KR100700910B1 - Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan - Google Patents

Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan Download PDF

Info

Publication number
KR100700910B1
KR100700910B1 KR1020050111224A KR20050111224A KR100700910B1 KR 100700910 B1 KR100700910 B1 KR 100700910B1 KR 1020050111224 A KR1020050111224 A KR 1020050111224A KR 20050111224 A KR20050111224 A KR 20050111224A KR 100700910 B1 KR100700910 B1 KR 100700910B1
Authority
KR
South Korea
Prior art keywords
yeast
glucan
alkali
soluble
mutant
Prior art date
Application number
KR1020050111224A
Other languages
Korean (ko)
Inventor
장효일
하창훈
강창원
김승욱
백현동
윤철원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020050111224A priority Critical patent/KR100700910B1/en
Application granted granted Critical
Publication of KR100700910B1 publication Critical patent/KR100700910B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

A novel Saccharomyces cerevisiae mutant is provided to be able to produce alkali-soluble beta-glucan having immuno-activity with high yield, thereby being applied to various products having immuno-activity such as functional foods and cosmetics. The Saccharomyces cerevisiae mutant producing alkali-soluble beta-glucan is deposited in a Korean Culture Center of Microorganisms(KCCM) as a deposition number of KFCC-11359P. The method for preparing the Saccharomyces cerevisiae mutant comprises the steps of: (a) applying UV to yeast; (b) firstly screening the mutant yeast survived after the UV radiation; (c) after adding lyticase to the firstly screened yeast to cleave cell wall, performing the osmotical lysis using distilled water; and (d) secondly screening the lyticase resistant yeast survived after the lysis. The method for producing the alkali-soluble beta-glucan comprises the steps of: (a) culturing the Saccharomyces cerevisiae mutant KFCC-11359P; (b) treating the cultured mutant with NaOH to perform an alkali extraction; and (c) treating the product obtained from the step(b) with cetavlon and borate to selectively precipitate mannoprotein.

Description

알칼리-용해성 β-글루칸을 생산하는 효모 변이주{Saccharomyces cerevisiae mutant producing alkali-soluble β-glucan}Saccharomyces cerevisiae mutant producing alkali-soluble β-glucan

도 1은 야생형 JH와 변이주 JUL7의 현미경 사진(X1,000)이다.1 is a micrograph (X1,000) of wild type JH and mutant JUL7.

도 2는 야생형과 변이주의 Lyticase-저항성을 나타낸 그래프이다.2 is a graph showing Lyticase-resistance of wild type and mutant strains.

도 3은 Alkali-soluble 및 Water-solube β-glucan의 injection양에 따른 면역활성물질 Nitric Oxide (NO)의 활성도를 나타낸 그래프이다.3 is a graph showing the activity of the immunoactive substance Nitric Oxide (NO) according to the injection amount of Alkali-soluble and Water-solube β-glucan.

본 발명은 새로운 효모 변이주에 관한 것으로, 더욱 구체적으로 면역활성을 가진 알칼리-용해성 β-글루칸을 고수율로 생산하는 효모 변이주 및 이를 이용한 알칼리-용해성 β-글루칸의 제조방법에 관한 것이다.The present invention relates to a new yeast mutant strain, and more particularly to a yeast mutant strain for producing an alkali-soluble β-glucan having high immunological activity and a method for producing an alkali-soluble β-glucan using the same.

β-글루칸은 효모 세포벽의 가장 풍부한 다당류중 한가지로서 β-(1,3)- 또는 β-(1,6)-D-글라이코시딕 결합을 통해 연결된 글루코스의 호모폴리머로 존재한다 (Manners et al. 1973; Sentandreu et al. 1975). 효모(Saccharomyces cerevisiae)에서 세포벽은 β-(1,3)-D-글루칸, β-(1,6)-D-글루칸, 키틴 및 만노단백질를 함유한다. 상기 4가지 세포벽 구조 성분들은 모두 서로 이중결합으로 연결 되어 있다. 만노단백질은 약 100 kDa의 단백질 부분을 가지며 5개의 α-연결된 만노실 잔기를 함유하는 글리코실-포스파티딜-이노시톨(GPI) 앵커의 잔부를 통해 β-(1,6)-글루칸에 연결되어 있다 (Klis et al. 1997; Lu et al. 1995; Shahinian and Bussey 2000). β-(1,6)-글루칸의 환원 말단이 β-(1,3)-글루칸의 비환원 말단 글루코스에 연결된다. 만노단백질과 β-(1,6)-글루칸사이의 연결은 효모 세포벽을 조직하는데 중심적인 역할을 한다. 여기서, 키틴은 β-(1,6)-글루칸의 분지에 직접 부착된다 (Jamas et al. 1986; Kollar et al. 1997; Lipke and Ovalle 1998; Shahinian et al. 2000).β-glucan is one of the most abundant polysaccharides in the yeast cell wall and exists as a homopolymer of glucose linked via β- (1,3)-or β- (1,6) -D-glycosidic bonds (Manners et al. 1973; Sentandreu et al. 1975). In yeast ( Saccharomyces cerevisiae ) the cell wall contains β- (1,3) -D-glucan, β- (1,6) -D-glucan, chitin and mannoprotein. The four cell wall structural components are all connected to each other by a double bond. Mannoproteins are linked to β- (1,6) -glucan via the remainder of the glycosyl-phosphatidyl-inositol (GPI) anchor having a protein portion of about 100 kDa and containing five α-linked mannosyl residues ( Klis et al. 1997; Lu et al. 1995; Shahinian and Bussey 2000). The reducing end of β- (1,6) -glucan is linked to the non-reducing terminal glucose of β- (1,3) -glucan. The link between mannoproteins and β- (1,6) -glucans plays a central role in organizing yeast cell walls. Here, chitin is attached directly to the branch of β- (1,6) -glucan (Jamas et al. 1986; Kollar et al. 1997; Lipke and Ovalle 1998; Shahinian et al. 2000).

글루칸은 일반적으로 여러 분획으로 그룹화된다 (Jamas et al. 1986; Kuliche et al. 1997). 알칼리-용해성(alkali-soluble) 글루칸은 총 글루칸의 마이너 성분 [15-20% (w/w)]이다. 이 글루칸 분획은 3%의 β-(1,6)-연결을 함유하는 고분자량 (240,000-550,000)의 β-(1,3)-연결된 골격으로 구성되며, 세포벽의 구조적 완전성을 책임진다 (Jamas et al. 1986; Kiho et al. 1991; Shahinian et al. 2000).Glucans are generally grouped into several fractions (Jamas et al. 1986; Kuliche et al. 1997). Alkali-soluble glucans are the minor component [15-20% (w / w)] of total glucans. This glucan fraction consists of a high molecular weight (240,000-550,000) β- (1,3) -linked backbone containing 3% β- (1,6) -linkage and is responsible for the structural integrity of the cell wall (Jamas et al. 1986; Kiho et al. 1991; Shahinian et al. 2000).

최근에, 효모의 세포벽에서 분리된 β-글루칸에 대한 관심이 증가되고 있다. 이 화합물은 면역체계를 자극함으로써 면역보조제, 항암제 및 방사선방어제를 포함하는 다양한 생물학적 활성을 나타낸다 (Bohn and BeMiller 1995; Muller et al. 1996; Munzberg et al. 1995; Sakurai et al. 1996; Vetvicka et al. 1997). 알칼리-용해성 β-글루칸은 면역체계의 비특이적 조절자로서 작용한다 (Kiho et al. 1991; Kulicke et al. 1997; Mullet et al. 1996; Williams et al. 1992). Recently, there has been increasing interest in β-glucans isolated from the cell walls of yeast. This compound exhibits a variety of biological activities by stimulating the immune system, including adjuvant, anticancer and radioprotective agents (Bohn and BeMiller 1995; Muller et al. 1996; Munzberg et al. 1995; Sakurai et al. 1996; Vetvicka et al. 1997). Alkali-soluble β-glucans act as nonspecific regulators of the immune system (Kiho et al. 1991; Kulicke et al. 1997; Mullet et al. 1996; Williams et al. 1992).

이에, 본 발명자들은 면역활성을 갖는 알칼리-용해성 β-글루칸을 고수율을 생산하기 위해 예의 연구노력한 결과, 효모를 비특이적으로 돌연변이 시킨 후 세포벽 변이주를 스크린한 결과, 알칼리-용해성 β-글루칸을 고수율을 생산하는 돌연변이 효모를 제조할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made extensive efforts to produce high yields of alkali-soluble β-glucans having immunological activity, and screened cell wall mutants after non-specifically mutating yeast, resulting in high yields of alkali-soluble β-glucans. It was confirmed that the mutant yeast to produce can be produced, the present invention was completed.

따라서, 본 발명의 주된 목적은 알칼리-용해성(alkali-soluble) β-글루칸을 고수율로 생산하는 효모(Saccharomyces cerevisiae) 변이주을 제공하는 데 있다.Therefore, the main object of the present invention is to provide a yeast ( Saccharomyces cerevisiae ) mutant that produces a high yield of alkali-soluble β-glucan.

본 발명의 다른 목적은 상기 효모 변이주의 제조방법을 제공하는데 있다.Another object of the present invention to provide a method for producing the yeast mutant strain.

본 발명의 또 다른 목적은 상기 효모 변이주를 이용하여 알칼리-용해성(alkali-soluble) β-글루칸을 제조하는 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for preparing an alkali-soluble β-glucan using the yeast mutant strain.

본 발명의 한 양태에 따르면, 본 발명은 알칼리-용해성(alkali-soluble) β-글루칸을 생산하는 효모(Saccharomyces cerevisiae) 변이주 KFCC-11359P을 제공한다.According to one aspect of the invention, the invention provides a yeast ( Saccharomyces cerevisiae ) mutant KFCC-11359P, which produces an alkali-soluble β-glucan.

본 발명의 다른 양태에 따르면, 본 발명은 효모에 자외선(UV)을 조사하는 단계, 상기 자외선 조사에서 살아남은 돌연변이 효모를 1차 스크린하는 단계, 상기 1차 스크린된 효모에 라이티케이즈(Lyticase)를 첨가하여 세포벽 절단 반응을 한후 증류수로 삼투압 세포용해(osmotical lysis)를 시키는 단계; 상기 세포용해에서 살아남은 라이케이즈 저항성 효모를 2차 스크린하는 단계를 포함하는 상기 본 발명의 효모 변이주 KFCC-11359P를 제조하는 방법을 제공한다.According to another aspect of the present invention, the present invention comprises the steps of irradiating ultraviolet (UV) to the yeast, primary screening the mutant yeast surviving the ultraviolet irradiation, Lyticase (Lyticase) to the primary screened yeast Osmotic lysis with distilled water after cell wall cleavage reaction by addition; It provides a method for producing the yeast mutant strain KFCC-11359P of the present invention comprising the step of secondary screening the yeast-resistant yeast surviving the lysis.

본 발명의 다른 양태에 따르면, 본 발명은 상기 본 발명의 효모 변이주 KFCC-11359P를 배양한 후 종래 알려진 β-글루칸의 정제방법을 이용하여 알칼리-용해성(alkali-soluble) β-글루칸의 제조방법을 제공하며, 바람직하게는 본 발명은 상기 본 발명의 효모 변이주 KFCC-11359P를 배양하는 단계; 상기 배양된 효모에 수산화나트륨(NaOH)를 처리하여 알칼리 추출하는 단계; 및, 세타블론(cetavlon)과 붕산염(borate)을 처리하여 만노단백질을 선택적으로 침전시키는 단계를 포함하는 알칼리-용해성(alkali-soluble) β-글루칸의 제조방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for producing an alkali-soluble β-glucan using a known method of purifying β-glucan after culturing the yeast strain KFCC-11359P of the present invention. To provide, preferably the present invention comprises the steps of culturing the yeast mutant strain KFCC-11359P of the present invention; Alkali extraction by treating the cultured yeast with sodium hydroxide (NaOH); And it provides a method for producing an alkali-soluble β-glucan comprising the step of selectively precipitate the mannoprotein by treating the cetavlon (cetavlon) and borate (borate).

본hrxk 발명의 알칼리-용해성(alkali-soluble) β-글루칸의 제조방법에 있어서, 더욱 바람직하게는 콘카나발린(concanavalin)-A 크로마토그래피에 의해 세타블론(cetavlon)에 의해 제거되지 못한 나머지 만노단백질을 완전히 제거하는 단계를 더 포함하는 것을 특징으로 한다.In the method for producing the alkali-soluble β-glucan of the hrxk invention, more preferably, the remaining mannose protein that has not been removed by cetavlon by concanavalin-A chromatography. It characterized in that it further comprises the step of completely removing.

이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 Saccaromyces cerevisiae를 비특이적으로 돌연변이시킨 후 세포벽 변이주를 screening하기 위하여 효모 세포벽내의 β-1,3-glucan을 특이적으로 잘라주어 일반 효모세포는 세포용해(lysis)가 일어나 죽게 만드는 lyticase라는 효소를 이용하여 세포벽내의 변이주 JUL7을 찾았다. 상기 효모 변이주 JUL7은 야생형(wild type)보다 알칼리-용해성 글루칸을 1.72배의 고효율로 생산할 수 있다. 본 발명자들은 상기 본 발명의 효모 변이주 JUL7을 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2005. 11. 18일자로 수탁번호 KFCC-11359P로 기탁하였다.The present inventors specifically cleave β-1,3-glucan in the yeast cell wall to screen cell wall mutants after nonspecific mutation of Saccaromyces cerevisiae , so that the general yeast cells use an enzyme called lyticase that causes cell lysis to die. The mutant strain JUL7 in the cell wall was found. The yeast mutant JUL7 can produce an alkali-soluble glucan 1.72 times higher than the wild type. The present inventors have deposited the yeast strain JUL7 of the present invention to the Korean Culture Center of Microorganisms (KCCM) on November 18, 2005 with accession number KFCC-11359P.

상기 효모 변이주 KFCC-11359P의 균학적 성질은 형태학적으로 현미경 관찰결과 타원형의 모양과 길이 2 내지 5 ㎛의 크기를 가졌으며, 포자 형성능이 있으며, 증식 형태는 출아이며, 생화학적으로 당 발효를 하며, 야생형보다 높은 글루칸 함량을 가지며, 야생형보다 100배 높은 세포벽 분해효소 저항성을 가지며, 야생형보다 높은 세포벽 입자의 점도를 가졌다.The bacteriological properties of the yeast mutant strain KFCC-11359P had a morphologically microscopic observation and had an oval shape and a size of 2 to 5 μm in length, had a sporulation ability, a proliferative form of germination, and biochemical sugar fermentation. , Had higher glucan content than wild type, had 100 times higher cell wall degrading enzyme resistance than wild type, and had higher viscosity of cell wall particles than wild type.

효모로 부터 β-글루칸의 정제는 광범위하게 연구되고 있으며 다양한 방법이 알려지고 있다. 이 방법들의 대부분은 알칼리 또는 유기 용매에서 β(1-3)-글루칸의 불용해성에 기인한다. 주요 알려진 방법은 다음과 같다:Purification of β-glucan from yeast has been extensively studied and various methods are known. Most of these methods are due to the insolubility of β (1-3) -glucan in alkali or organic solvents. The main known methods are:

(a) 산을 함유한 고온 추출물과 에탄올을 함유한 침전물에 의하여 얻어진 농축 수산화나트륨을 함유한 고온 추출물 (Manners, D.J. et al., Biochem. J. 135 19-30(1973), 미국특허 제4810646호, 제5028703호 및 제5250436호).(a) hot extracts containing concentrated sodium hydroxide obtained by hot extracts containing acids and precipitates containing ethanol (Manners, DJ et al., Biochem. J. 135 19-30 (1973), U.S. Patent No. 4810646 No. 5028703 and 5250436).

(b) 고온 산 추출물과 글루칸을 변형시키거나 정제시키기 위한 효소제에 의하여 얻어진 농축 수산화나트륨을 함유한 추출물 (체코 특허출원 제890038호 '아밀라제 작용을 하는 효소를 함유한 제재에 의해 얻어진 알칼리-산 추출물에 의한 β-D-글루칸의 정제')(b) Hot acid extracts and extracts containing concentrated sodium hydroxide obtained by enzymes for modifying or purifying glucans (Czech Patent Application No. 890038 'Alkali-acid extracts obtained by preparations containing enzymes that act as amylases) Purification of β-D-Glucan by

(c) 자가분해 또는 농축된 페놀을 물과 1대1의 비율로 희석하여 효모의 효소 기능 퇴화의 결과로 생성된 효모 세포벽 제의 추출물 (미국 특허 제4138479호)(c) Yeast cell wall extract produced as a result of degrading enzyme function of yeast by diluting autolyzed or concentrated phenol in a ratio of 1: 1 with water (US Pat. No. 4138479).

(d) 아이소프로파올, 에탄올, 아세톤과 같은 유기 용매 또는 단독 메탄올 또는 알칼리를 첨가한 메탄올을 함유한 추출물 (일본 특허공고 제7051081호, 6340701호, 5295003호, 3002202호)(d) Extracts containing organic solvents such as isopropaol, ethanol, acetone or methanol added with sole methanol or alkali (Japanese Patent Publication Nos. 7051081, 6340701, 5295003, 3002202)

β-글루칸을 분리하는 현행법은 일반적으로 다단계 알칼리-산 추출 과정을 사용한다 (Manners, D.J., et al., J. Gen. Micro. 80 411-417 (1974)). 알칼리 추출 단계는 대부분의 비결정성 만노단백질과 글루칸 제재를 제거하고, 그 이후의 산 추출 단계는 원섬유 우세하게 β(1-3)에 결합된 글루칸으로부터 글리코겐과 대부분의 β(1-6)-곁가지들을 제거한다. 최후 용매 추출 단계는 때때로 지질을 제거하곤 한다.Current methods of isolating β-glucans generally use a multistage alkali-acid extraction process (Manners, D. J., et al., J. Gen. Micro. 80 411-417 (1974)). The alkaline extraction step removes most of the amorphous mannoprotein and glucan preparation, and the subsequent acid extraction step comprises glycogen and most of the β (1-6)-from glucans that are predominantly fibrillar bound to β (1-3). Remove the side branches. The final solvent extraction step sometimes removes lipids.

본 발명의에 따라 제조된 β-글루칸은 다양한 기능을 가지고 있는데 이를 살펴보면, β-글루칸은 마크로파지 세포의 면역성을 증진시겨 병원균의 공격을 방지하는 기능을 가지며, 최근에는 항종양 작용에 대한 연구가 보고되고 있다. β-글루칸은 마크로파지 세포의 사이토시스 기능을 활성화시키는 것 이외에도 β-글루칸은 다른 면역 시스템의 기능을 증가시키는 기능을 가지고 있다. β-글루칸은 혈청의 보충, 시스템의 리소자임 효과, 골수의 분열과 증식, 시토톡식 T 세포의 분열을 포함한 일반적인 주 내성 작용을 유발한다. 또한 B 림포시트로부터 분열되는 플라스마 세포의 항체 분비도 유발한다. 모든 면역 작용은 인터루킨-1(IL-1)과 인터루킨-2 (IL-2)이라는 두 개의 시토킨과 함께 연결되어있습니다. 1987년 튤란 대학의 의대에서는 쥐에대한 실험에서 β-글루칸이 이들 두 시토킨의 분비를 유발시켰으며 투여 후 12일간 방어기능이 증가된다는 것을 발견하였다. Β-glucan prepared according to the present invention has various functions. Looking at this, β-glucan has the function of preventing the attack of pathogens by enhancing the immunity of macrophage cells, and recently, studies on anti-tumor activity Is being reported. In addition to activating the cytostatic function of macrophage cells, β-glucan has the function of increasing the function of other immune systems. β-glucans cause common main resistance actions, including serum supplementation, lysozyme effects in the system, division and proliferation of bone marrow, and division of cytotoxin T cells. It also induces antibody secretion of plasma cells that divide from B lymphocytes. All immune actions are linked with two cytokines called interleukin-1 (IL-1) and interleukin-2 (IL-2). In 1987, Tulan University School of Medicine found that β-glucan induced the release of these two cytokines in rats and increased their protective function for 12 days after administration.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의 해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 선택균주 및 사용배지 (strains & media)Example 1: Selected strains and medium (strains & media)

효모(Saccaromyces cerevisiae)에서 mate type을 a만 분리한 JH (Hansen1883, Mat a/Mat α)(KCCM 11201)를 표준균주로 사용했고, JH를 돌연변이(mutation) 시킨 돌연변이체(mutant) JUL7를 함께 병행 실험하였다. 생육온도는 30℃로 하고 YPD 배지 ( yeast extract 2%, bactopeptone 4% adenine solution(×100) 2%, uracilsolution(×100) 2%,glucose8%)에서 배양하였다.In the yeast Saccaromyces cerevisiae , JH (Hansen1883, Mat a / Mat α) (KCCM 11201), which isolated only mate type a, was used as a standard strain, and mutant JUL7 which mutated JH was used together. Experiment. The growth temperature was 30 ℃ and incubated in YPD medium (yeast extract 2%, bactopeptone 4% adenine solution (× 100) 2%, uracilsolution (× 100) 2%, glucose 8%).

실시예 2: 비특이적 돌연변이 (random mutation)Example 2: random mutation

EMS(ethylmethane sulfonate)는 DNA의 대부분의 G-C sites에서 염기전위(transition)를 일으키고, UV는 EMS에 비해 넓은 범위의 염기치환(substitutions)을 얻을 수 있고 pyrimidine 특히 T-T pairs에서 염기전위(transitions)와 염기치환(transversions) 모두 일으킨다. 본 발명의 고수율 변이주를 얻기 위해 아래 받은 2가지 돌연변이 방법을 선택적으로 사용하였다.Ethylene sulfonate (EMS) causes base transitions at most GC sites in DNA, and UV can obtain a wider range of base substitutions than EMS and bases and bases in pyrimidine, especially TT pairs. It causes both translations. The two mutation methods received below were optionally used to obtain the high yield mutants of the invention.

1) UV를 이용한 돌연변이 (UV mutagenesis)1) UV mutagenesis

12시간동안 YPD 배지 ( 10 ml )에서 1×108 cells / ml 까지 배양한 뒤 각각의 plate에 200 ㎕씩 도말 한 뒤, plate lids를 열은 채로 30분간 UV 조사(irradiation)를 한다. UV 조사 후 약 24시간이상 어두운 곳에서 배양을 했다. UV 조사에 의한 효모의 치사율(lethal rate)은 조사시간에 따라 변하지만 50 J/m2 의 fluence정도로 조사하면 대략 70-90%의 세포가 죽었다.After incubation for 12 hours in YPD medium (10 ml) to 1 × 108 cells / ml, 200 μl each plate, and UV irradiation (irradiation) for 30 minutes with the plate lids open. After UV irradiation, the cells were incubated for about 24 hours in a dark place. The lethal rate of yeast by UV irradiation varies with the irradiation time, but approximately 70-90% of the cells were killed when exposed to fluence of 50 J / m2.

2) EMS를 이용한 돌연변이 (EMS(ethylmethane sulfonate) mutagenesis)2) Mutation using EMS (ethylmethane sulfonate) mutagenesis

Yeast를 YPD medium(4ml) 12시간동안 3*107 cells/ml까지 배양한 뒤 tube에 500㎕씩 담고 pH 7.0, 50mM potassium phosphate buffer 125㎕로 2번 씻어준다. 이것을 potassium phosphate buffer 500㎕에 resuspend 시키고 여기에 EMS 30㎕를 첨가하고 30℃에서 30분동안 반응시켰다. Mutagenesis를 멈추기위하여 같은 양의 (500㎕)sodium thiosulfonate (10%)를 첨가한 뒤 잘 섞는다. 10000 rpm에서 5분간 원심분리를 한 뒤 sterile water로 두번 씻어주고 도말 후 30℃에서 48시간이상 배양했다. (치사율 : 약 60 - 90%)Incubate yeast in YPD medium (4ml) for 12 hours to 3 * 10 7 cells / ml, and then wash 500µl in tubes and wash twice with pH 7.0 and 125µl of 50mM potassium phosphate buffer. This was resuspended in 500 µl of potassium phosphate buffer, and 30 µl of EMS was added thereto and reacted at 30 ° C for 30 minutes. To stop mutagenesis, add the same amount (500 µl) sodium thiosulfonate (10%) and mix well. After centrifugation for 5 minutes at 10000 rpm, washed twice with sterile water and incubated at 30 ℃ for more than 48 hours. (Catility rate: about 60-90%)

실시예 3: Lyticase (세포벽절단효소) 저항성 균주 (세포벽 변이주) 검색Example 3 Screening of Lyticase Resistant Strains (Cell Wall Mutant)

상기 실시예 2에서 살아남은 돌연변이 Yeast를 YPD medium(10ml) 대수기 초기까지 배양한 뒤 원심분리를 하여 세포를 침전 시킨 후, 0.1M phosphate buffer,pH7.0로 두 번 세척한다.solutionⅠ[ 0.1M phosphate buffer; 0.01M EDTA; 1% v/v 2-mercaptoethanol]100㎕에 resuspension 시킨 후 30℃에서 30분 동안 반응시킨 후 원심분리 한다. 이것을 solutionⅡ[1M sorbitol; 0.01M EDTA; 0.01M phosphate buffer] 100μl에 lyticase 300㎍을 넣고 37℃에서 30분동안 반응시킨 후 1M sorbitol로 3번 세척했다. 증류수로 삼투압 세포용해(osmotical lysis)를 시켜준 후 30℃에서 24시간 배양한다. 배양 후 wild type보다 높은 생존률을 보이는 균주를 Lyticase-resistant strain으로 선별했다. 이들 중 생존률이 가장 높은 UV 돌연변이에서 유래된 JUL7를 alkali-soluble β-glucan 고생산성 효모로 추정하고 실험하였다. 도 1은 야생형 JH와 변이주 JUL7의 현미경 사진(X1,000)이다.(Bar 5 ㎛) After culturing the mutant Yeast surviving in Example 2 to the beginning of the YPD medium (10ml) log phase, the cells were precipitated by centrifugation and washed twice with 0.1M phosphate buffer, pH 7.0. Solution I [0.1M phosphate buffer; 0.01 M EDTA; After resuspension in 100 μl of 1% v / v 2-mercaptoethanol], the mixture was reacted at 30 ° C. for 30 minutes and centrifuged. This was accomplished by solution II [1M sorbitol; 0.01 M EDTA; 0.01 M phosphate buffer] was added to 300 μl of lyticase and reacted at 37 ° C. for 30 minutes, followed by 3 times washing with 1 M sorbitol. After osmotic lysis with distilled water, the cells are incubated at 30 ° C for 24 hours. After incubation, strains showing higher survival rates than the wild type were selected as Lyticase-resistant strains. Among them, JUL7 derived from UV mutants with the highest survival rate was estimated and tested as alkali-soluble β-glucan high productivity yeast. 1 is a micrograph (X1,000) of wild type JH and mutant strain JUL7 (Bar 5 μm).

UV mutagenesis는 무작위로 유전자를 돌연변이시켜 세포를 죽게한다. 이렇게 random mutation된 효모 중 살아남은 것은 일차로 screening한 후 세포벽 분해효소인 lyticase를 이용하여 이들 중 세포벽에 돌연변이가 된것들만 이차로 screening하였다. lyticase 를 효모가 자라는 media에 넣어주면 wild type은 세포벽내 matrix가 분해되어 99.9% 죽으나 세포벽 내 glucan의 결합이나 그들의 조성변화가 일어나면 사멸율이 크게 낮아지게 되는 것을 이용한 것이다. JH로부터 분리된 돌연변이체중 JUL7는 morphology는 현미경상 큰 차이는 보이지 않았고 survival rate가 400배 까지 올라갔다 (도 2). 따라서 이들을 실험 대상체로 선별하였다.UV mutagenesis randomly mutates genes, causing cells to die. Survival of the random mutated yeast was screened first, and only screened secondary to those mutated in the cell wall using lyticase, a cell wall degrading enzyme. When the lyticase is put in the yeast growing media, the wild type is 99.9% killed by the degradation of the matrix in the cell wall, but the death rate is greatly reduced when glucan binding or changes in their composition occur in the cell wall. Among the mutants isolated from JH, JUL7 showed no significant difference in morphology and the survival rate increased up to 400 times (Fig. 2). Therefore, they were selected as experimental subjects.

실시예 4: 알칼리-용해성 β-glucan의 추출Example 4 Extraction of Alkali-Soluble β-glucan

1) 알칼리 추출(Alkali extraction)1) Alkali extraction

1g의 Yest 세포를 세척후 20ml의 5%(w/v) NaOH에 현탁하고 90℃에 8시간동안 가열하였다. 펠렛을 20ml의 3%(w/v) NaOH에 현탁한 다음 다시 90℃에 5시간동안 가열하였다. 현탁액을 원심분리후 상층액을 전자와 결합하였다. 알칼리 추출물은 2M 아세트산으로 중화하고 0.3M의 아세트산나트륨을 함유하는 3배 부피의 EtOH로 침전시켰다.1 g of Yest cells were washed and then suspended in 20 ml of 5% (w / v) NaOH and heated to 90 ° C. for 8 hours. The pellet was suspended in 20 ml of 3% (w / v) NaOH and then heated at 90 ° C. for 5 hours. The suspension was centrifuged and the supernatant combined with the former. The alkaline extract was neutralized with 2M acetic acid and precipitated with three volumes of EtOH containing 0.3M sodium acetate.

2) 세타블론 추출(Cetavlon extraction)2) Cetavlon extraction

만노단백질을 제거하기 위해 Cetavlon 방법(Jozef et al. 1999; Lloyd et al. 1971)을 사용하였다. 1g의 알칼리 추출물을 증류수에 녹이고 멸균수에 대해 투석하였다. β-glucan으로부터 만노단백질을 분리하기 위해, 10ml의 Cetavlon 용액 (5ml의 물에 용해된 1g의 헥사데실 트리메틸 암모니움 브로마이드)을 알칼리 추출물과 5분간 혼합하였다. 혼합물을 하룻밤 실온에서 방치한 후, 원심분리하여 침전물을 제거하였다. 그러나 만노단백질이 용액에 남아있기 때문에 만노단백질을 침전시키기 위해, 20ml의 1%(w/v) 붕산 용액을 상층액에 첨가하고 2M NaOH로 pH를 8.8로 맞춘후 하룻밤 실온에서 방치항 후, 현탁액을 1%(w/v) 아세트산나트륨을 함유하는 3배 부피의 EtOH로 침전시켰다.The Cetavlon method (Jozef et al. 1999; Lloyd et al. 1971) was used to remove mannoproteins. 1 g of alkaline extract was dissolved in distilled water and dialyzed against sterile water. To separate mannoproteins from β-glucan, 10 ml of Cetavlon solution (1 g of hexadecyl trimethyl ammonium bromide dissolved in 5 ml of water) was mixed with alkaline extract for 5 minutes. The mixture was left at room temperature overnight and then centrifuged to remove the precipitate. However, in order to precipitate the mannoprotein, because the mannoprotein remains in the solution, 20 ml of 1% (w / v) boric acid solution was added to the supernatant, the pH was adjusted to 8.8 with 2M NaOH, and then left at room temperature overnight, followed by Was precipitated with three volumes of EtOH containing 1% (w / v) sodium acetate.

3) 콘카나발린-A 크로마토그래피(Concanavalin-A chromatography)3) Concanavalin-A chromatography

상기 추출물에 아직도 남아있는 만난 또는 만노단백질을 제거하기 위해, 렉틴(lectins)의 결합 특성을 이용하였다. Concanavalin-A (Con A)는 α-D-글루코실 및 α-D-만노실 잔기에는 결합하지만, β-D-글루코실 기에는 친화성이 없다(Roman et al. 1997). 20ml의 Con A-Sepharose 4B 겔을 폴리프로필렌 컬럼 (Bio-Rad Laboratories)에 충진한 후 200ml의 세척 버퍼(20mM Tris-HCl, pH7.4; 0.5M NaCl; 1mM MnCl2, MgCl2, CaCl2)로 평형화하였다. 상기 추출물(β-글루칸과 만노단백질의 혼합물)을 적용한 후 β-글루칸이 빠져나올때까지 2-3배 베드 부피의 세척 버퍼로 용출시켰다. 용출된 β-글루칸은 멸균수에 대해 투석하고 동결건조되었다. 알칼리- 및 수-용해성 β-글루칸은 원심분리에 의해 수-불용성 분획으로부터 분리되었다.The binding properties of lectins were used to remove mannan or mannoprotein still remaining in the extract. Concanavalin-A (Con A) binds to α-D-glucosyl and α-D-mannosyl residues but has no affinity for β-D-glucosyl groups (Roman et al. 1997). 20 ml of Con A-Sepharose 4B gel was charged to a polypropylene column (Bio-Rad Laboratories) and then equilibrated with 200 ml of wash buffer (20 mM Tris-HCl, pH 7.4; 0.5 M NaCl; 1 mM MnCl 2, MgCl 2, CaCl 2). . After applying the extract (a mixture of β-glucan and mannoprotein), the solution was eluted with a washing buffer of 2-3 times the volume of β-glucan until it was released. Eluted β-glucan was dialyzed against sterile water and lyophilized. Alkali- and water-soluble β-glucans were separated from the water-insoluble fraction by centrifugation.

실시예 5: 돌연변이체 JUL7에서 Alkali-soluble β-glucan의 수율Example 5 Yield of Alkali-soluble β-glucan in Mutant JUL7

표 1 에서 JH (wild type)과 JUL7 (mutant)의 수율을 나타내었다. HPLC와 가스 크로마토그래피로 Alkali-soluble β-glucan의 수율을 측정한 결과 JUL7에서 Alkali-soluble β-glucan의 양이 wild type보다 1.72배의 고효율로 나타났다. 특히 Alkali-soluble β-glucan 중 water에 수용성을 가지는 fraction을 다시 Affinity chromatography를 이용하여 분리하였다. 이들 분획은 물에 수용성을 가져 기능성 식품이나 화장품 원료로 사용하는데 용이하다. Alkali-soluble and water-soluble β-glucan은 JUL7에서 7.27배의 효율을 나타냈다.Table 1 shows the yield of JH (wild type) and JUL7 (mutant). As a result of measuring the yield of Alkali-soluble β-glucan by HPLC and gas chromatography, the amount of Alkali-soluble β-glucan was 1.72 times higher than that of wild type in JUL7. In particular, fractions having water solubility in Alkali-soluble β-glucan were separated again using affinity chromatography. These fractions have water solubility and are easy to use as functional food or cosmetic raw materials. Alkali-soluble and water-soluble β-glucan were 7.27 times more efficient in JUL7.

[표 1] JH와 돌연변이체 JUL7의 Alkali-soluble β-glucan의 수율TABLE 1 Yield of Alkali-soluble β-glucan of JH and mutant JUL7

JH (Wild Type)JH (Wild Type) JUL7 (Mutant)JUL7 (Mutant) Alkali-soluble β-glucanAlkali-soluble β-glucan Alkali-soluble and Water-soluble β-glucanAlkali-soluble and Water-soluble β-glucan Alkali-soluble β-glucanAlkali-soluble β-glucan Alkali-soluble and Water-soluble β-glucanAlkali-soluble and Water-soluble β-glucan Yield (mg/g of cell dry mass)Yield (mg / g of cell dry mass) 80.580.5 3.63.6 138.2138.2 26.226.2

실시예 6: β-glucan의 면역활성 실험Example 6: Immune Activity Experiment of β-glucan

상기에서 분리된 β-glucan의 면역활성을 실험하기 위해, 0, 10, 20, 50, 100, 200 μg의 glucan을 각각 RAW 264.7 (Murine Macrophage, 1×106cells/each well)에 처리하고 21시간동안 세포배양한 후 세포로부터 나온 NO의 양을 측정하였다. 도 3은 Alkali-soluble 및 Water-solube β-glucan의 injection양에 따른 면역활성물질 Nitric Oxide (NO)의 활성도를 나타낸 그래프이다. wild type JH와 돌연변이체 JUL7에서 모두 면역활성이 나타났고 돌연변이체 JUL7의 면역활성도가 100 μg에서 JH보다 1.6배 높게 나타났다.To test the immunological activity of the isolated β-glucan, 0, 10, 20, 50, 100 and 200 μg of glucan were treated in RAW 264.7 (Murine Macrophage, 1 × 10 6 cells / each well), respectively. After cell culture for a time, the amount of NO released from the cells was measured. 3 is a graph showing the activity of the immunoactive substance Nitric Oxide (NO) according to the injection amount of Alkali-soluble and Water-solube β-glucan. Both wild type JH and mutant JUL7 showed immunological activity, and the mutant JUL7 showed 100-fold higher immunological activity than JH at 100 μg.

이상 설명한 바와 같이, 본 발명에 따르면, 고수율의 alkali-soluble β- glucan의 인간 면역 체계의 활성화를 통하여 전반적인 항암효과를 볼 수 있으며, 안전한 효모로부터 생산된 alkali- soluble β-glucan을 이용하여 면역활성을 띤 다양한 제품, 예컨대 기능성 식품 및 화장품 개발을 개발할 수 있을 것이다.As described above, according to the present invention, the overall anticancer effect can be seen through activation of the human immune system of high yield alkali-soluble β-glucan, and immunization using alkali-soluble β-glucan produced from safe yeast Development of a variety of active products such as functional foods and cosmetics may be developed.

Claims (4)

알칼리-용해성(alkali-soluble) β-글루칸을 생산하는 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 수탁번호 KFCC-11359P로 기탁된 효모(Saccharomyces cerevisiae) 변이주 KFCC-11359P. Saccharomyces cerevisiae strain deposited with the accession no. KFCC-11359P to the Korean Culture Center of Microorganisms (KCCM) producing alkali-soluble β-glucan KFCC-11359P. 효모에 자외선(UV)을 조사하는 단계, 상기 자외선 조사에서 살아남은 돌연변이 효모를 1차 스크린하는 단계, 상기 1차 스크린된 효모에 라이티케이즈(Lyticase)를 첨가하여 세포벽 절단 반응을 한후 증류수로 삼투압 세포용해(osmotical lysis)를 시키는 단계; 상기 세포용해에서 살아남은 라이케이즈 저항성 효모를 2차 스크린하는 단계를 포함하는 제1항에 따른 효모 변이주 KFCC-11359P를 제조하는 방법.Irradiating ultraviolet light (UV) to the yeast, first screening the mutant yeast surviving the ultraviolet light irradiation, adding Lyticase to the first screened yeast and performing a cell wall cleavage reaction followed by osmotic cells with distilled water. Osmotical lysis; A method for preparing a yeast strain KFCC-11359P according to claim 1, comprising the step of secondary screening the yeast-resistant yeast surviving the lysis. 제1항에 따른 효모 변이주 KFCC-11359P를 배양하는 단계; 상기 배양된 효모에 수산화나트륨(NaOH)를 처리하여 알칼리 추출하는 단계; 및, 세타블론(cetavlon)과 붕산염(borate)을 처리하여 만노단백질을 선택적으로 침전시키는 단계를 포함하는 알칼리-용해성(alkali-soluble) β-글루칸의 제조방법.Culturing the yeast mutant strain KFCC-11359P according to claim 1; Alkali extraction by treating the cultured yeast with sodium hydroxide (NaOH); And, treating cetavlon and borate to selectively precipitate the mannoprotein. 12. A method for producing an alkali-soluble β-glucan, comprising: 제 3항에 있어서, 콘카나발린(concanavalin)-A 크로마토그래피에 의해 나머지 만노단백질을 제거하는 단계를 더 포함하는 것을 특징으로 하는 알칼리-용해성(alkali-soluble) β-글루칸의 제조방법.4. The method of claim 3, further comprising the step of removing the remaining mannoprotein by concanavalin-A chromatography.
KR1020050111224A 2005-11-21 2005-11-21 Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan KR100700910B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050111224A KR100700910B1 (en) 2005-11-21 2005-11-21 Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050111224A KR100700910B1 (en) 2005-11-21 2005-11-21 Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan

Publications (1)

Publication Number Publication Date
KR100700910B1 true KR100700910B1 (en) 2007-03-28

Family

ID=41564997

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050111224A KR100700910B1 (en) 2005-11-21 2005-11-21 Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan

Country Status (1)

Country Link
KR (1) KR100700910B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240146A3 (en) * 2022-06-08 2024-01-18 The Administrators Of The Tulane Educational Fund COMPOSITIONS INCLUDING CANDIDA DUBLINIENSIS AND ALKALINIZED FUNGAL β-GLUCANS FOR PROTECTION AGAINST INFECTION-INDUCED SEPSIS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992540A (en) * 1984-11-28 1991-02-12 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
KR19990063361A (en) 1997-12-23 1999-07-26 최윤재 Natural substance derived from yeast cell wall and use as an immunopotentiator
US20050020490A1 (en) 2004-10-18 2005-01-27 Progressive Bioactives Incorporated A Method of Producing an Economical and Ecologically Sound Natural Immunobiotic Extract for Use as a Health Management Instrument and a Replacement for Growth Promotion Antibiotics in Livestock and Companion Animals.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992540A (en) * 1984-11-28 1991-02-12 Massachusetts Institute Of Technology Glucan composition and process for preparation thereof
KR19990063361A (en) 1997-12-23 1999-07-26 최윤재 Natural substance derived from yeast cell wall and use as an immunopotentiator
US20050020490A1 (en) 2004-10-18 2005-01-27 Progressive Bioactives Incorporated A Method of Producing an Economical and Ecologically Sound Natural Immunobiotic Extract for Use as a Health Management Instrument and a Replacement for Growth Promotion Antibiotics in Livestock and Companion Animals.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240146A3 (en) * 2022-06-08 2024-01-18 The Administrators Of The Tulane Educational Fund COMPOSITIONS INCLUDING CANDIDA DUBLINIENSIS AND ALKALINIZED FUNGAL β-GLUCANS FOR PROTECTION AGAINST INFECTION-INDUCED SEPSIS

Similar Documents

Publication Publication Date Title
Nakajima et al. Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases.
JP5221656B2 (en) Method for preparing glucan and mannan, glucan preparation and mannan preparation obtained thereby, and use thereof
EP0733647B1 (en) Polysaccharides and preparation thereof
Hartland et al. The linkage of (1–3)‐β‐glucan to chitin during cell wall assembly in Saccharomyces cerevisiae
Kaplan et al. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4
Shibata et al. Characterization of phosphomannan-protein complexes isolated from viable cells of yeast and mycelial forms of Candida albicans NIH B-792 strain by the action of Zymolyase-100T
Kusaykin et al. A comparative study of specificity of fucoidanases from marine microorganisms and invertebrates
Shibata et al. Isolation of mannan-protein complexes from viable cells of Saccharomyces cerevisiae X2180-1A wild type and Saccharomyces cerevisiae X2180-1 A-5 mutant strains by the action of Zymolyase-60,000
Jaros et al. Exopolysaccharides from Basidiomycota: Formation, isolation and techno‐functional properties
Rau et al. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801
EP1471148B1 (en) Production of chitosan and chitin
JP4595074B2 (en) Novel glucan and method for producing the same
Shiota et al. Comparison of β-glucan structures in a cell wall mutant of Saccharomyces cerevisiae and the wild type
KR100700910B1 (en) Saccharomyces cerevisiae mutant producing alkali-soluble ?-glucan
NANBA et al. The chemical structure of an antitumor polysaccharide in mycelia of Cochliobolus miyabeanus
Kweon et al. Anti-complementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus
WO2022250011A1 (en) METHOD FOR PRODUCING β-1,3-1,6-GLUCAN
EP2978842B1 (en) Glucan branching enzymes and their methods of use
KR100909857B1 (en) Preparation of beta-1,6-branch-beta-1,3-glucan using Schizophyll mycobacterium cue 143-1, which produces a high concentration of beta-1,6-branch-beta-1,3-glucan, and the strain Way
Shepherd et al. Candida albicans: cell wall physiology and metabolism
KR20180037704A (en) Extracting method of beta-glucan from Phellinus baumii
Ruiz-Medrano Chitin Biosynthesis in Fungi
Trincone Marine oligosaccharides: the most important aspects in the recent literature
Araki et al. Species‐specificity of the lytic activity of the cell wall in the genus Chlorella
KR100485687B1 (en) Method for production of oligosaccharide from Agaricus blazei Murill

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111209

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20120725

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee