 유래 조직인 인간 신장 cDNA library(Cat. HL4043AH)을 클론텍사에서 구입하여 실험하였다. 상기 cDNA library는 pACT2 vector에 EcoR/XhoⅠ site에 클로닝 되어있으며 insert size는 0.5-4.0kb이다. 이하에서는 설명의 편의를 위해, 인간 신장 cDNA library가 도입되어 있지 않은 빈 벡터를 pACT2-로, 인간 신장 cDNA library가 도입되어 있는 벡터를 pACT2로 표시한다. In order to select a secretion factor that can increase the expression of PDGF, human kidney was isolated from human PDGF and Mesodermal-derived human kidney cDNA library (Cat. HL4043AH) was purchased from Clontech. The cDNA library is cloned into the E coR I / X ho I site in the pACT2 vector and the insert size is 0.5-4.0 kb. For convenience of explanation, vacant vectors into which human kidney cDNA library is not introduced are referred to as pACT2- and vectors into which human kidney cDNA library is introduced are represented by pACT2.

cDNA library를 대장균 DH5α에 형질전환하여 암피실린이 첨가된 LB plate에 serial dilution하여 도말한 후 적절한 희석 배수를 결정하고 이에 근거하여 다시 도말하여 형질전환체를 대량 확보 후 이로부터 플라스미드 DNA을 회수하였다.The cDNA library was transformed into E. coli DH5α, serial dilution was carried out on an LB plate containing ampicillin, and then the appropriate dilution factor was determined. Based on this, the plasmid DNA was recovered from a large number of transformants.

ura 유전자가 존재하는 YEGα-HIR525 벡터에 클로닝 되어있는 PDGF-B(WM) 즉pYGMF-PB와 leu2 유전자가 존재하는 pACT2 vector에 클로닝 되어 있는 human kidney cDNA library 두 종류를 한번에 선별할 수 있는 Y2805△gal1 (Ura, Leu auxotroph)을 숙주세포로 이용하여 형질전환을 수행하였다. 효모 Y2805△gal1 /pYGMF-PB 균주의 competent cell은 위에서 언급한 방법으로 동일하게 준비하였다.which is cloned into the YEGα-HIR525 vector to the ura gene present PDGF-B (WM) that is pYGMF-PB and cloned in pACT2 vector of the leu2 gene present human kidney cDNA library Y2805 capable of screening both types at once, gal1 that Transformation was performed using (Ura, Leu auxotroph) as a host cell. Competent cells of the yeast Y2805 Δgal1 / pYGMF-PB strain were prepared in the same manner as described above.

인간 신장 cDNA library 10㎕, 효모 Y2805△gal1 /pYGMF-PB 균주의 competent cell 100㎕, Salmon sperm DNA 10㎕, PEG/LiAc 600㎕을 섞어준 후 30℃에서 30분간 방치하고 DMSO 70㎕을 넣고 42℃에서 15분간 heat-shock하였다. 3000 rpm, 5분간 원심분리 후 증류수 200㎕에 현탁하여 YG(YNB & Glucose, UL-) plate에 도말하고 30℃에서 2~3일간 배양하여 이중으로 형질전환된 콜로니를 확보하였다. 10 μl of human kidney cDNA library, 100 μl of competent cell of yeast Y2805 Δgal1 / pYGMF-PB strain, 10 μl of Salmon sperm DNA, and 600 μl of PEG / LiAc, were allowed to stand at 30 ° C. for 30 min. Heat-shock was carried out for 15 minutes at ℃. After centrifugation at 3000 rpm for 5 minutes, the cells were suspended in 200 μl of distilled water, plated on YG (YNB & Glucose, UL-) plate, and incubated at 30 ° C. for 2 to 3 days to obtain double transformed colonies.

(2) 이중 형질전환체의 PDGF-BB 발현·분비 정성분석(2) Qualitative analysis of PDGF-BB expression and secretion of double transformants

상기 콜로니를 동일한 조건에서 다량을 배양하기 위해 96 well을 사용하였으며 일반 96 well plate의 경우 효모가 잘 자라지 않으므로 96 deep well plate에 배양하였다. Glass beads을 넣어 멸균시킨 96 deep well plate에 YPDG(1% yeast extract, 2% Peptone, 1% Dextrose, 1% Galactose)배지를 600㎕씩 넣고 형질전환체 각각 한 개씩 접종하였다. 이 때 형질전환체 각각은 다른 YG(YNB & Glucose, UL-) plate에도 같이 picking하여 master cell도 같이 확보하였다. 접종한 형질전환체를 96 deep well plate 배양기(Bioneer Co. Ltd)에 넣고 산소를 공급해주면서 30℃, 400 rpm으로 48시간 배양하였다. 96 wells were used to incubate the colonies under the same conditions, and in the case of a general 96 well plate, the yeast did not grow well, and the culture was cultured in a 96 deep well plate. 600 µl of YPDG (1% yeast extract, 2% Peptone, 1% Dextrose, 1% Galactose) medium was added to the sterilized 96 deep well plate and inoculated with each transformant. At this time, each of the transformants was picked together with other YG (YNB & Glucose, UL-) plates to secure a master cell. The inoculated transformants were placed in a 96 deep well plate incubator (Bioneer Co. Ltd) and incubated for 48 hours at 30 ° C. and 400 rpm while supplying oxygen.

이렇게 배양한 cell을 원심 분리하여 pellet을 제거한 후 NC(Nitrocellulose) membrane을 놓은 Dot blot kit에 50㎕씩 loading 하고 1X TBS 50㎕씩 2번 washing하였다. Membrane을 sealing bag에 넣고 Blocking solution(5% skim milk in 1X TBS)을 넣은 후 상온에서 2시간 동안 blocking 시켰다. Blocking solution을 제거한 후 Blocking solution에 녹인 primary antibody (Mouse Anti-PDGF, monoclonal)을 1:2000의 배율로 넣고 4℃에서 밤새 shaking incubation 하였다. 밤새 shaking incubation한 membrane을 TTBS(0.05% Tween 20 in 1X TBS)로 10분씩 3번 washing후 Secondary antibody (Anti-mouse IgG)을 1:4000의 배율로 넣고 상온에서 2시간 동안 교반하며 배양하였다. Membrane을 TTBS로 위와 같은 방법으로 washing한 후 Detection buffer에 NBT, BCIP을 넣고 암소에서 발색하여 단백질 발현·분비량을 정성분석하였다(도 7). The cells were centrifuged to remove pellets, and then 50 μl each was loaded into a dot blot kit on which NC (Nitrocellulose) membranes were placed, followed by washing twice with 50 μl of 1X TBS. Membrane was added to the sealing bag, Blocking solution (5% skim milk in 1X TBS) and then blocked at room temperature for 2 hours. After removing the blocking solution, the primary antibody (Mouse Anti-PDGF, monoclonal) dissolved in the blocking solution was added at a ratio of 1: 2000 and shake incubation overnight at 4 ° C. After overnight shaking incubation membrane was washed three times for 10 minutes with TTBS (0.05% Tween 20 in 1X TBS) and the secondary antibody (Anti-mouse IgG) at a ratio of 1: 4000 and incubated for 2 hours at room temperature. After washing Membrane with TTBS in the same manner as above, NBT and BCIP were added to the detection buffer, followed by color development in the cow, for qualitative analysis of protein expression and secretion (FIG. 7).

도 7은 Dot blot 기술을 이용해 효모 Y2805△gal1 /pYGMF-PB에서 성숙 PDGF-B(WM)유전자의 발현을 증가시킬 수 있는 분비인자 1차 검출을 위해 인간의 신장 유래 cDNA library를 효모 Y2805△gal1 /pYGMF-PB에 형질전환하여 PDGF-BB 발현량의 변화를 정성적으로 관찰한 결과이다. 도에서 1번, 2번, 3번은 대조구로써 1번은 효모 Y2805△gal1/pYGMF-PB/pACT2- 이중 형질전환체(인체 신장유래 cDNA가 삽입되지 않은 빈 pACT2로 이중 형질전환된 것)의 배양 상등액, 2번은 효모 Y2805△gal1 /pYGMF-PB 배양 상등액, 3번은 효모 Y2805△gal1 배양 상등액을 나타냈다. 번호를 표기하지 않은 blot들은 효모 Y2805△gal1 /pYGMF-PB에 인체 신장 유래 cDNA가 도입된 pACT2로 이중 형질전환된 형질전환체(Y2805△gal1/pYGMF-PB/pACT2)의 배양 상등액으로 숫자 표시를 생략하였다. 3개의 대조구와 비교하여 강도가 높은 샘플을 1차적으로 선별하였다.FIG. 7 shows a human kidney-derived cDNA library for yeast Y2805 Δgal1 for primary detection of secretory factor capable of increasing expression of mature PDGF-B (WM) gene in yeast Y2805 Δgal1 / pYGMF-PB using Dot blot technology. It is a result of qualitatively observing the change of PDGF-BB expression amount by transforming / pYGMF-PB. In Fig. 1, 2, and 3 as control, culture supernatant of yeast Y2805 Δgal1 / pYGMF-PB / pACT2-double transformant (double transformed with empty pACT2 without human kidney-derived cDNA) , No. 2 shows the yeast Y2805 Δgal1 / pYGMF-PB culture supernatant, No. 3 shows the yeast Y2805 Δgal1 culture supernatant. Blot did not write the numbers are the numbers displayed in the culture supernatant of yeast Y2805 △ gal1 / a pYGMF-PB are derived from human kidney cDNA conversion double transfected with the introduced pACT2 the transformant (Y2805 △ gal1 / pYGMF-PB / pACT2) Omitted. Samples with higher intensity were selected primarily as compared to the three controls.

실시예 4 : 이중 형질전환체의 PDGF-BB 발현·분비 정량분석 및 선별Example 4 Quantitative Analysis and Selection of PDGF-BB Expression and Secretion of Double Transformants

Dot blot을 이용한 1차 탐색에서 PDGF-BB 시그널이 높게 나온 82개 콜로니에 대하여 ELISA 1차 분석을 수행(결과 도시 생략)하였고 master cell을 확인하고 ELISA로 2차 분석하였다. ELISA는 Human PDGF-BB DuoSet ELISA Development system(Cat. DY220, R&D system)에서 구입한 kit을 이용하였다. ELISA primary analysis was performed on 82 colonies with high PDGF-BB signal in the primary search using dot blot (not shown). The master cells were identified and analyzed by ELISA. ELISA used a kit purchased from Human PDGF-BB DuoSet ELISA Development system (Cat. DY220, R & D system).

이중 형질전환체를 YPDG(yeast extract 1%, Peptone 2%, Dextrose 1%, Galactose 1%) 5ml에 접종 후 30℃, 180 rpm으로 48시간 동안 배양하였다. The double transformants were inoculated in 5 ml of YPDG (yeast extract 1%, Peptone 2%, Dextrose 1%, Galactose 1%), and then incubated at 30 ° C. and 180 rpm for 48 hours.

ELISA 하기 위해 우선 Coating plate에 Capture reagent(Recombinant human PDGF Rβ)을 희석하여 100㎕씩 넣고 상온에서 밤새 반응하였다. Well에 들어있는 용액을 제거한 후 PBST(0.05% Tween20 in PBS)로 10분간 3번 washing후 blocking solution(1% BSA in PBS)을 넣고 상온에서 한 시간 동안 반응하였다. 그런 후 다시 PBST로 washing하고 여기에 kit 안에 들어있는 PDGF standard와 일정 배수로 희석한 배양 상등액을 동일량 가하고 상온에서 2시간 동안 반응하였다. Well을 PBST로 세척한 후 detection antibody (Goat anti-human PDGF-BB)을 넣고 상온에서 2시간 동안 정체 반응 시킨 후 PBST로 세척하고 여기에 Streptavidin-HRP을 넣은 후 상온, 암소에서 20분간 반응시켰다. PBST로 세척 후 Substrate solution (TMB, SIGMA)을 넣고 상온, 암소에서 20분간 반응시킨 후 stop solution (2N H2SO4)을 넣고 450nm와 540nm에서 파장에서의 흡광도를 측정하였다. 측정오차를 줄이기 위해 450nm에서 측정한 값에서 540nm 측정한 흡광도 값을 뺀 교정 값을 이용하였다. 이러한 방식으로 PDGF-BB 표준품과 함께 ELISA 2차 분석을 3회 실시하여 그 평균값을 구하고 대조구에 비해 PDGF-BB 발현률이 증가한 17개 형질전환체에 S-번호를 부여하였다. 17개 이중 형질전환체 배양 상등액 중의 PDGF-BB 농도를 도 8에 그래프로 나타내었다. 도에서 1번은 효모 Y2805△gal1 배양 상등액, 2번은 효모 Y2805△gal1 /YEGα-HIR525 배양 상등액, 3번은 효모 Y2805△gal1 /pYGMF-PB/pACT2- 배양 상등액이다.For ELISA, firstly, 100 μl of Capture reagent (Recombinant human PDGF Rβ) was diluted in a coating plate and reacted at room temperature overnight. After removing the solution in the well was washed three times for 10 minutes with PBST (0.05% Tween20 in PBS) and then added a blocking solution (1% BSA in PBS) was reacted for 1 hour at room temperature. Then, washed again with PBST and added the same amount of the culture supernatant diluted in a certain multiple with PDGF standard contained in the kit and reacted at room temperature for 2 hours. After washing the wells with PBST, the detection antibody (Goat anti-human PDGF-BB) was added and the reaction was allowed to stand at room temperature for 2 hours. After washing with PBST, Streptavidin-HRP was added thereto. After washing with PBST, Substrate solution (TMB, SIGMA) was added and reacted for 20 minutes at room temperature and in the dark. Then, the stop solution (2N H2SO4) was added and the absorbance at the wavelength of 450 nm and 540 nm was measured. In order to reduce the measurement error, the calibration value obtained by subtracting the absorbance value measured at 540 nm from the value measured at 450 nm was used. In this manner, the ELISA secondary analysis was performed three times with the PDGF-BB standard to obtain an average value of S-numbers to 17 transformants with increased PDGF-BB expression compared to the control. The PDGF-BB concentration in the 17 double transformant culture supernatants is shown graphically in FIG. 8. In FIG. 1, the yeast Y2805 Δgal1 culture supernatant, the second time the yeast Y2805 Δgal1 / YEGα-HIR525 culture supernatant, and the third time the yeast Y2805 Δgal1 / pYGMF-PB / pACT2- culture supernatant.

실시예 5 : PDGF-BB 분비인자의 서열분석Example 5 Sequencing of PDGF-BB Secretion Factors

(1) 선별된 균주의 분비인자 DNA 증폭(1) Secretion Factor DNA Amplification of Selected Strains

2차 ELISA 결과 PDGF-BB 발현이 가장 좋은 3개 균주(pS-12, 17, 26)를 선택한 후 DNA을 회수하기 위해 YPD(1% yeast extract, 2% Peptone, 2% Dextrose) 3ml에 접종 한 후 밤새 배양하였다. 배양한 cell을 13000 rpm, 10분간 원심 분리하여 상등액을 제거한 다음 STES(0.5M NaCl, 0.2M Tris-HCl (pH7.6), 0.01M EDTA, 1% SDS) buffer 50㎕에 현탁 후 원심분리 하였다. 그런 후 다시 동량의 STES buffer을 넣고 여기에 glass beads을 넣어 5분간 교반하였다. 1X TE와 RNase A(20mg/ml)을 넣고 30℃에서 1시간 동안 반응한 후 여기에 Phenol:Chroloform:Isoamyl alcohol = 25:24:1을 넣고 5분간 교반하였다. 13000 rpm, 10분간 원심 분리한 후 상등액을 새 tube로 옮기고 3M Sodium acetate와 100% EtOH을 이용하여 precipitation을 수행하였다. 그런 후 70% EtOH로 세척하고 건조 후 증류수에 녹이고 전기영동으로 DNA을 확인하였다. In the second ELISA, three strains (pS-12, 17, 26) with the best PDGF-BB expression were selected and inoculated in 3 ml of YPD (1% yeast extract, 2% Peptone, 2% Dextrose) to recover DNA. After overnight culture. The cultured cells were centrifuged at 13000 rpm for 10 minutes to remove the supernatant, and then suspended in 50 µl of STES (0.5M NaCl, 0.2M Tris-HCl (pH7.6), 0.01M EDTA, 1% SDS) buffer and centrifuged. . Then, the same amount of STES buffer was added again and glass beads were added thereto and stirred for 5 minutes. 1X TE and RNase A (20mg / ml) were added and reacted at 30 ° C. for 1 hour, followed by Phenol: Chroloform: Isoamyl alcohol = 25: 24: 1 and stirred for 5 minutes. After centrifugation at 13000 rpm for 10 minutes, the supernatant was transferred to a new tube, and precipitation was performed using 3M sodium acetate and 100% EtOH. Then, washed with 70% EtOH, dried and dissolved in distilled water and confirmed the DNA by electrophoresis.

DNA 1㎕, 프라이머 FSCR:5'-CTATTCGATGATGAAGATACCCCACCAAAC-3'(서열번호 6) 및 RSCR: 5'-TGAACTTGCGGGGTTTTTCAGTATCTACGA-3'(서열번호 7), FSCR(10pmol) 2㎕, RSCR(10pmol) 2㎕, 5X PCR premix 4㎕을 넣고 최종 volume을 20㎕로 맞춘 후 95℃에서 1분, 55℃에서 1분, 68℃에서 3분간 총 30 cycle PCR한 다음 전기영동 하여 insert size을 확인하였다. 이 중 3㎕는 형질전환에 사용하였다. 1 μl DNA, primer FSCR: 5'-CTATTCGATGATGAAGATACCCCACCAAAC-3 '(SEQ ID NO: 6) and RSCR: 5'-TGAACTTGCGGGGTTTTTCAGTATCTACGA-3' (SEQ ID NO: 7), 2 μl FSCR (10 pmol), 2 μl RSCR (10 pmol), 5 X After inserting 4µl of PCR premix, the final volume was adjusted to 20µl, followed by 30 cycles of PCR for 1 minute at 95 ° C, 1 minute at 55 ° C, and 3 minutes at 68 ° C, followed by electrophoresis to confirm the insert size. 3 μl of this was used for transformation.

대장균 DH5α competent cell에 앞서 수득한 플라스미드 DNA을 섞어준 후 electroporation 하고 LB에 배양 후 암피실린이 첨가된 LB plate에 도말하여 형질전환체를 확보하였다.E. coli DH5α competent cells were mixed with the obtained plasmid DNA, electroporation, and cultured in LB and plated on LB plate containing ampicillin to obtain a transformant.

(2) PDGF-B 분비인자의 서열분석(2) Sequence analysis of PDGF-B secretion factor

상기에서 확보된 형질전환체를 무작위 선별하여 암피실린이 첨가된 LB에 접종한 후 플라스미드 DNA을 회수하고 염기서열을 결정하였다.The transformants obtained above were randomly selected and inoculated into ampicillin-added LB to recover plasmid DNA, and nucleotide sequences were determined.

YY2805△gal1 /pYGMF-PB 균주에 back-transformation하여 얻은 후보들 중 일관성 있게 positive로 나온 3개의 클론에 대하여 플라스미드 DNA을 분리 정제한 후 염기서열 분석을 통해 3종류의 서로 다른 서열을 갖는 유전자가 삽입되어 단백질 분비인자 역할을 하는 것을 알 수 있었다(표 3).After plasmid DNA was isolated and purified from three clones consistently positive among candidates obtained by back-transformation into the YY2805 Δgal1 / pYGMF-PB strain, genes with three different sequences were inserted through sequencing. It was found that it acts as a protein secretion factor (Table 3).

Figure 112006057965462-pat00003
Figure 112006057965462-pat00003

pS-12에 함유된 Glutathione S-transferase(GST)의 경우 단백질 정제 시 정제의 용이함을 위하여 정제 목적의 대상 단백질과 융합하여 사용하는 융합단백질로 잘 알려져 있다. 그러나 pS-17, pS-26과 함께 PDGF를 비롯한 단백질 분비 및 생산에 도움을 주는 보고나 메카니즘은 보고된 바 없다. Glutathione S-transferase (GST) contained in pS-12 is well known as a fusion protein used for fusion with a target protein for purification for ease of purification during protein purification. However, no reports or mechanisms have been reported with pS-17 and pS-26 to help secrete and produce PDGF and other proteins.

실시예 6 : 5L 발효조를 이용한 PDGF-BB 생산성 확인Example 6: Confirmation of PDGF-BB Productivity Using 5L Fermenter

선별된 균주 중 Y2805△gal1 /pYGMF-PB/pS-26을 5L 발효조를 이용하여 고농도 배양을 실시하여 PDGF-BB의 산업적 생산 가능성을 분석하였다.Among the selected strains, Y2805 Δgal1 / pYGMF-PB / pS-26 was cultured in a high concentration using a 5L fermenter to analyze the possibility of industrial production of PDGF-BB.

종 배양의 배지 조성은 glucose 2%, Yeast Extract 1%, Bactopeptone 2%로 20~24hr 배양하였다. 본 배양의 배지 조성은 glucose 2%, Yeast Extract 4%, Bactopeptone 1.5%로 총 72hr 배양하였다. 본 배양은 유가식 배양법으로 500rpm 에서 900rpm까지의 교반속도와 1.0vvm(v/v)에서 2.0 vvm(v/v)의 통기량으로 조절하였다. 13시간 이후 배지 내 포도당이 거의 소진된 시점부터 새 배지(60% glucose, 5% yeast extract)를 첨가하였으며, galactose induction(총 volume의 1.5% galactose)은 OD600 측정 시 100이상인 40시간 후에 실시하였다. 그 결과 최대 130ng/ml 농도로 PDGF-BB를 생산할 수 있었다(도 9).The medium composition of the species culture was 2 ~ 20 hr culture with glucose 2%, Yeast Extract 1%, Bactopeptone 2%. The media composition of the culture was 72hr in 2% glucose, 4% Yeast Extract, 1.5% Bactopeptone. The culture was controlled by a fed-batch culture at agitation speed of 500rpm to 900rpm and aeration rate of 2.0vvm (v / v) at 1.0vvm (v / v). New medium (60% glucose, 5% yeast extract) was added after 13 hours of glucose in the medium was almost exhausted, and galactose induction (1.5% galactose of the total volume) was performed after 40 hours of 100 or more when measuring OD 600. . As a result, PDGF-BB could be produced at a maximum concentration of 130ng / ml (FIG. 9).

상기 한 바와 같이, 본 발명에 의하여 PDGF 과량생산을 위해 최적 분비인자를 이용하게 됨으로써 PDGF-B의 대량 발현이 가능하게 된다. 따라서 본 발명은 생산 비용의 절감이 가능할 뿐만 아니라 다양한 고부가가치의 단백질 제품의 고효율 분비 체계 확립에 매우 유용하다.As described above, by using the optimal secretion factor for PDGF overproduction by the present invention it is possible to mass expression of PDGF-B. Therefore, the present invention is not only possible to reduce the production cost but also very useful for establishing a high efficiency secretion system of various high value protein products.

서열목록 전자파일 첨부 Attach sequence list electronic file  

Claims (7)

혈소판유래 성장인자 B(PDGF-B) 유전자와 분비인자 유전자에 의해 동시 형질전환(co-transformation)된 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.A yeast that produces / secretes PDGF-B with high efficiency, which is co-transformed by platelet-derived growth factor B (PDGF-B) gene and secretory factor gene. 제 1 항에 있어서,The method of claim 1, 상기 PDGF-B 유전자와 분비인자 유전자가 서로 다른 벡터에 존재하는 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.Yeast for producing / secreting PDGF-B with high efficiency, wherein the PDGF-B gene and secretory factor gene are present in different vectors. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 분비인자 유전자는 인간의 신장에서 유래된 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.The secretion factor gene is yeast for producing / secreting PDGF-B with high efficiency, which is derived from human kidney. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 분비인자는 사이토크롬 c 산화효소 서브유닛 I(CCOS I)인 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.The secretion factor is cytochrome c oxidase subunit I (CCOS I), characterized in that yeast producing and secreting PDGF-B with high efficiency. 제 4 항에 있어서,The method of claim 4, wherein 상기 PDGF-B 유전자가 존재하는 벡터는 도 4에 도시된 특성을 가지는 pYGMF-PB이며, 상기 CCOS I 유전자가 존재하는 벡터는 pACT2인 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.The vector in which the PDGF-B gene is present is pYGMF-PB having the characteristics shown in FIG. 4, and the vector in which the CCOS I gene is present is pACT2. 제 5 항에 있어서,The method of claim 5, 상기 효모는 Y2805△gal1 /pYGMF-PB/pACT2인 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모.The yeast is a yeast producing and secreting PDGF-B with high efficiency, characterized in that Y2805 Δgal1 / pYGMF-PB / pACT2. (A) 혈소판유래 성장인자 B(PDGF-B) 유전자를 분리하고 클로닝하여 발현벡터에 도입하는 단계;(A) separating and cloning platelet-derived growth factor B (PDGF-B) genes and introducing them into expression vectors; (B) 상기 발현벡터로 효모를 형질전환한 후 배양하여 PDGF-B가 발현되는 1차 형질전환 효모를 분리하는 단계;(B) transforming the yeast with the expression vector and then culturing to isolate the primary transformed yeast expressing PDGF-B; (C) 상기 1차 형질전환 효모를 인간 cDNA 라이브러리로 재차 형질전환하고 PDGF-BB가 세포외로 분비되는 2차 형질전환 효모를 분리하는 단계;(C) transforming said primary transformed yeast with a human cDNA library again and isolating secondary transformed yeast from which PDGF-BB is secreted extracellularly; 를 포함하는 것을 특징으로 하는 PDGF-B를 고효율로 생산/분비하는 효모의 제작방법.Production method of yeast producing / secreting PDGF-B with high efficiency comprising a.
KR1020060076841A 2006-08-14 2006-08-14 - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain KR100726143B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060076841A KR100726143B1 (en) 2006-08-14 2006-08-14 - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain
PCT/KR2007/003888 WO2008020701A1 (en) 2006-08-14 2007-08-14 A new strain highly producing pdgf-bb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060076841A KR100726143B1 (en) 2006-08-14 2006-08-14 - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain

Publications (1)

Publication Number Publication Date
KR100726143B1 true KR100726143B1 (en) 2007-06-13

Family

ID=38358717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060076841A KR100726143B1 (en) 2006-08-14 2006-08-14 - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain

Country Status (1)

Country Link
KR (1) KR100726143B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769328A (en) 1984-10-12 1988-09-06 Zymogenetics Inc. Expression of biologically active PDGF analogs in yeast
US6194169B1 (en) 1998-06-04 2001-02-27 The University Of Kentucky Research Foundation Enhanced expression of human platelet-derived growth factor in Pichia pastoris
KR20030062854A (en) * 2002-01-21 2003-07-28 주식회사 엘지생명과학 Manufacturing method of recombinant protein in yeast by the use of secretory type vector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769328A (en) 1984-10-12 1988-09-06 Zymogenetics Inc. Expression of biologically active PDGF analogs in yeast
US6194169B1 (en) 1998-06-04 2001-02-27 The University Of Kentucky Research Foundation Enhanced expression of human platelet-derived growth factor in Pichia pastoris
KR20030062854A (en) * 2002-01-21 2003-07-28 주식회사 엘지생명과학 Manufacturing method of recombinant protein in yeast by the use of secretory type vector

Similar Documents

Publication Publication Date Title
KR101262682B1 (en) Gene Expression Technique
KR101298157B1 (en) 2-micron family plasmid and use thereof
US6410264B1 (en) Pichia pastoris gene sequences and methods for their use
JP5781986B2 (en) Gene expression technology
JPH11508451A (en) Expression of marine fish antifreeze peptide in food grade organisms and its application in food
KR102495283B1 (en) Carbon Source Controlled Protein Production in Recombinant Host Cells
BR112014004830B1 (en) Genetically modified yeast cell, its use and method for producing a recombinant protein or polypeptide of interest
KR20000075076A (en) A method for production of foreign protein using transformed microalgae
KR20140015137A (en) Methods for the production of recombinant proteins with improved secretion efficiencies
KR20210032972A (en) Means and methods for increasing protein expression using transcription factors
JP7185006B2 (en) Bacterial strains that release recombinant proteins by fermentation
He et al. A combinational strategy for effective heterologous production of functional human lysozyme in Pichia pastoris
KR100490190B1 (en) Improved protein expression strains
KR100726143B1 (en) - A New Strain Highly Producing PDGF-BB and a Method for Constructing the Strain
KR100726717B1 (en) - A New Strain Highly Producing PDGF-BB and a Secretive Protein GST for the Strain
KR100726716B1 (en) A New Strain Highly Producing PDGF-BB and a Secretive Protein for the Strain
EP1032590A1 (en) Chimeric pre-activated transcription factors
WO2008020701A1 (en) A new strain highly producing pdgf-bb
JPH06503718A (en) Production of human lysothyme and its efficient secretion in methylotrophic yeast cells
EP1913143A1 (en) Improved protein expression
US6605450B1 (en) Iron regulation of the PpSEC10 transcriptional regulatory region of Pichia pastoris and methods of use
KR0185980B1 (en) Albumin gene-containing plasmid transformant carrying same production of such transformant and production of albumin
KR20140148027A (en) Method for screening yeast strains with enhanced recombinant protein secretion using yeast variants having cell-wall defect

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee