KR100695575B1 - Novel erbium(iii) complexes and preparation method thereof - Google Patents

Novel erbium(iii) complexes and preparation method thereof Download PDF

Info

Publication number
KR100695575B1
KR100695575B1 KR1020060031622A KR20060031622A KR100695575B1 KR 100695575 B1 KR100695575 B1 KR 100695575B1 KR 1020060031622 A KR1020060031622 A KR 1020060031622A KR 20060031622 A KR20060031622 A KR 20060031622A KR 100695575 B1 KR100695575 B1 KR 100695575B1
Authority
KR
South Korea
Prior art keywords
formula
erbium
compound
erbium oxide
alkylene
Prior art date
Application number
KR1020060031622A
Other languages
Korean (ko)
Inventor
이영국
김창균
정택모
안기석
이선숙
박미현
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020060031622A priority Critical patent/KR100695575B1/en
Application granted granted Critical
Publication of KR100695575B1 publication Critical patent/KR100695575B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)

Abstract

A novel erbium oxide precursor material is provided to show excellent thermal stability and volatility by coordinating only oxygen and nitrogen atom ligand with erbium, be less sensitive to moisture and favorable to store, thereby being usefully used for preparing a good quality oxide film. The erbium oxide precursor material is represented by the formula(1), Er[O-A-N(R^3)-B-NR^1R^2]3, and is prepared by reacting a erbium compound represented by the formula(3), ErCl3, with an alkali metal salt compound represented by the formula(4), M[N(Si(CH3)3)2], to obtain a compound represented by the formula(5), M[N(Si(CH3)3)2]3, and then reacting the compound of the formula(5) with an alcohol compound represented by the formula(6), HO-A-N(R^3)-B-NR^1R^2, where M is Li, Na, or K, A is C2-5 alkylene, B is C1-4 alkylene, the A and B is able to be further substituted by at least one linear or branched C1-5 alkyl, and each R^1, R^2 and R^ is independently H or linear or branched C1-5 alkyl.

Description

신규의 에르븀 화합물 및 그 제조 방법{NOVEL ERBIUM(III) COMPLEXES AND PREPARATION METHOD THEREOF}Novel erbium compound and its manufacturing method {NOVEL ERBIUM (III) COMPLEXES AND PREPARATION METHOD THEREOF

도 1은 실시예 1에서 제조한 Er(demamp)3 화합물의 푸리에 변환 적외선 분광 (FT-IR) 분석 결과이고,1 is a result of Fourier transform infrared spectroscopy (FT-IR) analysis of Er (demamp) 3 compound prepared in Example 1,

도 2는 실시예 1에서 제조한 Er(demamp)3 화합물의 열중량 분석 (TGA) 및 시차 열분석 (DTA) 결과를 나타내는 그래프이고,2 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the Er (demamp) 3 compound prepared in Example 1,

도 3은 실시예 2에서 제조한 Er(demae)3 화합물의 푸리에 변환 적외선 분광 (FT-IR) 분석 결과이고,3 is a result of Fourier transform infrared spectroscopy (FT-IR) analysis of an Er (demae) 3 compound prepared in Example 2,

도 4는 실시예 2에서 제조한 Er(demae)3 화합물의 열중량 분석 (TGA) 및 시차 열분석 (DTA) 결과를 나타내는 그래프이다.Figure 4 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the Er (demae) 3 compound prepared in Example 2.

본 발명은 신규의 에르븀 화합물에 관한 것으로서, 에르븀 산화물 박막의 선구 물질로서 유용한 화합물의 제조 방법에 관한 것이다.The present invention relates to a novel erbium compound, and to a method for preparing a compound useful as a precursor of an erbium oxide thin film.

산화규소는 안정하고 높은 질의 규소-산화규소 계면과 뛰어난 전기적 절연 성질 때문에 절연체로 많이 사용되었다. 그러나 최근 반도체 업계에서는 0.1 미크론 이하의 반도체 공정 기술을 도입함에 있어서 채널 길이나 게이트 유전 두께 또한 급격히 축소되어지고 있다. 따라서 얇아진 산화규소 게이트 절연체의 직접 터널링(direct tunneling) 현상에 의한 누설 전류 문제를 해결하기 위해 적합한 대체 박막 재료 및 공정 기술에 관한 연구를 활발히 진행하고 있다.Silicon oxide has been widely used as an insulator because of its stable and high quality silicon-silicon oxide interface and excellent electrical insulation properties. In recent years, however, the channel length and gate dielectric thickness have also been dramatically reduced in the semiconductor process technology of 0.1 micron or less. Therefore, research is being actively conducted on suitable thin film materials and process technologies to solve the leakage current problem caused by the direct tunneling phenomenon of the thinned silicon oxide gate insulator.

상기 문제를 해결하기 위해서는 절연성이 뛰어나고 유전율이 높으며 유전 손실이 적은 고 유전 물질의 개발이 필요한데, 예를 들면 산화규소(SiO2)의 대체 물질로서, 이산화규소보다 유전 상수 값이 큰 오산화탄탈럼(Ta2O5), BST{(Ba,Sr)TiO3}, PZT{Pb(Zr,Ti)O3}; 및 공정 안정성의 관점에서 유리한 산화알루미늄(Al2O3), 산화하프늄(HfO2), 산화지르코늄(ZrO2), 산화란탄(La2O3), 산화프라세오디뮴(Pr2O3), 산화가돌리늄(Gd2O3), 산화네오디뮴(Nd2O3) 및 산화에르븀(Er2O3)등을 예로 들 수 있다.In order to solve the problem, it is necessary to develop a high dielectric material having excellent insulation, high dielectric constant, and low dielectric loss. For example, as a substitute for silicon oxide (SiO 2 ), tantalum pentoxide having a higher dielectric constant value than silicon dioxide ( Ta 2 O 5 ), BST {(Ba, Sr) TiO 3 }, PZT {Pb (Zr, Ti) O 3 }; And aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), lanthanum oxide (La 2 O 3 ), praseodymium oxide (Pr 2 O 3 ), and gadolinium oxide, which are advantageous in terms of process stability. (Gd 2 O 3 ), neodymium oxide (Nd 2 O 3 ), erbium oxide (Er 2 O 3 ), and the like.

특히, 란탄계열 산화물은 큰 밴드갭(bandgaps)(Eg(Pr2O3) = 3.9 eV, Eg(Gd2O3) = 5.6 eV)을 가지고, 비교적 높은 유전상수(κ(Er2O3) = 10-14, κ(Gd2O3) = 16, κ(La2O3) = 27, κ(Pr2O3) = 26-30)를 가지며, 실리콘 위에서 산화지르코늄과 산화하프늄보다 높은 열역학적 안정성을 가지므로 차세대 high-κ gate insulator로 유망한 물질이다. 게다가 몇몇 란탄계열 산화물은 실리콘과 격자 매개변수가 상대적으로 매우 유사하여 박막의 에피택셜(epitaxial) 성장을 가능케 한다.In particular, the lanthanide oxide has a large bandgaps (E g (Pr 2 O 3 ) = 3.9 eV, E g (Gd 2 O 3 ) = 5.6 eV), and has a relatively high dielectric constant (κ (Er 2 O). 3 ) = 10-14, κ (Gd 2 O 3 ) = 16, κ (La 2 O 3 ) = 27, κ (Pr 2 O 3 ) = 26-30), more than zirconium oxide and hafnium oxide on silicon It has high thermodynamic stability and is a promising material for the next generation high-κ gate insulator. In addition, some lanthanide-based oxides have relatively similar lattice parameters to silicon, allowing epitaxial growth of thin films.

그 중에서 산화에르븀(Er2O3)은 현재 metal-oxide-semiconductor devices에서 게이트(gate) 유전체로 연구되고 있다. 또한 이것은 높은 굴절률을 가지므로 광학확대경에서 도펀트로 사용된다(K. J. Hubbard, D. G. Schlom, J. Mater. Res. 1996, 11, 2757).Erbium oxide (Er 2 O 3 ) is currently being studied as a gate dielectric in metal-oxide-semiconductor devices. It is also used as a dopant in optical magnifiers because of its high refractive index (KJ Hubbard, DG Schlom, J. Mater. Res. 1996, 11, 2757).

산화에르븀(Er2O3) 박막은 레이져 애블레이션(laser ablation), 전자빔 가열증착(electron beam evaporation), 고온열분해(pyrolysis), 졸-겔법(sol-gel method), 화학기상증착(chemical vapor deposition, CVD), 물리적기상증착(physical vapor deposition, PVD) 등의 여러 가지 제조 기술로 증착시킬 수 있다. 그중 다양한 산화물 박막 제조에 사용되고 있는 방법에는 유기금속 화학기상 증착(metal organic chemical vapor deposition, MOCVD) 공정이나 원자층 증착 (Atomic Layer Deposition, ALD) 공정이 있는데, MOCVD는 장치가 비교적 간단하고 층 덮임이 균일하며, 성분 조절이 쉽고, 대량 생산으로 전환하기에 무리가 없다는 장점이 있다. ALD는 화학적 가스상 증착 방법으로, 각각의 다른 선구물질을 기판에 흘려주고 각각의 단계마다 불활성 기체로 잔여 반응물을 제거하는 방식으로, 사이클 수를 조절하여 박막의 두께 조절이 용이하다는 장점이 있다.Oxidized erbium (Er 2 O 3) thin film is laser ablation (laser ablation), electron beam heating deposition method (electron beam evaporation), the high temperature thermal cracking (pyrolysis), the sol-gel method (sol-gel method), chemical vapor deposition (chemical vapor deposition , CVD, and physical vapor deposition (PVD). Among them, the method used for manufacturing various oxide thin films includes a metal organic chemical vapor deposition (MOCVD) process or an atomic layer deposition (ALD) process. It has the advantage of being uniform, easy to control ingredients, and easy to switch to mass production. ALD is a chemical gas phase deposition method, which flows different precursors onto a substrate and removes the remaining reactants with an inert gas at each step, thereby controlling the thickness of the thin film by controlling the number of cycles.

이러한 MOCVD 공정이나 ALD 공정을 이용하여 박막을 제조하기 위해서는, 이 공정에 사용되는 선구 물질의 개발과 그 특성의 이해가 필수적이다. MOCVD용 선구 물질은 200 ℃ 이하에서 충분히 높은 증기압을 가져야 하고, 기화시키기 위해 가열 하는 동안 열적으로 충분히 안정해야 하며, 350 내지 500 ℃의 기질 온도에서 유기 물질 등의 분해 없이 신속히 분해되어야 하며, 저장 기간 동안 공기 및 습기에 충분히 안정해야 한다. 또한, 선구 물질 자체에 또는 분해 생성 물질에 독성이 없거나 적어야 하며, 합성법이 간단하고 원재료 단가가 저렴해야 한다. 그러나 이런 유기금속 화학기상 증착(MOCVD) 공정이나 원자층 증착(ALD) 공정의 다수의 장점에도 불구하고 적당히 안정하고 휘발성이 좋은 선구물질이 없어 이 기술을 통한 높은 질의 산화에르븀(Er2O3) 박막의 연구가 드문 실정이다.In order to manufacture a thin film using such a MOCVD process or ALD process, it is essential to develop a precursor material and to understand its characteristics. The precursors for MOCVD must have a sufficiently high vapor pressure below 200 ° C, be thermally stable enough during heating to vaporize, and decompose quickly without decomposition of organic materials, etc., at substrate temperatures of 350 to 500 ° C. Should be stable enough to air and moisture while. In addition, it should be non-toxic or less toxic to the precursor itself or to the decomposition products, the synthesis method should be simple and the raw material cost should be low. However, despite the many advantages of such an organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) process, there is no adequately stable and highly volatile precursor, resulting in high quality erbium oxide (Er 2 O 3 ). Thin film research is rare.

에르븀 산화물을 박막으로 만들기 위해 사용되어 온 선구 물질은 크게 네 가지로 구분되며, 염화에르븀 또는 질산에르븀 등과 같은 무기염, 알콕사이드 화합물, 디알킬아미도 화합물 및 β-디케토네이트를 포함하는 화합물 등이 있다. The precursor materials which have been used to make erbium oxide into a thin film are largely classified into four types, including inorganic salts such as erbium chloride or erbium nitrate, alkoxide compounds, dialkylamido compounds, and compounds containing β-diketonate. have.

최근엔 MOCVD 공정에 의해서 [Er(acac)3] (acac = acetylacetonate)를 이용하여 450 내지 600℃에서 Er2O3 박막을 제조하였고 심각한 탄소오염을 보였다(H. Ono, T. Katsumata, Appl. Phys. Lett. 2001, 78, 1832; M. P. Singh, C. S. Thakur, K. Shalini, N. Bhat, S. A. Shivashankar, Appl. Phys. Lett. 2003, 83, 2889).Recently, Er 2 O 3 thin films were prepared at 450 to 600 ° C. using [Er (acac) 3 ] (acac = acetylacetonate) by MOCVD and showed severe carbon contamination (H. Ono, T. Katsumata, Appl. Phys). Lett. 2001, 78, 1832; MP Singh, CS Thakur, K. Shalini, N. Bhat, SA Shivashankar, Appl. Phys. Lett. 2003, 83, 2889).

또한 ALD 공정에 의해서 [Er(tmhd)3] (tmhd = 2,2,6,6-tetramethylheptane-3,5-dionate)와 오존을 이용하여 300 ℃에서 C-타입의 Er2O3 박막을 제조하였다(J. Paivasaari, M. Putkonen, T. Sajavaara, L. Niinisto, J. Alloys Compd. 2004, 374, 124; J. Paivasaari, M. Putkonen, L. Niinisto, Thin Solid Films 2005, 472, 275). β-디케토네이트 타입의 tmhd-착물은 휘발성 물질이여서 종종 ALD 공정에서 선구물질로 쓰인다. 그러나 β-디케토네이트는 물과 쉽게 반응하지 않아서 산화막을 만들기 위해서는 오존과 같은 더 강력한 산화제가 필요하다. 그리고 Ln(tmhd)3/O3 공정에서 박막의 성장속도는 다소 느리다. 게다가 오존을 사용하게 되면 실리콘 표면과 증착된 산화막 사이의 계면에서 SiOx의 형성이 증가하게 되는 단점이 있다.In addition, a C-type Er 2 O 3 thin film was prepared at 300 ° C. using [Er (tmhd) 3 ] (tmhd = 2,2,6,6-tetramethylheptane-3,5-dionate) and ozone by an ALD process. (J. Paivasaari, M. Putkonen, T. Sajavaara, L. Niinisto, J. Alloys Compd. 2004, 374, 124; J. Paivasaari, M. Putkonen, L. Niinisto, Thin Solid Films 2005, 472, 275). . Tmhd-complexes of the β-diketonate type are volatiles and are often used as precursors in ALD processes. However, β-diketonates do not react easily with water and require a stronger oxidizer such as ozone to form an oxide film. In the Ln (tmhd) 3 / O 3 process, the growth rate of the thin film is somewhat slow. In addition, the use of ozone has the disadvantage of increasing the formation of SiO x at the interface between the silicon surface and the deposited oxide film.

본 발명자들은 β-디케토네이트 화합물들이 갖는 문제점들을 해결하기 위해 새로운 리간드를 합성하여 에르븀에 산소와 질소 원자 리간드만 배위하도록 하여 탄소나 할로겐의 오염을 일으키지 않으며, 열적 안정성과 휘발성이 개선된 신규한 에르븀 산화물 선구 물질을 개발하기에 이르렀다.In order to solve the problems of β-diketonate compounds, the present inventors have synthesized a new ligand so that only oxygen and nitrogen atom ligands are coordinated with erbium, which does not cause contamination of carbon or halogens, and improves thermal stability and volatility. Erbium oxide precursors have been developed.

본 발명의 목적은 양질의 에르븀 산화막을 형성하기 위해 열적으로 안정하고 휘발성이 증가된 에르븀 산화물 선구 물질 및 그의 제조방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an erbium oxide precursor material which is thermally stable and has increased volatility to form a high quality erbium oxide film and a method of manufacturing the same.

본 발명은 상기 목적을 달성하기 위하여,하기 화학식 1로 표시되는 신규한 에르븀 산화물 선구 물질을 제공한다:In order to achieve the above object, the present invention provides a novel erbium oxide precursor represented by the following general formula (1):

[화학식 1][Formula 1]

Er[O-A-N(R3)-B-NR1R2]3 Er [OAN (R 3 ) -B-NR 1 R 2 ] 3

[상기 식에서 A는 C2-C5의 알킬렌이고; B는 C1-C4의 알킬렌이고; 상기 A 및 B는 하나 이상의 C1-C5의 직쇄 또는 분지쇄의 알킬기로 더 치환될 수 있고; R1, R2 및 R3는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이다.][Wherein A is alkylene of C 2 -C 5 ; B is alkylene of C 1 -C 4 ; A and B may be further substituted with one or more C 1 -C 5 straight or branched alkyl groups; R 1 , R 2 and R 3 independently of one another are H or C 1 -C 5 linear or branched alkyl groups.]

더 상세하게는 상기 화학식 1의 에르븀 산화물 선구 물질은 하기 화학식 2로 표시되는 에르븀 산화물 선구 물질을 포함한다.More specifically, the erbium oxide precursor of Formula 1 includes the erbium oxide precursor of Formula 2 below.

[화학식 2][Formula 2]

Er[OCR4R5(CH2)mN(R3)-(CH2)nNR1R2]3 Er [OCR 4 R 5 (CH 2 ) m N (R 3 )-(CH 2 ) n NR 1 R 2 ] 3

[상기 식에서 R1, R2, R3, R4 및 R5는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이고, m 및 n은 1 내지 4의 정수이다.][Wherein R 1 , R 2 , R 3 , R 4 And R 5 is independently of each other H or a C 1 -C 5 linear or branched alkyl group, m and n are integers from 1 to 4.]

보다 바람직하게는 상기 화학식 2에서 R1, R2, R3, R4 및 R5는 서로 독립적으로 H, CH3, C2H5, CH(CH3)2 또는 C(CH3)3로부터 선택되는 에르븀 산화물 선구 물질이 예시된다.More preferably in Formula 2 R 1 , R 2 , R 3 , R 4 And R 5 are independently of each other erbium oxide precursors selected from H, CH 3 , C 2 H 5 , CH (CH 3 ) 2 or C (CH 3 ) 3 .

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 화학식 1의 에르븀 산화물 선구 물질은 하기 화학식 3의 에르븀 화합물과 3당량의 하기 화학식 4의 알칼리 금속 염 화합물을 반응시켜 얻어진 하기 화학식 5의 화합물 1당량과 하기 화학식 6의 알코올 화합물 3당량을 치환 반응시켜 제조할 수 있으며, 상기 화학식 1의 에르븀 산화물 선구 물질을 제조하기 위한 반응식은 하기 반응식 1로 나타낼 수 있다.The erbium oxide precursor of Chemical Formula 1 according to the present invention is 1 equivalent of the compound of Chemical Formula 5 and 3 equivalent of the alcohol compound of Chemical Formula 6 obtained by reacting an erbium compound of Chemical Formula 3 with three equivalents of an alkali metal salt compound of Chemical Formula 4. May be prepared by substitution reaction, and a reaction scheme for preparing the erbium oxide precursor of Chemical Formula 1 may be represented by the following Scheme 1.

한편, 하기 화학식 6의 알코올 화합물은 디아민 화합물과 1-위치에 두 치환체가 붙은 에틸렌 산화물 유도체(1,1-disubstituted ethylene oxide)를 수용액 중에서 반응시켜 제조할 수 있다.Meanwhile, the alcohol compound of Formula 6 may be prepared by reacting a diamine compound with an ethylene oxide derivative (1,1-disubstituted ethylene oxide) having two substituents in 1-position in an aqueous solution.

[화학식 1][Formula 1]

Er[O-A-N(R3)-B-NR1R2]3 Er [OAN (R 3 ) -B-NR 1 R 2 ] 3

[화학식 3][Formula 3]

ErCl3 ErCl 3

[화학식 4][Formula 4]

M[N(Si(CH3)3)2]M [N (Si (CH 3 ) 3 ) 2 ]

[화학식 5][Formula 5]

Er[N(Si(CH3)3)2]3 Er [N (Si (CH 3 ) 3 ) 2 ] 3

[화학식 6][Formula 6]

HO-A-N(R3)-B-NR1R2 HO-AN (R 3 ) -B-NR 1 R 2

[상기 화학식 1, 화학식 4 및 화학식 6에서, M은 Li, Na 또는 K이며; A는 C2-C5의 알킬렌이고; B는 C1-C4의 알킬렌이고; 상기 A 및 B는 하나 이상의 C1-C5의 직쇄 또는 분지쇄의 알킬기로 더 치환될 수 있고; R1, R2 및 R3는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이다.][In Formula 1, Formula 4 and Formula 6, M is Li, Na or K; A is alkylene of C 2 -C 5 ; B is alkylene of C 1 -C 4 ; A and B may be further substituted with one or more C 1 -C 5 straight or branched alkyl groups; R 1 , R 2 and R 3 independently of one another are H or C 1 -C 5 linear or branched alkyl groups.]

[반응식 1]Scheme 1

ErCl3 + 3 M[N(Si(CH3)3)2] → Er[N(Si(CH3)3)2]3 + 3 MClErCl 3 + 3 M [N (Si (CH 3 ) 3 ) 2 ] → Er [N (Si (CH 3 ) 3 ) 2 ] 3 + 3 MCl

Er[N(Si(CH3)3)2]3 + 3 HO-A-N(R3)-B-NR1R2 → Er[O-A-N(R3)-B-NR1R2]3 + 3 HN(Si(CH3)3)2 Er [N (Si (CH 3 ) 3 ) 2 ] 3 + 3 HO-AN (R 3 ) -B-NR 1 R 2 → Er [OAN (R 3 ) -B-NR 1 R 2 ] 3 + 3 HN (Si (CH 3 ) 3 ) 2

상기 화학식 1의 신규한 에르븀 산화물 선구 물질은 안정한 착화합물이고, 금속과 결합하는 알콕사이드의 산소에 대하여 α-탄소 위치에 비극성 알킬기가 결합해 있어 유기 용매에 대한 친화성이 높고, 중심 금속이 이웃한 리간드의 산소와 분자간 상호 작용을 일으키지 못하도록 입체 장애를 주기 때문에 단위체로 존재할 수 있다. 이러한 구조적 특성으로 인하여 상기 화학식 1의 에르븀 산화물용 선구 물질은 상온에서 안정한 액체로서 유기 용매, 예를 들면 펜탄, 헥산, 디에틸에테르, 테트라하이드로퓨란, 톨루엔 등에 대한 용해도가 높고, 할로겐 원소를 포함하지 않아 보관에 유리하기 때문에, 이들을 사용하여 질이 더 우수한 에르븀 산화물 박막을 얻을 수 있다. 이와 같이 제조한 3가 에르븀 화합물은 상온에서 점성이 있는 액체로 얻어진다. The novel erbium oxide precursor of formula (1) is a stable complex, a non-polar alkyl group is bonded to the α-carbon position with respect to the oxygen of the alkoxide to be bonded to the metal has a high affinity for the organic solvent, the ligand adjacent to the central metal It can exist as a monomer because it gives steric hindrance to prevent intermolecular interaction with oxygen. Due to these structural characteristics, the precursor material for erbium oxide of Chemical Formula 1 is a stable liquid at room temperature, and has high solubility in organic solvents such as pentane, hexane, diethyl ether, tetrahydrofuran, toluene, and no halogen element. Since it is advantageous for storage, these can be used to obtain an erbium oxide thin film of better quality. The trivalent erbium compound thus prepared is obtained as a viscous liquid at room temperature.

반응 생성물인 화학식 1의 에르븀 산화물 선구 물질은 푸리에 변환 적외선 분광법 (Fourier transform infrared spectroscopy, FTIR) (도 1 및 도 3 참조)을 이용하여 확인하였으며, 본 발명에서 합성한 에르븀 산화물 선구 물질의 열적 안정성, 휘발성 및 분해 온도를 열중량 분석 및 시차 열분석(thermogravimetric analysis/differential thermal analysis, TGA/DTA) (도 2 및 도 4참조)을 이용하여 분석하였다. The erbium oxide precursor of Chemical Formula 1, which is a reaction product, was identified using Fourier transform infrared spectroscopy (FTIR) (see FIGS. 1 and 3), and the thermal stability of the erbium oxide precursor synthesized in the present invention, Volatile and decomposition temperatures were analyzed using thermogravimetric analysis / differential thermal analysis (TGA / DTA) (see FIGS. 2 and 4).

도 2에서 나타낸 바와 같이 트리스(1-(N-(2-디메틸아미노)에틸)-N-메틸아미노)-2-메틸-2-프로폭시)에르븀 (Er(demamp)3) 화합물의 경우에는 50 ℃ 부근부터 질량감소를 보이다가 320 ℃ 부근에서 완료되는 것을 확인하였고, 잔류량은 38.29 %이다. 또한 도 4에 나타낸 바와 같이 트리스[2-(N-(2-(디메틸아미노)에틸)-N-메틸아미노)에폭시]에르븀 (Er(demae)3) 화합물의 경우 60 ℃ 부근에서 천천히 질량이 감소하다가 300 ℃ 부근에서 급격하게 떨어져 375 ℃ 부근에서 완료되고 그 잔류량은 40.19 %이다.50 in the case of tris (1- (N- (2-dimethylamino) ethyl) -N-methylamino) -2-methyl-2-propoxy) erbium (Er (demamp) 3 ) compound as shown in FIG. It showed mass reduction from around ℃ and completed at around 320 ℃, the residual amount is 38.29%. In addition, in the case of the tris [2- (N- (2- (dimethylamino) ethyl) -N-methylamino) epoxy] erbium (Er (demae) 3 ) compound as shown in FIG. It suddenly falls near 300 ° C and is completed near 375 ° C, and the residual amount is 40.19%.

상기 결과로부터 본 발명에서 합성한 에르븀 산화물 선구 물질은 분해 온도 이전에 충분한 휘발성을 보일 뿐만 아니라 유기 용매에 대해 용해도가 높기 때문에 반도체 제조 공정에 널리 이용하는 금속 유기물 화학 증착(MOCVD) 공정 또는 원자층 증착법(ALD)에 바람직하게 적용할 수 있다.From the above results, the erbium oxide precursor synthesized in the present invention not only exhibits sufficient volatility before decomposition temperature but also has high solubility in organic solvents, so it is widely used in the semiconductor organic chemical vapor deposition (MOCVD) process or atomic layer deposition method ( ALD) is preferably applied.

본 발명은 하기의 실시예에 의하여 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부한 특허 청구 범위에 의하여 한정되는 보호 범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for purposes of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

모든 실험은 장갑 상자 또는 슐렝크 관(Schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 실시예 1 및 2에서 얻은 각각의 반응 생성 물의 구조는 푸리에 변환 적외선 분광 (FT-IR) 분석 및 원소 분석법 (elemental analysis, EA), 열무게 분석법/시차 열분석법 (thermogravimetric analysis/differential thermal analysis, TGA/DTA)을 이용하여 분석하였다. All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. The structure of each reaction product obtained in Examples 1 and 2 was Fourier transform infrared spectroscopy (FT-IR) analysis and elemental analysis (EA), thermogravimetric analysis / differential thermal analysis, TGA / DTA).

에르븀 산화물의 제조Preparation of Erbium Oxide

[실시예 1] 트리스(1-(N-(2-디메틸아미노)에틸)-N-메틸아미노)-2-메틸-2-프로폭시)에르븀 [Er(demamp)3]의 합성Example 1 Synthesis of Tris (1- (N- (2-dimethylamino) ethyl) -N-methylamino) -2-methyl-2-propoxy) erbium [Er (demamp) 3 ]

테트라하이드로퓨란(70 mL)이 들어 있는 125 mL 슐렝크 플라스크에 비스(트리메틸실릴)아미도 리튬 1.73 g (10.3 mmol)을 넣고 용해시킨 후 1.07 g 의 염화에르븀 (3.91 mmol)을 넣고 상온에서 약 24시간 동안 교반하였다. 상기 반응물을 감압 하에서 용매를 제거하여 화학식 5로 나타낸 분홍색 고체의 화합물 1.20 g(수율 50.21 %)을 얻었다.1.73 g (10.3 mmol) of bis (trimethylsilyl) amido lithium was dissolved in a 125 mL Schlenk flask containing tetrahydrofuran (70 mL), followed by 1.07 g of erbium chloride (3.91 mmol). Stir for hours. The solvent was removed under reduced pressure to obtain 1.20 g (yield 50.21%) of the compound as a pink solid represented by the formula (5).

톨루엔(70 mL)이 들어 있는 125 mL 슐렝크 플라스크에 화학식 5의 화합물 0.92 g (1.42 mmol)을 넣고 용해시키고, 여기에 1-[N-{2-(디메틸아미노)에틸}-N-메틸아미노]-2-메틸프로판-2-올(demampH, (1-(N-(2-(dimethylamino)ethyl)-N-methylamino)-2-methyl-2-propanol, 0.74 g, 4.26 mmol)를 첨가한 후 3일 동안 교반하였다. 상기 반응용액을 감압 하에서 용매를 제거하여 분홍색 액체의 표제 화합물 0.50 g(수율: 51.25 %)을 얻었다.0.92 g (1.42 mmol) of the compound of formula 5 were dissolved in a 125 mL Schlenk flask containing toluene (70 mL), which was dissolved in 1- [N- {2- (dimethylamino) ethyl} -N-methylamino. ] -2-methylpropan-2-ol (demampH, (1- (N- (2- (dimethylamino) ethyl) -N-methylamino) -2-methyl-2-propanol, 0.74 g, 4.26 mmol) was added. After stirring for 3 days, the reaction solution was removed under reduced pressure to obtain 0.50 g (yield: 51.25%) of the title compound as a pink liquid.

원소 분석 C27H63N6O3Er {계산치 (실측치)}: C, 47.20 (46.10); H, 9.24 (9.54); N, 12.23 (11.53)Elemental Analysis C 27 H 63 N 6 O 3 Er {calculated (calculated)}: C, 47.20 (46.10); H, 9.24 (9.54); N, 12.23 (11.53)

FT-IR (cm-1, KBr pellet) : υ 2940, 2770, 1460, 1170, 1110, 949, 793, 588, 469 cm-1.FT-IR (cm -1 , KBr pellet): υ 2940, 2770, 1460, 1170, 1110, 949, 793, 588, 469 cm -1 .

[실시예 2] 트리스[2-(N-(2-(디메틸아미노)에틸)-N-메틸아미노)에폭시]에르븀, [Er(demae)3]의 합성Example 2 Synthesis of Tris [2- (N- (2- (dimethylamino) ethyl) -N-methylamino) epoxy] erbium and [Er (demae) 3 ]

톨루엔(70 mL)이 들어 있는 125 mL 슐렝크 플라스크에 화학식 5의 화합물 3.0 g (4.63 mmol)을 넣고 용해시키고, 여기에 2-(N-(2-디메틸아미노)에틸)-N-메틸아미노]에탄올(demaeH, (2-(N-(2-(dimethylamino)ethyl)-N-methylamino)ethanol, 2.04 g, 13.95 mmol)를 첨가한 후 3일 동안 교반하였다. 상기 반응용액을 감압 하에서 용매를 제거하여 파란색 액체의 표제 화합물 1.42 g(수율: 50.88 %)을 얻었다.3.0 g (4.63 mmol) of the compound of formula 5 were dissolved in a 125 mL Schlenk flask containing toluene (70 mL), followed by 2- (N- (2-dimethylamino) ethyl) -N-methylamino]. Ethanol (demaeH, (2- (N- (2- (dimethylamino) ethyl) -N-methylamino) ethanol, 2.04 g, 13.95 mmol) was added and stirred for 3 days. The reaction solution was removed under reduced pressure. This gave 1.42 g (yield: 50.88%) of the title compound as a blue liquid.

원소 분석 C21H51N6O3Er {계산치 (실측치)}:: C, 41.83 (41.82); H, 8.53 (9.21); N, 13.94 (12.59)Elemental Analysis C 21 H 51 N 6 O 3 Er {calculated (calculated)} :: C, 41.83 (41.82); H, 8.53 (9.21); N, 13.94 (12.59)

FT-IR (cm-1, KBr pellet) : υ 2940, 2770, 1460, 1130, 1040, 897, 729, 613, 463 cm-1.FT-IR (cm -1 , KBr pellet): υ 2940, 2770, 1460, 1130, 1040, 897, 729, 613, 463 cm -1 .

상술한 바와 같이, 본 발명에 따른 에르븀 산화물 선구 물질은 에르븀에 산소 원자와 질소 원자 리간드만 배위됨으로써 열안정성 및 휘발성이 우수할 뿐만 아니라, 수분에 덜 민감하고 보관이 유리하여 특히 질이 우수한 산화막을 제조해야 하는 금속 유기물 화학 증착법 (MOCVD) 또는 원자층 증착법(ALD) 용의 새로운 리간드를 갖는 에르븀 선구 물질로서 유용하게 사용할 수 있다.As described above, the erbium oxide precursor according to the present invention is not only excellent in thermal stability and volatility by coordinating an oxygen atom and a nitrogen atom ligand to erbium, but also less sensitive to moisture and advantageous in storage, thus providing an excellent oxide film. It can be usefully used as an erbium precursor having a novel ligand for metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) to be prepared.

Claims (6)

하기 화학식 1로 표시되는 에르븀 산화물 선구 물질:Erbium oxide precursors represented by Formula 1: [화학식 1][Formula 1] Er[O-A-N(R3)-B-NR1R2]3 Er [OAN (R 3 ) -B-NR 1 R 2 ] 3 [상기 식에서 A는 C2-C5의 알킬렌이고; B는 C1-C4의 알킬렌이고; 상기 A 및 B는 하나 이상의 C1-C5의 직쇄 또는 분지쇄의 알킬기로 더 치환될 수 있고; R1, R2 및 R3는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이다.][Wherein A is alkylene of C 2 -C 5 ; B is alkylene of C 1 -C 4 ; A and B may be further substituted with one or more C 1 -C 5 straight or branched alkyl groups; R 1 , R 2 and R 3 independently of one another are H or C 1 -C 5 linear or branched alkyl groups.] 제 1항에 있어서,The method of claim 1, 하기 화학식 2로 표시되는 에르븀 산화물 선구 물질.Erbium oxide precursor represented by the following formula (2). [화학식 2][Formula 2] Er[OCR4R5(CH2)mN(R3)-(CH2)nNR1R2]3 Er [OCR 4 R 5 (CH 2 ) m N (R 3 )-(CH 2 ) n NR 1 R 2 ] 3 [상기 식에서 R1, R2, R3, R4 및 R5는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이고, m 및 n은 1 내지 4의 정수이다.][Wherein R 1 , R 2 , R 3 , R 4 And R 5 is independently of each other H or a C 1 -C 5 linear or branched alkyl group, m and n are integers from 1 to 4.] 제 2항에 있어서,The method of claim 2, 상기 식에서 R1, R2, R3, R4 및 R5는 서로 독립적으로 H, CH3, C2H5, CH(CH3)2 또는 C(CH3)3로부터 선택되는 것을 특징으로 하는 에르븀 산화물 선구 물질.Wherein R 1 , R 2 , R 3 , R 4 And R 5 is independently from each other H, CH 3 , C 2 H 5 , CH (CH 3 ) 2 or C (CH 3 ) 3 . 하기 화학식 3의 에르븀 화합물과 하기 화학식 4의 알칼리 금속 염 화합물을 반응시켜 얻어진 하기 화학식 5의 화합물을 하기 화학식 6의 알코올 화합물과 반응시키는 것을 특징으로 하는 화학식 1의 에르븀 산화물 선구 물질의 제조방법.A method for producing an erbium oxide precursor of formula (1), comprising reacting a compound of formula (5) obtained by reacting an erbium compound of formula (3) with an alkali metal salt compound of formula (4) with an alcohol compound of formula (6): [화학식 1][Formula 1] Er[O-A-N(R3)-B-NR1R2]3 Er [OAN (R 3 ) -B-NR 1 R 2 ] 3 [화학식 3][Formula 3] ErCl3 ErCl 3 [화학식 4][Formula 4] M[N(Si(CH3)3)2]M [N (Si (CH 3 ) 3 ) 2 ] [화학식 5][Formula 5] Er[N(Si(CH3)3)2]3 Er [N (Si (CH 3 ) 3 ) 2 ] 3 [화학식 6][Formula 6] HO-A-N(R3)-B-NR1R2 HO-AN (R 3 ) -B-NR 1 R 2 [상기 화학식 1, 화학식 4 및 화학식 6에서, M은 Li, Na 또는 K이며; A는 C2-C5의 알킬렌이고; B는 C1-C4의 알킬렌이고; 상기 A 및 B는 하나 이상의 C1-C5의 직쇄 또는 분지쇄의 알킬기로 더 치환될 수 있고; R1, R2 및 R3는 서로 독립적으로 H 또는 C1-C5의 선형 또는 분지형 알킬기이다.][In Formula 1, Formula 4 and Formula 6, M is Li, Na or K; A is alkylene of C 2 -C 5 ; B is alkylene of C 1 -C 4 ; A and B may be further substituted with one or more C 1 -C 5 straight or branched alkyl groups; R 1 , R 2 and R 3 independently of one another are H or C 1 -C 5 linear or branched alkyl groups.] 제 1항에 따른 에르븀 산화물 선구 물질을 사용하여 에르븀 산화물을 성장시키는 방법.A method of growing erbium oxide using the erbium oxide precursor according to claim 1. 제 5항에 있어서,The method of claim 5, 에르븀 산화물을 유기금속 화학기상 증착법(MOCVD) 또는 원자층 증착법(ALD)으로 형성하는 것을 특징으로 하는 방법.Erbium oxide is formed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
KR1020060031622A 2006-04-06 2006-04-06 Novel erbium(iii) complexes and preparation method thereof KR100695575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060031622A KR100695575B1 (en) 2006-04-06 2006-04-06 Novel erbium(iii) complexes and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060031622A KR100695575B1 (en) 2006-04-06 2006-04-06 Novel erbium(iii) complexes and preparation method thereof

Publications (1)

Publication Number Publication Date
KR100695575B1 true KR100695575B1 (en) 2007-03-14

Family

ID=38103703

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060031622A KR100695575B1 (en) 2006-04-06 2006-04-06 Novel erbium(iii) complexes and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100695575B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl. Phys. Lett., 2003, 83, 2889.
Thin Solid Film, 2005, 472, 275.

Similar Documents

Publication Publication Date Title
US5840897A (en) Metal complex source reagents for chemical vapor deposition
TWI390070B (en) Beta-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same
US8299286B2 (en) Source reagent compositions and method for forming metal films on a substrate by chemical vapor deposition
KR102215341B1 (en) Metal precursor and metal containing thin film prepared by using the same
US6736993B1 (en) Silicon reagents and low temperature CVD method of forming silicon-containing gate dielectric materials using same
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
KR100684992B1 (en) Novel lanthanum(iii) complexes and preparation method thereof
JP3227891B2 (en) Novel organometallic complexes and their ligands
KR100695575B1 (en) Novel erbium(iii) complexes and preparation method thereof
KR100695571B1 (en) Novel praseodymium(iii) complexes and preparation method thereof
KR100684993B1 (en) Novel neodymium(iii) complexes and preparation method thereof
KR102283752B1 (en) Novel group iv transition metal compounds and preparation method thereof
KR102080218B1 (en) Double-substituted cyclopentadiene compounds, organometallic compounds and preparation method thereof
KR101072002B1 (en) Novel Aluminum alkoxide complexes and process for preparing thereof
KR100590051B1 (en) Precursors of lanthanide oxide and preparing method thereof
KR100695466B1 (en) Novel gadoliniumiii complexes and preparation method thereof
KR100544353B1 (en) A precursor of zirconium dioxide, preparation method thereof and process for the formation of thin film using the same
KR102557277B1 (en) Rare earth precursors, preparation method thereof and process for the formation of thin films using the same
KR100962431B1 (en) Novel Aluminum amino-alkoxide complexes and process for preparing thereof
US20220145461A1 (en) Rare earth precursor, method of preparing the same, and method of forming thin film using the same
KR100544355B1 (en) Precursors of group iv transition metal oxide and preparing method thereof
KR20140074162A (en) A precursor compound containing group iv transition metal, and depositing method of thin film using the same
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof
KR101242772B1 (en) Novel bismuth amino alkoxide complexes and process for preparing thereof
KR100992982B1 (en) Novel hafnium alkoxide compounds and preparing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101228

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee