KR100725589B1 - Preparation of lithium hydroxide monohydrate from spent lithium carbonate - Google Patents

Preparation of lithium hydroxide monohydrate from spent lithium carbonate Download PDF

Info

Publication number
KR100725589B1
KR100725589B1 KR1020060035491A KR20060035491A KR100725589B1 KR 100725589 B1 KR100725589 B1 KR 100725589B1 KR 1020060035491 A KR1020060035491 A KR 1020060035491A KR 20060035491 A KR20060035491 A KR 20060035491A KR 100725589 B1 KR100725589 B1 KR 100725589B1
Authority
KR
South Korea
Prior art keywords
lithium
carbonate
lithium hydroxide
hydroxide
hydroxide monohydrate
Prior art date
Application number
KR1020060035491A
Other languages
Korean (ko)
Inventor
김광주
김재경
이형석
이상웅
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020060035491A priority Critical patent/KR100725589B1/en
Application granted granted Critical
Publication of KR100725589B1 publication Critical patent/KR100725589B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a method for preparing highly pure lithium hydroxide monohydrate by a simple process without using any specific apparatus and organic matters, which is useful as a material for the production of lithium carbonate, lithium halogenate, lithium nitrate and lithium metal. The method for preparing highly pure lithium hydroxide monohydrate comprises the 1st step of reacting an aqueous solution of lithium wastes containing lithium carbonate with an alkali hydroxide compound having a solubility product(Ksp) for a precipitated carbonate of 10^-10 to 10^-8 at 50-100 deg.C for from 30 minutes to 7 hours to separate the reactant into a sediment of carbonate and an aqueous solution of lithium hydroxide; and the 2nd step of evaporating the separated aqueous solution of lithium hydroxide under a gauge pressure of 0.5-25 cmHg at a rate of 0.05-5 L/h. The lithium hydroxide monohydrate thus produced has a content of Ca^2+ of 0-1ppm and a yield of 20-99%.

Description

리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의 제조방법{Preparation of Lithium hydroxide monohydrate from spent lithium carbonate}Preparation method of high purity lithium hydroxide monohydrate from lithium waste {Preparation of Lithium hydroxide monohydrate from spent lithium carbonate}

도 1은 본 발명의 리튬 폐기물로부터 수산화 리튬 제일수화물을 제조하는 과정을 간략하게 나타낸 것이다.Figure 1 shows a simplified process for producing lithium hydroxide monohydrate from the lithium waste of the present invention.

도 2는 본 발명에 이용된 리튬 폐기물과 탄산 리튬의 X선 회절 곡선을 나타낸 것이다.Figure 2 shows the X-ray diffraction curves of lithium waste and lithium carbonate used in the present invention.

도 3은 본 발명의 반응시간에 따른 수용액 내의 Ca2+ 함량 변화를 나타낸 것이다.Figure 3 shows the Ca 2+ content change in the aqueous solution according to the reaction time of the present invention.

도 4는 본 발명의 반응시간에 따른 수산화 리튬 제일수화물의 Ca2+ 함량 변화를 나타낸 것이다.Figure 4 shows the Ca 2+ content change of lithium hydroxide monohydrate according to the reaction time of the present invention.

도 5는 본 발명의 증발 속도를 달리하여 제조한 수산화 리튬 1 수화물의 주사 전자 현미경 사진을 나타낸 것이다[(a) 0.1 L/h, (b) 1 L/h].Figure 5 shows a scanning electron micrograph of the lithium hydroxide monohydrate prepared by varying the evaporation rate of the present invention ((a) 0.1 L / h, (b) 1 L / h].

도 6은 본 발명의 실시예 1에서 얻어진 수산화 리튬 제일수화물과 수산화 리튬 제일수화물 표준 시료의 X선 회절선도를 나타낸 것이다.FIG. 6 shows X-ray diffraction diagrams of the lithium hydroxide monohydrate and lithium hydroxide monohydrate standard samples obtained in Example 1 of the present invention. FIG.

본 발명은 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의 제조방법에 관한 것으로, 더욱 상세하게는 탄산 리튬이 포함되어 있는 리튬 폐기물 수용액과 특정범위의 탄산염의 용해도적(Ksp)을 갖는 알칼리 수산화 화합물을 특정의 조건에서 반응시켜 탄산염 침전물과 수산화 리튬 수용액으로 분리하고, 상기 분리된 수산화 리튬 수용액을 특정의 조건에서 증발시키는 간단한 조작에 의해, 특정의 장치 및 유기물의 사용 없이 탄산 리튬, 할로겐화 리튬, 질산 리튬 및 리튬 금속의 제조원료로 사용 가능한 고순도 수산화 리튬 제일수화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing high purity lithium hydroxide monohydrate from lithium waste, and more particularly, to an alkali hydroxide compound having a solubility product (K sp ) of a lithium waste aqueous solution containing lithium carbonate and a specific range of carbonate. Reaction is carried out under the conditions of, and separated into a carbonate precipitate and an aqueous lithium hydroxide solution, and by a simple operation of evaporating the separated aqueous lithium hydroxide solution under specific conditions, lithium carbonate, lithium halide, lithium nitrate and The present invention relates to a method for producing high purity lithium hydroxide monohydrate that can be used as a raw material for lithium metal.

수산화 리튬은 제일수화물 또는 무수화물 형태로 이용되며 기체 및 공기정화, 열전달 매체, 중합 촉매, 극한 온도에서 좋은 성능을 발휘할 수 있는 개량된 그리스(리튬 스테아레이트) 제조, 잠수함이나 우주선의 이산화탄소 흡수제, 유기합성 촉매, 다른 리튬 화합물의 원료로서 이용된다.Lithium hydroxide is used in the form of monohydrate or anhydride and is used in gas and air purification, heat transfer media, polymerization catalysts, production of improved grease (lithium stearate) that can perform well in extreme temperatures, carbon dioxide absorbers in submarines or spacecraft, organic It is used as a raw material of a synthesis catalyst and other lithium compounds.

현재 80 ∼ 90 가지의 리튬 화합물이 공업적으로 생산되고 있으며 리튬 화합물 제조 과정에서 주요 원료로서 이용되고 있는 리튬 화합물은 탄산 리튬과 수산화 리튬이다. 특히, 고순도 수산화 리튬은 중합 개시제로서 이용되는 것을 제외하면 이산화탄소 제거제로서 가장 많이 이용된다. Currently, 80 to 90 kinds of lithium compounds are industrially produced, and lithium compounds used as main raw materials in the production of lithium compounds are lithium carbonate and lithium hydroxide. In particular, high purity lithium hydroxide is most used as a carbon dioxide scavenger except that it is used as a polymerization initiator.

이산화탄소 제거제로 이용된 수산화 리튬이 탄산 리튬으로 전환되는 과정은 다음과 같다. The process of converting lithium hydroxide used as a carbon dioxide remover into lithium carbonate is as follows.

잠수함이나 우주공간에서 사람의 호흡으로부터 발생되는 이산화탄소(CO2)는 수산화 리튬에 흡수된 후 다른 기체는 체내로 폐순환된다. 이산화탄소의 화학적 흡수는 다음과 같은 2단계의 반응 과정을 거치게 된다. Carbon dioxide (CO 2 ) from human breathing in submarines and space is absorbed by lithium hydroxide and other gases are circulated into the body. The chemical absorption of carbon dioxide is a two-step reaction process.

수산화 리튬 제일수화물은 발열반응에 의해 다음 반응식 (1)으로부터 생성된다. Lithium hydroxide monohydrate is produced from the following reaction formula (1) by exothermic reaction.

(1)

Figure 112006027312151-pat00001
(One)
Figure 112006027312151-pat00001

탄산 리튬은 이산화탄소와 수산화 리튬 제일수화물의 흡열반응에 의해 생성된다. Lithium carbonate is produced by the endothermic reaction of carbon dioxide and lithium hydroxide monohydrate.

(2)

Figure 112006027312151-pat00002
(2)
Figure 112006027312151-pat00002

수산화 리튬과 이산화탄소의 반응에 의한 탄산 리튬의 생성은 반응식(3)으로 표현될 수 있다. The production of lithium carbonate by the reaction of lithium hydroxide and carbon dioxide can be expressed by the reaction formula (3).

(3)

Figure 112006027312151-pat00003
(3)
Figure 112006027312151-pat00003

전체 반응식(3)에 의해 수산화 리튬 제일수화물은 탄산 리튬으로 전환되며 최종적으로 폐기된다.By the general scheme (3), lithium hydroxide monohydrate is converted to lithium carbonate and finally discarded.

수산화 리튬 제일수화물로부터 전환된 탄산 리튬 또는 폐 2차전지 재활용 과정에서 발생되는 저급 탄산 리튬으로부터 고순도 탄산 리튬 회수 기술은 많이 알려져 있다. 예를 들면, 일본국 특개 소59-83930호는 수산화 리튬에 요소 첨가와 가수분해를 거쳐 탄산 리튬을 제조하는 방법을 공지하고 있다. 이 방법은 반응 후 발생되는 모액내에 알칼리 물질이 함유되어 있어 폐수 처리가 곤란하며 제조되는 탄산 리튬내에 불순물이 포함되어 있기 때문에 사용목적상 부적합하다. 또한 탄산 리튬의 석출율이 30% 정도로서 낮다. 일본국 특개 소61-251511호는 수산화 리튬 수용액을 90 ℃ 이상으로 가열한 후 이산화탄소를 흡입시켜 탄산 리튬을 석출시키는 방법을 제시하였다. 일본국 특개 소62-252315호는 탄산 리튬 현탁액에 이산화탄소를 흡입시켜 탄산수소 리튬(lithium bicarbonate)을 생성시켜 가열 분해하여 탄산 리튬을 제조하는 방법을 공지하였다. 이 방법은 결정 석출시 이산화탄소 가스와 탄산 리튬과의 반응이 국부적으로 급격히 진행되어 응집되는 탄산 리튬입자가 많으며 결정 형상과 불순물 함량이 높은 문제점이 있다. 일본국 특개 평1-3104130호는 공업용 저급 탄산리튬 현탁액에 가압조건에서 이산화탄소 가스(5MPa)를 가하여 탄산수소 리튬 용액을 제조한 후, 탈기(脫氣)시켜 고순도 탄산리튬을 제조하였다. 그렇지만 저급 탄산 리튬으로부터 고가의 수산화 리튬 제일수화물을 회수하기 위한 방법은 알려져 있지 않다. BACKGROUND OF THE INVENTION There are many known techniques for recovering high purity lithium carbonate from lithium carbonate converted from lithium hydroxide monohydrate or lower lithium carbonate generated during the recycling of spent secondary batteries. For example, Japanese Patent Laid-Open No. 59-83930 discloses a method for producing lithium carbonate by adding urea and hydrolysis to lithium hydroxide. This method is unsuitable for use because it contains alkaline substances in the mother liquor generated after the reaction, which makes it difficult to treat the wastewater and contains impurities in the produced lithium carbonate. In addition, the deposition rate of lithium carbonate is about 30%, which is low. Japanese Patent Application Laid-Open No. 61-251511 discloses a method of depositing lithium carbonate by inhaling carbon dioxide after heating a lithium hydroxide aqueous solution to 90 ° C. or higher. Japanese Patent Laid-Open No. 62-252315 discloses a method for producing lithium carbonate by inhaling carbon dioxide into a lithium carbonate suspension to produce lithium bicarbonate and thermally decomposing it. In this method, the reaction between carbon dioxide gas and lithium carbonate is rapidly progressed locally during precipitation of crystals, and there are many lithium carbonate particles which aggregate and have high crystal shape and impurities content. Japanese Patent Application Laid-Open No. H1-3104130 adds carbon dioxide gas (5 MPa) to an industrial low lithium carbonate suspension under pressurized conditions to produce a lithium hydrogen carbonate solution, and then degassed to produce high purity lithium carbonate. However, a method for recovering expensive lithium hydroxide monohydrate from lower lithium carbonate is not known.

이에 본 발명자는 특정의 장치 및 용매의 사용 없이, 보다 간단한 방법으로 수산화 리튬 제일수화물 얻고자 연구 노력하였다. 그 결과, 탄산 리튬이 포함된 리튬 폐기물 수용액에 특정범위의 탄산염의 용해도적(Ksp)을 갖는 알칼리 수산화 화합물을 특정의 조건에서 반응시켜 탄산염 침전물과 수산화 리튬 수용액으로 분리하고, 상기 분리된 수산화리튬 수용액을 특정의 조건에서 증발시키는 간단한 방법으로 Ca2+의 함량이 0 ppm ∼ 1 ppm이고, 수율이 20 ∼ 99 %인 수산화 리튬 제일수화물이 제조된다는 것을 알게 되어 본 발명을 완성하게 되었다.The present inventors have made an effort to obtain lithium hydroxide monohydrate in a simpler manner without the use of a specific device and solvent. As a result, an alkali hydroxide compound having a solubility (K sp ) of a specific range of carbonate in a lithium waste aqueous solution containing lithium carbonate is reacted under specific conditions to separate the carbonate precipitate and the lithium hydroxide aqueous solution, and the separated lithium hydroxide The present invention was completed by a simple method of evaporating an aqueous solution under specific conditions to produce lithium hydroxide monohydrate having a content of Ca 2+ of 0 ppm to 1 ppm and a yield of 20 to 99%.

따라서, 본 발명은 침전 및 증발을 이용하여 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물을 제조하는 방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing high purity lithium hydroxide monohydrate from lithium waste using precipitation and evaporation.

본 발명은 탄산 리튬이 포함된 리튬 폐기물 수용액과, 침전되는 탄산염의 용해도적(Ksp)이 10-10 ∼ 10-8 범위인 알칼리 수산화 화합물을 50 ∼ 100 ℃, 30 분 ∼ 7 시간동안 반응시켜, 탄산염 침전물과 수산화 리튬 수용액으로 분리하는 제1단계;The present invention by reacting lithium during the waste solution and the solubility enemy (K sp) of 10 -10 to 10 -8 range of alkali hydroxide compounds of the carbonate to be precipitated 50 ~ 100 ℃, 30 ~ 7 bun time included lithium carbonate A first step of separating the carbonate precipitate and the lithium hydroxide aqueous solution;

상기 분리된 수산화 리튬 수용액을 0.5 ∼ 25 cmHg 게이지 압력(gauge pressure), 0.05 ∼ 5 L/h의 속도로 증발시키는 제2단계를 포함하여 수산화 리튬 제일수화물을 제조하며, 상기 제조된 수산화 리튬 제일수화물은 Ca2+의 함량이 0 ∼ 1 ppm이고, 수율이 20 % ∼ 99 %인 고순도 수산화 리튬 제일수화물의 제조방법에 그 특징이 있다.Lithium hydroxide monohydrate is prepared by the second step of evaporating the separated lithium hydroxide aqueous solution at a rate of 0.5-25 cmHg gauge pressure, 0.05-5 L / h, and the prepared lithium hydroxide monohydrate. Silver Ca 2+ has a content of 0 to 1 ppm and a high purity lithium hydroxide monohydrate having a yield of 20% to 99%.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 침전 및 증발 등의 물리적인 방법으로 탄산 리튬이 포함된 리튬 폐기물 수용액으로부터 수산화 리튬 제일수화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lithium hydroxide monohydrate from a lithium waste aqueous solution containing lithium carbonate by physical methods such as precipitation and evaporation.

침전 및 증발은 순수 성분, 화합물의 분리, 회수 및 순도 향상을 위하여 모든 화학공정에서 이용되는 기본적인 화학 단위 공정이지만 본 발명은 이러한 방법을 단순히 도입 사용하는 것이 아니라, 용해도적, 반응조건 및 증발 조건을 특정 범위로 한정하여 탄산 리튬이 포함된 리튬 폐기물 수용액으로부터 고순도의 수산화 리튬 제일수화물을 고수율로 제조하는 방법에 관한 것이다.Precipitation and evaporation is a basic chemical unit process used in all chemical processes for the separation, recovery and purity of pure components, compounds, but the present invention does not merely introduce and use such methods, but it does not use solubility, reaction conditions and evaporation conditions. It is related with the method of manufacturing high purity lithium hydroxide monohydrate in high yield from the lithium waste aqueous solution containing lithium carbonate limited to a specific range.

본 발명에 따른 수산화 리튬 제일수화물을 제조하는 방법을 보다 구체적으로 살펴보면 다음과 같다.Looking at the method of producing a lithium hydroxide monohydrate according to the present invention in more detail as follows.

먼저, 탄산 리튬이 포함된 리튬 폐기물 수용액과, 탄산염의 용해도적(Ksp)이 10-10 ∼ 10-8 범위인 알칼리 수산화 화합물을 50 ℃ ∼ 100 ℃, 30분 ∼ 7시간 동안 반응시켜, 탄산염 침전물과 수산화 리튬 수용액으로 분리한다.First, an aqueous lithium waste solution containing lithium carbonate and an alkali hydroxide compound having a solubility (K sp ) of carbonate in the range of 10 −10 to 10 −8 are reacted for 50 minutes to 100 ° C. for 30 minutes to 7 hours. Separated by precipitate and aqueous lithium hydroxide solution.

상기 리튬 폐기물 수용액은 탄산 리튬이 포함된 것이면 어느 것이든 사용 가능하므로 특별히 한정하지는 않는다. The lithium waste aqueous solution is not particularly limited, as long as any lithium carbonate solution can be used.

통상적으로 수산화 리튬 제일수화물이 이산화탄소 흡수제로서 이용된 후 탄산 리튬으로 전환되어 폐기되는 물질을 사용하는 바, 특히 대한민국 등록 특허 제 10-443416호, 제 10-358528호, 제 10-448273호에서 제시된 바와 같이, 폐 리튬 2차 전지의 재활용 과정에서 발생되는 폐 양극활 물질(spent cathode active compound)로부터 얻어지는 저급 탄산 리튬 등을 사용하는 것이 폐기물 처리 등의 환경적인 차원에서 보다 바람직하다.Typically, lithium hydroxide monohydrate is used as a carbon dioxide absorber, and then a material that is converted into lithium carbonate and discarded is used, in particular, as disclosed in Korean Patent Nos. 10-443416, 10-358528, and 10-448273. Likewise, it is more preferable to use lower lithium carbonate or the like obtained from the waste cathode active compound generated in the recycling process of the waste lithium secondary battery from an environmental point of view such as waste treatment.

상기 물에 용해되는 리튬 폐기물의 양은 폐기물에 포함된 탄산 리튬의 용해 도에 의존하게 되는 데, 물에 대한 탄산 리튬의 용해도는 1.54 g/100 g H2O(0 ℃), 1.17 g/100g H2O(40 ℃), 0.72 g/100 g H2O(100 ℃)이다. 탄산 리튬과 물 혼합물의 열역학적 특성을 고려했을 때 물에 용해될 수 있는 탄산 리튬의 최대량은 물 100 g에 대해서 0.72 g ∼ 1.54 g이다. 그러므로 본 발명에서 물에 용해되는 리튬 폐기물의 양은 상기의 탄산 리튬 용해도 범위에서 유지된다. The amount of lithium waste dissolved in water depends on the solubility of lithium carbonate contained in the waste. The solubility of lithium carbonate in water is 1.54 g / 100 g H 2 O (0 ° C.), 1.17 g / 100 g H 2 O (40 ° C.), 0.72 g / 100 g H 2 O (100 ° C.). Considering the thermodynamic properties of lithium carbonate and water mixtures, the maximum amount of lithium carbonate that can be dissolved in water is 0.72 g to 1.54 g for 100 g of water. Therefore, the amount of lithium waste dissolved in water in the present invention is maintained in the above lithium carbonate solubility range.

또한, 상기 수산화 화합물은 리튬 폐기물 수용액에 함유된 탄산 리튬을 수산화 리튬으로 침전시키기 위해서 탄산염의 용해도적(Ksp)이 10-10 ∼ 10-8 범위인 수산화 화합물을 사용한다. 통상적으로 탄산염의 침전 형성이 용이한 것으로, 1족 또는 2족 알칼리 또는 알칼리토금속 수산화물 구체적으로 수산화 나트륨, 수산화 칼륨, 수산화 마그네슘, 수산화 칼슘, 수산화 스트론튬, 수산화 바륨 등이 선정될 수 있다. 이러한 알칼리 및 알칼리토금속 수산화물과 탄산과의 반응으로 생성된 탄산염침전물의 용해도는 다음 표와 같이 용해도적(solubility product)값으로부터 평가되었다. In addition, the hydroxide compound uses a hydroxide compound having a solubility (K sp ) in the range of 10 −10 to 10 −8 so as to precipitate lithium carbonate contained in an aqueous lithium waste solution into lithium hydroxide. In general, it is easy to form precipitates of carbonates, and group 1 or 2 alkali or alkaline earth metal hydroxides, specifically sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and the like can be selected. The solubility of the carbonate precipitate produced by the reaction between the alkali and alkaline earth metal hydroxides and the carbonic acid was evaluated from the solubility product values as shown in the following table.

화합물compound 구조식constitutional formula 용해도적(Ksp, 25 ℃)Solubility Product (K sp , 25 ℃) 바륨 카보네이트Barium carbonate BaCO3 BaCO 3 2.58×10-9 2.58 × 10 -9 칼슘 카보네이트(칼사이트)Calcium Carbonate (Calcite) CaCO3 CaCO 3 3.36×10-9 3.36 × 10 -9 칼슘 카보네이트(아라고나이트)Calcium Carbonate (Aragonite) CaCO3 CaCO 3 6.0×10-9 6.0 × 10 -9 마그네슘 카보네이트Magnesium carbonate MgCO3 MgCO 3 6.82×10-6 6.82 × 10 -6 마그네슘 카보네이트 트리하이드레이트Magnesium carbonate trihydrate MgCO3·3H2OMgCO 3 · 3H 2 O 2.38×10-6 2.38 × 10 -6 마그네슘 카보네이트 펜타하이드레이트Magnesium Carbonate Pentahydrate MgCO3·5H2OMgCO 3 · 5H 2 O 3.79×10-6 3.79 × 10 -6 스트론튬(Ⅱ) 카보네이트Strontium (II) Carbonate SrCO3 SrCO 3 5.6×10-10 5.6 × 10 -10

상기 표에서 나타낸 바와 같이, 수산화 나트륨과 수산화 칼륨으로 부터 생성 되는 탄산 나트륨과 탄산 칼륨은 물에 대한 용해성이 좋기 때문에 리튬 폐기물과 반응시키는 알칼리 물질로서 부적합한 것으로 판단되고, 수산화 마그네슘은 물에 대한 용해성이 높기 때문에 부적합하다. 따라서, 침전되는 탄산염의 용해도적 값이 적기 때문에 수용액상으로부터 침전이 용이하여 수산화 리튬 제일수화물 수용액과 고-액 분리가 유리한 것으로 판단되는 수산화 바륨, 수산화 스트론튬, 수산화 칼슘이 본 발명에서 알칼리 물질로서 선택되는 것이 좋으며, 더욱 바람직하기로는 사용되는 알칼리 물질의 독성 및 가격 등의 면에서 수산화 칼슘을 사용하는 것이 효과적이다.As shown in the above table, sodium carbonate and potassium carbonate produced from sodium hydroxide and potassium hydroxide are considered to be unsuitable as alkaline substances to react with lithium waste because of their good solubility in water, and magnesium hydroxide is insoluble in water. It is not suitable because it is high. Therefore, barium hydroxide, strontium hydroxide, and calcium hydroxide, which are considered to be advantageous in the aqueous solution of lithium hydroxide monohydrate and solid-liquid separation, because the solubility value of the precipitated carbonate is small, so that it is easy to precipitate from the aqueous phase, is selected as the alkaline substance in the present invention. It is better to use, and more preferably, it is effective to use calcium hydroxide in view of toxicity and price of the alkaline substance used.

리튬 폐기물과 반응하는 알칼리 물질의 양은 다음 반응식(4)과 같은 일례로 얻어질 수 있다. The amount of alkali material that reacts with the lithium waste can be obtained by an example as in the following reaction formula (4).

(4)

Figure 112006027312151-pat00004
(4)
Figure 112006027312151-pat00004

탄산 리튬과 수산화 칼슘의 분자량이 동일하며 몰비가 1 : 1이므로 리튬 폐기물과 반응하는 수산화 칼슘의 양은 동일하나, 상기 수산화 화합물은 리튬폐기물내의 탄산이온에 1 몰에 대하여 1 ∼ 1.2 몰비로 약간 과량 사용하는 것이 보다 효과적으로 반응을 수행하기에 좋다. 생성된 수산화 리튬 제일수화물은 탄산 리튬의 용해도를 감소시키므로 수산화 리튬 회수를 위한 최적의 pH을 알아볼 필요가 있다. 탄산 리튬을 물에 용해시킬 경우, 다음과 같은 반응이 일어나게 된다.Since the molecular weights of lithium carbonate and calcium hydroxide are the same and the molar ratio is 1: 1, the amount of calcium hydroxide reacted with lithium waste is the same, but the hydroxide compound is used slightly in an amount of 1 to 1.2 moles per 1 mole of carbonate ions in lithium waste. It is better to carry out the reaction more effectively. Since the produced lithium hydroxide monohydrate reduces the solubility of lithium carbonate, it is necessary to find the optimum pH for lithium hydroxide recovery. When lithium carbonate is dissolved in water, the following reaction occurs.

(5)

Figure 112006027312151-pat00005
(5)
Figure 112006027312151-pat00005

(6)

Figure 112006027312151-pat00006
(6)
Figure 112006027312151-pat00006

(7)

Figure 112006027312151-pat00007
(7)
Figure 112006027312151-pat00007

결과적으로 위 반응식의 해리상수와 반응으로부터 수용액의 pH가 10.5 이상일 경우 탄산 리튬이 소모되어 수산화 리튬 제일수화물이 생성되는 방향으로 반응이 진행될 것이다. 그러므로 리튬 폐기물과 수산화 칼슘의 반응에서 수용액 pH는 10.5 이상이 되도록 유지되어야 한다. As a result, if the pH of the aqueous solution is 10.5 or more from the dissociation constant and the reaction of the above reaction, the reaction will proceed in the direction that lithium carbonate is consumed to produce lithium hydroxide monohydrate. Therefore, the pH of the aqueous solution should be maintained above 10.5 in the reaction of lithium waste and calcium hydroxide.

도 2는 본 발명에 사용된 리튬 폐기물의 X선 회절선도를 나타낸 것으로, 표준물질로서 사용된 탄산 리튬과 리튬 폐기물의 X선 회절선을 비교한 결과 리튬 폐기물은 수산화 리튬이 이산화탄소와의 반응에 의해 완전히 전환된 탄산 리튬으로 구성되어 있었다. Figure 2 shows the X-ray diffraction diagram of the lithium waste used in the present invention, as a result of comparing the X-ray diffraction lines of lithium carbonate and lithium waste used as a standard material, the lithium waste is reacted by the reaction of lithium hydroxide with carbon dioxide It was composed of fully converted lithium carbonate.

상기 반응은 50 ∼ 100 ℃에서 30분 ∼ 7시간 동안 수행되는 것이 바람직한 바, 상기 반응온도가 50 ℃ 미만이면 생성 반응에 소요되는 시간이 너무 길어져서 수산화 리튬 제일수화물의 단위 생산량이 매우 적어지며 100 ℃를 초과하는 경우에는 반응이 빠르게 진행되어 생산량이 극대화 될 수 있지만 탄산 리튬의 승온에 따른 에너지 소모량과 급격한 반응에 이어 발생되는 증발로 인해서 불순물이 많이 내포되는 침상형 결정의 생성 문제가 발생한다. 또한, 반응시간이 30 분 미만이면 회수되는 수산화 리튬 제일수화물에 내포되는 불순물인 칼슘 함량이 높아져 순도가 저하되며 반응 시간이 7시간을 초과하는 경우에는 수산화 리튬 제일수화물에 내포되는 불순물인 칼슘 함량은 매우 낮지만 공정의 경제성 측면에서 바람직하지 않으므로 상기 범위를 유지하는 것이 바람직하다.The reaction is preferably carried out at 50 to 100 ℃ for 30 minutes to 7 hours. If the reaction temperature is less than 50 ℃, the time required for the production reaction is too long, the unit yield of lithium hydroxide monohydrate is very small and 100 If the temperature is higher than ℃, the reaction proceeds rapidly and the yield can be maximized. However, the problem of generating needle-like crystals containing a large amount of impurities is caused by energy consumption and rapid evaporation following the rapid reaction of lithium carbonate. In addition, when the reaction time is less than 30 minutes, the calcium content as an impurity contained in the recovered lithium hydroxide monohydrate increases, and the purity decreases. When the reaction time exceeds 7 hours, the calcium content as an impurity contained in the lithium hydroxide monohydrate is It is desirable to maintain this range because it is very low but undesirable in terms of economics of the process.

다음으로, 상기 반응으로 생성된 탄산칼슘 결정을 여과에 의해 수산화 리튬 제일수화물을 제조하는 단계이다. 본 발명에서 침강된 탄산칼슘은 칼사이트(calcite)로 동정되었으며 평균 입경은 약 2 ㎛을 나타내어 공극 크기 1.7 ㎛ 정도의 GF/C(Whatman Co., USA)가 사용하여 분리하였으나, 이에 한정되지는 않는다. 즉, 결정의 여과를 위한 당 분야에서 사용하는 모든 방법에 사용될 수 있다.Next, the lithium hydroxide monohydrate is produced by filtration of the calcium carbonate crystals produced by the reaction. Precipitated calcium carbonate in the present invention was identified as Calcite (calcite) and the average particle diameter was about 2 ㎛ was separated by using GF / C (Whatman Co., USA) of about 1.7 ㎛ pore size, but is not limited thereto Do not. That is, it can be used in all methods used in the art for the filtration of crystals.

상기 생성된 탄산 칼슘 결정이 반응 모액으로 부터 제거되는 시간은 침강된 탄산 칼슘의 결정성 및 입자 크기와 밀접한 관련이 있으며 무정형 탄산 칼슘이 수산화 리튬 수용액상에 존재하는 경우 또는 매우 작은 탄산 칼슘 결정이 생성되는 경우 여과 시간이 상당히 길어진다. 그러므로, 리튬 폐기물과 수산화 칼슘의 혼합 속도를 정밀하게 제어하여 급격한 핵생성 또는 무정형 탄산 칼슘의 발생을 억제시켜야 한다. 침전되는 탄산 칼슘의 양은 반응식 (4)로부터 결정되는 데 탄산 칼슘의 분자량이 100.1 g/mol, 수산화 칼슘의 분자량은 74.1 g/mol이므로 투입되는 리튬 폐기물내 탄산 리튬 질량(g) × 1.35 이다. The time for removing the produced calcium carbonate crystals from the reaction mother liquor is closely related to the crystallinity and particle size of the precipitated calcium carbonate and when amorphous calcium carbonate is present in an aqueous lithium hydroxide solution or very small calcium carbonate crystals are formed. The filtration time is significantly longer. Therefore, the mixing rate of lithium waste and calcium hydroxide must be precisely controlled to suppress the rapid nucleation or the generation of amorphous calcium carbonate. The amount of calcium carbonate precipitated is determined from the reaction formula (4). The molecular weight of calcium carbonate is 100.1 g / mol and the molecular weight of calcium hydroxide is 74.1 g / mol, so the mass of lithium carbonate (g) x 1.35 in the lithium waste injected.

다음으로, 탄산칼슘이 제거된 수산화리튬 수용액을 증발시켜 수산화 리튬 제일수화물 결정을 제조한다.Next, lithium hydroxide monohydrate crystals are prepared by evaporating an aqueous lithium hydroxide solution from which calcium carbonate has been removed.

상기 증발 속도는 결정 형상과 결정에 내포되는 불순물의 함량에 가장 큰 영향을 미치는 변수이다. 일반적인 공업 결정화에서 증발 속도가 빠를 경우 급격한 핵생성으로 인해서 불순물이 매우 높은 상태의 응집 결정이 생성될 가능성이 높으며 반면 증발 속도가 느릴 경우 불순물의 함량이 적은 결정이 성장되며 비교적 평균 입경이 큰 결정이 제조된다. The evaporation rate is a variable that has the greatest influence on the crystal shape and the content of impurities contained in the crystal. In general industrial crystallization, if the evaporation rate is high, it is highly likely to produce agglomerated crystals with a very high impurity due to the rapid nucleation, whereas crystals with a small impurity content grow at a slow evaporation rate. Are manufactured.

즉, 본 발명은 0.5 ∼ 25 cmHg 게이지 압력(gauge pressure) 범위와, 0.05 L/h ∼ 5 L/h범위의 증발속도의 조건하에서 증발이 수행되는 바, 상기 압력이 0.5 cmHg 미만이면 급격한 비말 동반으로 반응 모액이 역류하며 25 cmHg를 초과하는 경우에는 반응 과정에서 발생되는 이산화탄소와 칼슘 이온의 제거가 용이하지 못한 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다. 또한, 증발속도가 0.05 L/h 미만이면 생성되는 수산화리튬 제일수화물의 결정상은 매우 좋지만 수율이 매우 낮아지며 5 L/h을 초과하는 경우에는 비말 동반과 함께 분말 상태의 수산화리튬 제일수화물 결정으로 인해서 제조 공정의 안정성에 문제가 발생하는 바, 상기 범위를 유지하는 것이 좋으며, 보다 바람직하기로는 0.05 L/h∼ 5 L/h를 유지하는 것이 더욱 좋다.That is, the present invention is the evaporation is carried out under the conditions of the 0.5-25 cmHg gauge pressure range and the evaporation rate of 0.05 L / h to 5 L / h range, if the pressure is less than 0.5 cmHg accompanied by a sharp splash In the case where the reaction mother liquor flows backward and exceeds 25 cmHg, it is preferable to maintain the above range because the problem of removal of carbon dioxide and calcium ions generated during the reaction is not easy. In addition, when the evaporation rate is less than 0.05 L / h, the crystal phase of the lithium hydroxide monohydrate produced is very good, but the yield is very low, and when it exceeds 5 L / h is produced due to the powdered lithium hydroxide monohydrate crystals with the accompanying droplets Since a problem arises in the stability of a process, it is good to maintain the said range, More preferably, it is more preferable to maintain 0.05 L / h-5 L / h.

추가로 본 발명은 탄산염 침전물이 제거되어 증발 조작을 실시하기 전 상기 수산화리튬 수용액에 수용성 유기용매를 첨가시키거나 수산화 리튬 수용액을 -10 ℃ ∼ 100 ℃ 범위로 냉각하여 수산화 리튬 제일수화물 결정을 형성시켜 고순도 수산화 리튬 제일수화물을 제조한다. 이때, 상기 수용성 유기용매는 메탄올, 에탄올, 프로판올, 부탄올, 아세토니트릴, n-메틸피롤리돈, 테트라하이드로퓨란, 2-프로판올, 디옥산, 디메틸설폭사이드, 디메틸포름아마이드 및 아세톤 등을 사용할 수 있다. 수용성 유기용매와 수산화리튬 수용액의 혼합비는 1 : 1 ∼ 100 범위로 한정되는데, 상기 수용성 유기용매에 대한 수산화리튬의 혼합비가 100을 초과하는 경우에는 결정상으로 생성되는 수산화리튬 제일수화물의 핵생성을 위한 과포화도에 도달되지 못하기 때문에 결정이 생성되지 않거나 수율이 매우 낮으며, 혼합비가 1 미만인 경우에는 생성되는 수산화리튬 제일수화물의 결정상에 유기 용매가 내 포되거나 매우 작은 입자의 생성으로 인해 결정 제조 공정에서 문제점이 발생되는 바, 상기 범위를 유지하는 것이 좋다.Further, the present invention adds a water-soluble organic solvent to the lithium hydroxide aqueous solution before the carbonate precipitate is removed to perform the evaporation operation or by cooling the lithium hydroxide aqueous solution in the range of -10 ℃ to 100 ℃ to form lithium hydroxide monohydrate crystals High purity lithium hydroxide monohydrate is prepared. In this case, the water-soluble organic solvent may be methanol, ethanol, propanol, butanol, acetonitrile, n-methylpyrrolidone, tetrahydrofuran, 2-propanol, dioxane, dimethyl sulfoxide, dimethylformamide and acetone. . The mixing ratio of the water-soluble organic solvent and the lithium hydroxide aqueous solution is in the range of 1: 1 to 100. When the mixing ratio of the lithium hydroxide to the water-soluble organic solvent exceeds 100, the nucleation of the lithium hydroxide monohydrate produced in the crystal phase Crystals are not produced or yield is very low because supersaturation is not reached, and when the mixing ratio is less than 1, organic solvents are contained in the crystals of the lithium hydroxide monohydrate, or the formation of very small particles in the crystal manufacturing process Since a problem arises, it is better to keep the above range.

또한 상기 냉각온도가 -10 ℃ 미만이면 물과 수산화 리튬은 공융 고체를 형성하여 전혀 수산화 리튬 제일수화물을 분리할 수 없으며 100 ℃를 초과하는 경우에는 수산화 리튬 제일수화물은 수용액으로부터 결정화되지 못하며 이산화탄소와 급격한 변화를 일으키는 수산화리튬 무수물이 생성되므로 상기 범위를 유지하는 것이 바람직하다.In addition, when the cooling temperature is less than -10 ℃ water and lithium hydroxide can form a eutectic solid at all can not separate the lithium hydroxide monohydrate, and when it exceeds 100 ℃ lithium hydroxide first hydrate does not crystallize from aqueous solution and sudden It is preferable to maintain the above range because lithium hydroxide anhydride is produced which causes a change.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하나, 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예 1Example 1

2 L 증류수에 약 20 g의 리튬 폐기물이 10 ℃, 교반속도 500 rpm으로 결정화기내에서 용해하였다. 1 시간동안 교반시켜 리튬 폐기물이 완전히 용해된 수용액내에, 20 g의 수산화 칼슘을 투입하여 리튬 폐기물과 수산화 칼슘의 반응을 수행하였다. 이때, 반응물의 온도는 90 ℃로 유지되었으며 교반 속도는 500 rpm으로 조절되었다. 이후에 1 시간동안 반응시킨 후 침전된 탄산칼슘 결정을 여과시켜 제거하였다. 상기 제거된 탄산칼슘 침전물양은 약 26.09 g(실제 이론적인 탄산칼슘 양 : 27 g)이었다. 상기 여과 조작은 2회 반복하여 모액내에 존재하는 탄산칼슘의 침전물은 완전히 제거하였다. 이후에, 게이지 압력 6 cmmHg, 증발 속도 0.1 L/h로 상기 과정에서 얻어진 수산화 리튬 수용액을 증발시켜 회수하였 다.About 20 g of lithium waste was dissolved in 2 L distilled water in a crystallizer at 10 ° C. and a stirring speed of 500 rpm. After stirring for 1 hour, 20 g of calcium hydroxide was added to an aqueous solution in which lithium waste was completely dissolved, and reaction of lithium waste and calcium hydroxide was performed. At this time, the temperature of the reaction was maintained at 90 ℃ and the stirring speed was adjusted to 500 rpm. After reacting for 1 hour, precipitated calcium carbonate crystals were removed by filtration. The calcium carbonate precipitate removed was about 26.09 g (actual theoretical calcium carbonate amount: 27 g). The filtration operation was repeated twice to completely remove the precipitate of calcium carbonate present in the mother liquor. Thereafter, the lithium hydroxide aqueous solution obtained in the above process was recovered by evaporation at a gauge pressure of 6 cmmHg and an evaporation rate of 0.1 L / h.

도 6은 실시예 1로부터 얻어진 수산화 리튬 제일수화물의 X선 회절선과 수산화 리튬 1 수화물의 표준 시료와 비교하였다. 상기 X선 회절 곡선으로부터 얻어진 결정성 물질은 수산화 리튬 제일수화물이었으며 Ca2+의 함량은 0 ppm, 수율은 약 99%였다.6 was compared with an X-ray diffraction line of lithium hydroxide monohydrate obtained from Example 1 and a standard sample of lithium hydroxide monohydrate. The crystalline material obtained from the X-ray diffraction curve was lithium hydroxide monohydrate, the content of Ca 2+ was 0 ppm, and the yield was about 99%.

실시예 2Example 2

상기 실시예 1과 동일하게 실시하되, 반응온도를 95 ℃, 반응시간을 3 시간으로 하여 탄산칼슘 침전물과 수산화 리튬 수용액으로 분리 회수하였다.In the same manner as in Example 1, the reaction temperature was 95 ℃, the reaction time was 3 hours and recovered separately from the calcium carbonate precipitate and lithium hydroxide aqueous solution.

상기 탄산칼슘 침전물양은 약 32.1 g(실제 이론적인 탄산 칼슘 양 : 27 g)이었고, X선 회절 곡선으로부터 얻어진 결정성 물질은 수산화 리튬 제일수화물이었으며 Ca2+의 함량은 0.1 ppm, 수율은 약 79.6%였다.The calcium carbonate precipitate amount was about 32.1 g (actual theoretical calcium carbonate amount: 27 g), the crystalline material obtained from the X-ray diffraction curve was lithium hydroxide monohydrate, the content of Ca 2+ is 0.1 ppm, the yield is about 79.6% It was.

실시예 3Example 3

상기 실시예 1과 동일하게 실시하되, 반응온도를 95 ℃, 반응시간을 2 시간으로 하고, 증발속도를 0.36 L/h로 하여 탄산칼슘 침전물과 수산화 리튬 수용액으로 분리 회수하였다.In the same manner as in Example 1, the reaction temperature was 95 ℃, the reaction time was 2 hours, and the evaporation rate was 0.36 L / h and recovered separately from the calcium carbonate precipitate and lithium hydroxide aqueous solution.

상기 탄산칼슘 침전물양은 약 26.09 g(실제 이론적인 탄산 칼슘 양 : 27 g)이었고, X선 회절 곡선으로부터 얻어진 결정성 물질은 수산화 리튬 제일수화물이었 으며, Ca2+의 함량은 0 ppm, 수율은 약 78.5%였다.The calcium carbonate precipitate amount was about 26.09 g (actual theoretical calcium carbonate amount: 27 g), the crystalline material obtained from the X-ray diffraction curve was lithium hydroxide monohydrate, the content of Ca 2+ is 0 ppm, the yield is about 78.5%.

도 3은 리튬 폐기물과 수산화 칼슘의 반응 시간에 따른 수용액내 칼슘 이온의 함량 변화를 나타낸 그래프로, 반응 시간이 30 분을 경과했을 때 수용액 내에 결정으로 완전히 석출되지 않은 탄산 칼슘으로 인해 칼슘의 함량은 30 ppm이었으나 1 시간 경과 후 6 ppm, 2 시간 경과 후 2 ppm으로 점점 감소되었다. 반응 시간 3시간 경과되었을 때 수용액내에는 탄산 칼슘이 완전히 석출되며 수산화 리튬이 포함된 수용액이 얻어진다. Figure 3 is a graph showing the change in the content of calcium ions in the aqueous solution according to the reaction time of lithium waste and calcium hydroxide, the calcium content is not due to calcium carbonate not completely precipitated as a crystal in the aqueous solution after 30 minutes of reaction time It was 30 ppm but gradually decreased to 6 ppm after 1 hour and to 2 ppm after 2 hours. After 3 hours of reaction time, calcium carbonate is completely precipitated in the aqueous solution to obtain an aqueous solution containing lithium hydroxide.

도 4는 반응 시간을 달리해서 얻은 수산화 리튬 용액으로부터 수산화 리튬 제일수화물을 분리·회수하였을 때 결정내에 잔류된 칼슘 함량 변화를 나타낸 것으로, 반응 시간이 30분 경과되었을 때 수산화 리튬 결정내의 칼슘 함량은 10.6 ppm이며 1시간 경과되었을 때 0.29 ppm, 2시간 경과되었을 때 0.26 ppm, 3시간 경과되었을 때 결정내 칼슘농도는 0 ppm이었다. Figure 4 shows the change in calcium content remaining in the crystal when the lithium hydroxide monohydrate was separated and recovered from the lithium hydroxide solution obtained by varying the reaction time, the calcium content in the lithium hydroxide crystal is 10.6 when the reaction time has elapsed 30 minutes It was 0.29 ppm after 1 hour, 0.26 ppm after 2 hours, and calcium concentration in the crystal at 0 ppm after 3 hours.

실시예 4Example 4

상기 실시예 1과 동일하게 실시하되, 수산화 칼슘 대신에 수산화바륨, 수산화스트론튬 등을 사용하여 탄산칼슘 침전물과 수산화 리튬 수용액으로 분리 회수하였다.The same procedure as in Example 1 was carried out, and instead of calcium hydroxide, barium hydroxide, strontium hydroxide, and the like were separated and recovered as a calcium carbonate precipitate and a lithium hydroxide aqueous solution.

구 분division 탄산염 침전량 (g)Carbonate Precipitation (g) Ca2+ 함량 (ppm)Ca 2+ content (ppm) 수율 (%)Yield (%) 증발속도 (L/h)Evaporation Rate (L / h) 게이지 압력(cmHg)Gauge Pressure (cmHg) 반응시간 (h)Reaction time (h) 반응온도 (℃)Reaction temperature (℃) 수산화바륨Barium hydroxide 6.1 6.1 39 39 4141 0.1 0.1 6 6 1 One 90 90 수산화스트론튬Strontium hydroxide 39.92 39.92 1313 6363 0.10.1 66 1One 9090

실시예 5Example 5

상기 실시예 1과 동일하게 실시하되, 수산화 리튬 수용액의 반응 시간과 증발속도를 다음과 같이 달리하여 수산화 리튬 수용액으로 분리 회수하였다.In the same manner as in Example 1, the reaction time and evaporation rate of the lithium hydroxide aqueous solution was separated and recovered as a lithium hydroxide aqueous solution by varying as follows.

구 분division 증발속도 (L/h)Evaporation Rate (L / h) 게이지 압력 (cmHg)Gauge Pressure (cmHg) Ca2+ 함량 (ppm)Ca 2+ content (ppm) 수율 (%)Yield (%) 반응시간 (h)Reaction time (h) 1One 0.10.1 6 6 1.01.0 82.582.5 3 3 22 1.01.0 66 1.71.7 71.771.7 33

도 5는 증발 속도를 달리해서 얻은 수산화 리튬 1 수화물의 광학현미경 사진을 나타내고 있다. 증발 속도가 1 L/로 설정되었을 때 수산화 리튬 제일수화물결정의 장축이 매우 길어진 형태의 침상형 결정이 얻어졌으며 증발 속도가 0.1 L/h로 설정되었을 때는 균일한 입도 분포로서 직사각형태의 결정이 제조되었다. 상기 제조된 수산화 리튬 제일수화물의 평균 입경은 약 150 ㎛이었다. 5 shows optical micrographs of lithium hydroxide monohydrate obtained by varying evaporation rates. When the evaporation rate was set to 1 L /, needle-shaped crystals with a very long axis of lithium hydroxide monohydrate crystals were obtained. When the evaporation rate was set to 0.1 L / h, rectangular crystals were produced as a uniform particle size distribution. It became. The average particle diameter of the prepared lithium hydroxide monohydrate was about 150 μm.

실시예 6Example 6

증발 조작을 제외하고 상기 실시예 1과 동일하게 실시하였다. 침전된 탄산 칼슘을 여과한 뒤, 수용성 유기용매로서 메탄올이 질량비 1 : 10으로 상기 수산화 리튬 수용액에 가해졌다. 상기에서 얻어진 결정성 수산화리튬 제일수화물에서 Ca2+의 함량은 0.8 ppm, 수율은 약 57%였다.It carried out similarly to Example 1 except the evaporation operation. After the precipitated calcium carbonate was filtered, methanol was added to the aqueous lithium hydroxide solution at a mass ratio of 1:10 as a water-soluble organic solvent. The Ca 2+ content was 0.8 ppm and the yield was about 57% in the crystalline lithium hydroxide monohydrate obtained above.

실시예 7Example 7

증발 조작을 제외하고 상기 실시예 1과 동일하게 실시하였다. 침전된 탄산 칼슘을 여과한 뒤, 상기 수용액은 냉각 속도 10 K/min으로 -10 ℃까지 급냉되었다. 상기에서 얻어진 결정성 수산화리튬 제일수화물에서 Ca2+의 함량은 0.9 ppm, 수율은 약 72%였다.It carried out similarly to Example 1 except the evaporation operation. After filtration of precipitated calcium carbonate, the aqueous solution was quenched to −10 ° C. at a cooling rate of 10 K / min. In the crystalline lithium hydroxide monohydrate obtained above, the Ca 2+ content was 0.9 ppm and the yield was about 72%.

이상에서 상술한 바와 같이, 본 발명에 따른 탄산 리튬이 포함되어 있는 리튬 폐기물 수용액으로부터 수산화 리튬 제일수화물의 제조 방법은 종래 유기용매 사용, 고압 반응기 등의 특정의 장치 및 용매의 사용이나, 이산화탄소에 의한 분해 없이 간단하게 제조가 가능하여 흡수식 공기 조절기의 냉매 흡수제로서 급증되고 있는 브롬화 리튬, 제습 장치의 흡습제로 수요가 증가되고 있는 고가의 염화 리튬 등 리튬 화합물 및 리튬 2차 전지의 양극활 물질(cathode active compound)로서 이용되는 탄산 리튬의 제조 원료로서의 이용이 기대된다.As described above, the method for producing lithium hydroxide monohydrate from a lithium waste aqueous solution containing lithium carbonate according to the present invention is conventionally used by using a specific apparatus such as an organic solvent, a high pressure reactor, a solvent, or carbon dioxide. Lithium bromide, which is rapidly increasing as a refrigerant absorber for absorption type air conditioners, and expensive lithium chloride, which is increasing in demand as an absorbent for dehumidifiers, and cathode active materials for lithium secondary batteries. It is expected to be used as a raw material for producing lithium carbonate used as a compound.

Claims (7)

탄산 리튬이 포함된 리튬 폐기물 수용액과, 침전되는 탄산염의 용해도적(Ksp)이 10-10 ∼ 10-8 범위인 알칼리 수산화 화합물을 50 ∼ 100 ℃, 30 분 ∼ 7 시간동안 반응시켜, 탄산염 침전물과 수산화 리튬 수용액으로 분리하는 제1단계;A lithium carbonate aqueous solution containing lithium carbonate and an alkali hydroxide compound having a solubility value (K sp ) of precipitated carbonate in the range of 10 −10 to 10 −8 are reacted for 50 to 100 ° C. for 30 minutes to 7 hours to obtain a carbonate precipitate. A first step of separating into an aqueous lithium hydroxide solution; 상기 분리된 수산화 리튬 수용액을 0.5 ∼ 25 cmHg 게이지 압력(gauge pressure), 0.05 ∼ 5 L/h의 속도로 증발시키는 제2단계를 The second step of evaporating the separated aqueous lithium hydroxide solution at a rate of 0.5 to 25 cmHg gauge pressure, 0.05 to 5 L / h 포함하여 수산화 리튬 제일수화물을 제조하며, 상기 제조된 수산화 리튬 제일수화물은 Ca2+의 함량이 0 ∼ 1 ppm이고, 수율이 20 ∼ 99 %인 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법.A lithium hydroxide monohydrate is prepared, wherein the prepared lithium hydroxide monohydrate has a content of Ca 2+ of 0 to 1 ppm and a yield of 20 to 99%. 제 1 항에 있어서, 상기 수산화 리튬 수용액은 수용성 유기용매로 결정화하여 수산화 리튬 제일수화물 결정을 형성시키는 단계를 추가로 포함시키는 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법.The method of claim 1, wherein the lithium hydroxide aqueous solution further comprises the step of crystallizing with a water-soluble organic solvent to form lithium hydroxide monohydrate crystals. 제 2 항에 있어서, 상기 수용성 유기용매는 메탄올, 에탄올, 프로판올, 부탄올, 아세토니트릴, n-메틸피롤리돈, 테트라하이드로퓨란, 2-프로판올, 디옥산, 디 메틸설폭사이드, 디메틸포름아마이드 및 아세톤 중에서 선택된 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법.The method of claim 2, wherein the water-soluble organic solvent is methanol, ethanol, propanol, butanol, acetonitrile, n-methylpyrrolidone, tetrahydrofuran, 2-propanol, dioxane, dimethylsulfoxide, dimethylformamide and acetone Method for producing a high purity lithium hydroxide monohydrate, characterized in that selected from. 제 1 항에 있어서, 상기 수산화 리튬 수용액은 -10 ℃ ∼ 100 ℃ 범위로 냉각하여 수산화 리튬 제일수화물 결정을 형성시키는 단계를 추가로 포함시키는 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법.The method of claim 1, wherein the lithium hydroxide aqueous solution is further cooled to -10 ° C. to 100 ° C. to form lithium hydroxide monohydrate crystals. 제 1 항에 있어서, 상기 알칼리 수산화 화합물은 수산화칼슘, 수산화 스트론튬 및 수산화 바륨 중에서 선택된 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법.The method of claim 1, wherein the alkali hydroxide compound is selected from calcium hydroxide, strontium hydroxide and barium hydroxide. 제 1 항에 있어서, 상기 알칼리 수산화 화합물은 리튬폐기물내의 탄산이온에 1 몰에 대하여 1 ∼ 1.2 몰비로 사용되는 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법. The method for producing high purity lithium hydroxide monohydrate according to claim 1, wherein the alkali hydroxide compound is used in a ratio of 1 to 1.2 moles per 1 mole of carbonate ions in the lithium waste. 제 1 항에 있어서, 상기 수산화 리튬 제일수화물은 탄산 리튬, 할로겐화 리 튬, 질산 리튬 및 리튬 금속의 제조 원료로 사용되는 것을 특징으로 하는 고순도 수산화 리튬 제일수화물의 제조방법. The method of claim 1, wherein the lithium hydroxide monohydrate is used as a raw material for producing lithium carbonate, lithium halide, lithium nitrate, and lithium metal.
KR1020060035491A 2006-04-19 2006-04-19 Preparation of lithium hydroxide monohydrate from spent lithium carbonate KR100725589B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060035491A KR100725589B1 (en) 2006-04-19 2006-04-19 Preparation of lithium hydroxide monohydrate from spent lithium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060035491A KR100725589B1 (en) 2006-04-19 2006-04-19 Preparation of lithium hydroxide monohydrate from spent lithium carbonate

Publications (1)

Publication Number Publication Date
KR100725589B1 true KR100725589B1 (en) 2007-06-08

Family

ID=38358513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060035491A KR100725589B1 (en) 2006-04-19 2006-04-19 Preparation of lithium hydroxide monohydrate from spent lithium carbonate

Country Status (1)

Country Link
KR (1) KR100725589B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179505B1 (en) 2010-12-14 2012-09-07 서강대학교산학협력단 Preparation of Lithium Hydroxide Monohydrate from Lithium Carbonate
KR20150124421A (en) * 2015-10-12 2015-11-05 주식회사 엘지화학 Method for Recovering of Lithium Hydroxide from Spent Liquor from Manufacturing of Lithium Iron Phosphate
KR20160002578A (en) * 2014-06-30 2016-01-08 재단법인 포항산업과학연구원 Mehtod of preparing lithium hydroxide
CN106006675A (en) * 2016-05-12 2016-10-12 华陆工程科技有限责任公司 Method for preparing lithium hydroxide monohydrate by using lithium chloride solution as raw material
EP3215461A4 (en) * 2014-11-05 2018-07-11 Reed Advanced Materials Pty Ltd. Production of lithium hydroxide
KR101944518B1 (en) 2018-07-23 2019-02-01 한국지질자원연구원 Manufacturing method of high-concentration lithium solution from lithium carbonate
CN109987617A (en) * 2019-05-13 2019-07-09 中国科学院过程工程研究所 A method of shraff containing lithium prepares lithium hydroxide
CN111470520A (en) * 2020-05-20 2020-07-31 蜂巢能源科技有限公司 Method for treating waste lithium battery material
WO2021015378A1 (en) 2019-07-19 2021-01-28 전웅 Method for producing lithium hydroxide
KR102243820B1 (en) * 2020-03-05 2021-04-23 동우 화인켐 주식회사 Method of producing lithium hydroxide
CN112777615A (en) * 2021-01-28 2021-05-11 江西云威新材料有限公司 Preparation method of low-carbon battery-grade lithium hydroxide
WO2022080570A1 (en) * 2020-10-12 2022-04-21 전남대학교산학협력단 Method for producing lithium hydroxide by using lithium carbonate and barium hydroxide
KR20230065608A (en) * 2021-11-05 2023-05-12 전남대학교산학협력단 Method for producing Lithium hydroxide using Lithium carbonate and Barium compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939719A (en) 1982-08-27 1984-03-05 Kanto Koatsu Kagaku Kk Manufacture of high purity lithium carbonate
JPH1154159A (en) 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR20030093583A (en) * 2002-06-03 2003-12-11 한국지질자원연구원 Recovery Device and Method of Lithium Cobalt Oxide from Spent Lithium Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939719A (en) 1982-08-27 1984-03-05 Kanto Koatsu Kagaku Kk Manufacture of high purity lithium carbonate
JPH1154159A (en) 1997-06-04 1999-02-26 Japan Energy Corp Method to recover and reproduce cobalt, nickel or manganese and lithium from battery positive electrode scrap material and material for battery positive electrode
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR20030093583A (en) * 2002-06-03 2003-12-11 한국지질자원연구원 Recovery Device and Method of Lithium Cobalt Oxide from Spent Lithium Battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179505B1 (en) 2010-12-14 2012-09-07 서강대학교산학협력단 Preparation of Lithium Hydroxide Monohydrate from Lithium Carbonate
KR20160002578A (en) * 2014-06-30 2016-01-08 재단법인 포항산업과학연구원 Mehtod of preparing lithium hydroxide
KR101975468B1 (en) 2014-06-30 2019-05-07 재단법인 포항산업과학연구원 Mehtod of preparing lithium hydroxide
EP3215461A4 (en) * 2014-11-05 2018-07-11 Reed Advanced Materials Pty Ltd. Production of lithium hydroxide
KR20150124421A (en) * 2015-10-12 2015-11-05 주식회사 엘지화학 Method for Recovering of Lithium Hydroxide from Spent Liquor from Manufacturing of Lithium Iron Phosphate
KR101634752B1 (en) * 2015-10-12 2016-06-29 주식회사 엘지화학 Method for Recovering of Lithium Hydroxide from Spent Liquor from Manufacturing of Lithium Iron Phosphate
CN106006675A (en) * 2016-05-12 2016-10-12 华陆工程科技有限责任公司 Method for preparing lithium hydroxide monohydrate by using lithium chloride solution as raw material
KR101944518B1 (en) 2018-07-23 2019-02-01 한국지질자원연구원 Manufacturing method of high-concentration lithium solution from lithium carbonate
CN109987617A (en) * 2019-05-13 2019-07-09 中国科学院过程工程研究所 A method of shraff containing lithium prepares lithium hydroxide
WO2021015378A1 (en) 2019-07-19 2021-01-28 전웅 Method for producing lithium hydroxide
KR102243820B1 (en) * 2020-03-05 2021-04-23 동우 화인켐 주식회사 Method of producing lithium hydroxide
WO2021177537A1 (en) * 2020-03-05 2021-09-10 동우 화인켐 주식회사 Method for producing lithium hydroxide
CN115210182A (en) * 2020-03-05 2022-10-18 东友精细化工有限公司 Method for producing lithium hydroxide
JP2023510027A (en) * 2020-03-05 2023-03-10 東友ファインケム株式会社 Method for producing lithium hydroxide
JP7379724B2 (en) 2020-03-05 2023-11-14 東友ファインケム株式会社 Method for producing lithium hydroxide
CN111470520A (en) * 2020-05-20 2020-07-31 蜂巢能源科技有限公司 Method for treating waste lithium battery material
CN111470520B (en) * 2020-05-20 2023-08-18 蜂巢能源科技有限公司 Method for treating waste lithium battery material
WO2022080570A1 (en) * 2020-10-12 2022-04-21 전남대학교산학협력단 Method for producing lithium hydroxide by using lithium carbonate and barium hydroxide
CN112777615A (en) * 2021-01-28 2021-05-11 江西云威新材料有限公司 Preparation method of low-carbon battery-grade lithium hydroxide
KR20230065608A (en) * 2021-11-05 2023-05-12 전남대학교산학협력단 Method for producing Lithium hydroxide using Lithium carbonate and Barium compounds
KR102544969B1 (en) * 2021-11-05 2023-06-20 전남대학교산학협력단 Method for producing Lithium hydroxide using Lithium carbonate and Barium compounds

Similar Documents

Publication Publication Date Title
KR100725589B1 (en) Preparation of lithium hydroxide monohydrate from spent lithium carbonate
US6936229B1 (en) Recovery of lithium compounds from brines
US7214355B2 (en) Production of lithium compounds directly from lithium containing brines
US8057764B2 (en) Production of lithium compounds directly from lithium containing brines
US6921522B2 (en) Production of lithium compounds directly from lithium containing brines
US9988280B2 (en) Production of high purity lithium compounds directly from lithium containing brines
KR101873933B1 (en) Manufacturing method of lithium hydroxide using lithium carbonate
CN112875726B (en) Method for preparing sodium bicarbonate and calcium sulfate dihydrate by comprehensively utilizing sodium sulfate
JP6926010B2 (en) Method for producing lithium hydroxide
KR101179505B1 (en) Preparation of Lithium Hydroxide Monohydrate from Lithium Carbonate
CN113816427B (en) Crystallization process of ammonium paratungstate
KR101238890B1 (en) Production method of lithium carbonate from brines
JPH11310414A (en) Production of highly pure lithium carbonate
US4565612A (en) Process for reducing sulphate ion concentration in aqueous sodium hydroxide solutions
ES2662445T3 (en) Method to purify borazano
JP2006117487A (en) Platy strontium carbonate particle
JPH11310413A (en) Production of highly pure lithium carbonate
KR20240069281A (en) Method for obtaining Lithium phosphate and Lithium carbanate from Lithium solution of Low concentration
CN117105247A (en) Preparation method of lithium fluoride
JPH08295511A (en) Production of barium carbonate
JP2006117486A (en) Strontium hydroxide and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee