KR100693384B1 - Scouring Porcess of Poly Latic Acid Fabric - Google Patents

Scouring Porcess of Poly Latic Acid Fabric Download PDF

Info

Publication number
KR100693384B1
KR100693384B1 KR1020050055108A KR20050055108A KR100693384B1 KR 100693384 B1 KR100693384 B1 KR 100693384B1 KR 1020050055108 A KR1020050055108 A KR 1020050055108A KR 20050055108 A KR20050055108 A KR 20050055108A KR 100693384 B1 KR100693384 B1 KR 100693384B1
Authority
KR
South Korea
Prior art keywords
refining
lipase
fiber
pla
enzyme
Prior art date
Application number
KR1020050055108A
Other languages
Korean (ko)
Other versions
KR20060135262A (en
Inventor
김주혜
구홍림
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020050055108A priority Critical patent/KR100693384B1/en
Publication of KR20060135262A publication Critical patent/KR20060135262A/en
Application granted granted Critical
Publication of KR100693384B1 publication Critical patent/KR100693384B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/12Physical properties biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 일명 옥수수 섬유라고 불리우는 폴리락틱애시드 섬유의 정련방법에 관한 것으로, PLA섬유를 리파아제 티엘(Lipase TL) 또는 리파아제 피엘(Lipase PL)을 함유하는 정련욕에 50℃에서 20분간 침지시킨 다음 수세하여 건조시키는 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법을 제공하고자 하는 것이다.The present invention relates to a method for refining polylactic acid fibers, also called corn fiber, in which PLA fibers are immersed in a refining bath containing Lipase TL or Lipase PL for 20 minutes at 50 ° C., followed by washing with water. It is to provide a method for refining polylactic acid (Poly Latic Acid) fibers, characterized in that by drying.

PLA섬유, 효소정련 PLA fiber, enzyme refining

Description

폴리락틱애시드 섬유의 정련방법{Scouring Porcess of Poly Latic Acid Fabric}Scouring Porcess of Poly Latic Acid Fabric

도 1은 전자주사현미경에 의한 섬유 표면 손상사진.1 is a photograph of fiber surface damage by electron scanning microscope.

도 2는 정련성(oil 제거 정도)검정을 위한 Histochemical Staining 사진.Figure 2 is a Histochemical Staining photograph for the refinement (oil removal degree) test.

본 발명은 일명 옥수수 섬유라고 불리우는 폴리락틱애시드(이하 "PLA"라 한다.)섬유의 정련방법에 관한 것으로, 보다 상세하게는 PLA 섬유 그 자체, PLA 섬유사, PLA 섬유직물 및 PLA 섬유 부직물 등(이하 "PLA 섬유"라 한다.)을 효소를 사용하여 불순물인 오일 등을 제거하는 정련방법에 관한 것이다.The present invention relates to a method for refining polylactic acid (hereinafter referred to as "PLA") fiber, which is called corn fiber, and more specifically, PLA fiber itself, PLA fiber yarn, PLA fiber fabric and PLA fiber nonwoven fabric. (Hereinafter referred to as "PLA fiber") relates to a refining method for removing an oil or the like by using an enzyme.

현재 섬유산업에 가장 많이 사용되고 있는 합성섬유는 폴리에스테르 섬유가 그 물성이 우수할 뿐 만 아니라 염색 가공 공정이 일반화되어 있으며, 여러 가지 다른 형태의 섬유제품의 소재로 사용이 가능하기 때문에 앞으로도 꾸준한 발전이 있을 것으로 기대되고 있었다.Synthetic fiber, which is used most frequently in the textile industry, is not only excellent in polyester fiber but also in general dyeing process, and it can be used as a material for many different types of textile products. It was expected to be.

그러나 최근 대두되기 시작하는 환경문제로 인하여 생분해성을 갖는 섬유소재가 각광을 받기 시작하였으며, 이 중에서도 폴리에스테르와 그 구조가 유사한 PLA 섬유가 주목 받고 있다.  However, due to environmental problems, which are beginning to emerge in recent years, biodegradable fibrous materials are in the spotlight, and among them, PLA fibers having a similar structure to polyester are attracting attention.

이 PLA 섬유는 락틱애시드(lactic acid)를 중합하여 생성되는 고분자로 기존에는 단량체의 수급이 용이하지 않고 가격이 높아 일반화되지 못하다가 2000년에 고구마 전분을 발효시켜 락틱애시드를 생산하는 기술이 성공함으로써 대량생산이 가능하게 되었다. This PLA fiber is a polymer produced by polymerizing lactic acid, and it is not easy to supply monomers and is not generalized due to its high price. However, in 2000, the technology of producing lactic acid by fermenting sweet potato starch was successful. Mass production became possible.

현재는 미국의 카길다우(Cargill-Dow)에서 PLA를 합성하여 chip을 생산하고, 일본의 가네보 등에서 실을 생산하고 있으며, 국내에서도 방사라인을 도입할 계획을 가진 기업이 있으므로 조만간 시장화를 앞두고 있다.Currently, Cargill-Dow in the United States synthesizes PLA to produce chips, and Japan produces Kanebo, and yarn. In addition, there are companies that plan to introduce spinning lines in Korea.

이 PLA 섬유는 에스테르결합으로 연결되는 폴리에스터의 구조를 가지고 있으며, 기존의 폴리에스터가 대부분이 방향족환을 분자중에 보유하고 있는데 대하여, PLA는 선상 구조의 폴리머이다.This PLA fiber has a structure of a polyester linked by an ester bond, and while most of the existing polyesters have an aromatic ring in a molecule, PLA is a linear polymer.

따라서 PLA는 기존의 폴리에스테르 섬유에 비하여 유리전이온도(Tg)가 낮고, 인장강도 등의 제반 강도가 기존의 폴리에스테르 섬유에 비하여 낮기 때문에 기존의 폴리에스테르를 처리하는 염색 및 가공법을 그대로 적용할 수 없다고 하는 문제점을 내포하고 있다.Therefore, PLA has lower glass transition temperature (Tg) than conventional polyester fiber, and general strength such as tensile strength is lower than that of conventional polyester fiber, so it is possible to apply dyeing and processing method of existing polyester as it is. There is a problem that no.

또, 섬유의 일반적인 전처리 공정 중 가장 먼저 행해지는 정련의 경우 기존에는 알칼리를 사용하여 고온에서 처리하여 왔으나, 이 알칼리 정련은 폐수의 오염도를 증가시킬 뿐 만 아니라, 섬유자체에도 손상을 주는 문제점을 지니고 있으며, 현재로서는 가장 효과적인 방법으로 간주되어 계속하여 사용되어지고 있는 실정이다.In addition, in the case of refining, which is first performed in the general pretreatment process of the fiber, it has been conventionally processed at high temperature using alkali, but this alkali refining not only increases the pollution of the waste water, but also has the problem of damaging the fiber itself. It is currently considered to be the most effective method and continues to be used.

그러나 최근 수십년 동안 획기적인 바이오테크놀로지의 발전과 환경규제로 인해 바이오 기술을 도입한 섬유가공공정이 도입되고 있는 추세이며, 이중 펙티나제를 이용한 면의 정련 기술은 현장 적용을 앞두고 있고, 효소에 의한 바이오 정련은 효소가 생분해성이 있고 중성에 가까운 온도에서 작용하므로 환경오염을 최소화할 수 있으며 처리조건이 마일드하여 섬유에도 손상을 거의 주지 않는 장점을 가지고 있음에도 불구하고 PLA의 정련에 적용시키기 위한 시도가 이루어지지 않고 있다.In recent decades, however, the development of biotechnology and environmental regulations have led to the introduction of biotechnological fiber processing processes. Among them, the technology for refining cotton using pectinase is expected to be applied in the field. Bio-refining is an enzyme that is biodegradable and works at near-neutral temperatures, thus minimizing environmental pollution and mild processing conditions. Not done.

본 발명은 상기에서 지적한 바와 같은 종래 기술의 문제점을 해소하고 아직 확립되지 않은 PLA섬유의 바이오 정련법을 확립하기 위한 것으로 PLA 정련하기 위한 효소를 선별하여 효과적으로 PLA를 정련하는 방법을 제공하는데 목적이 있다.The present invention is to solve the problems of the prior art as pointed out above, and to establish a biorefining method of PLA fiber which has not yet been established. It is an object of the present invention to provide a method for effectively refining PLA by selecting an enzyme for refining PLA. .

본 발명의 또 다른 목적은 자연친화적 공정에 의해 섬유를 처리하여 환경오염을 최소화함과 동시에 섬유 손상을 최소화하여 섬유 본래의 촉감을 유지하는 PLA섬유를 제공하는데 있다.Still another object of the present invention is to provide a PLA fiber that maintains the original texture of the fiber by minimizing environmental damage while treating the fiber by a natural friendly process.

상기의 과제를 해결하기 위한 본 발명은 PLA섬유를 리파아제 티엘(Lipase TL) 또는 리파아제 피엘(Lipase PL)을 함유하는 정련욕에 50℃에서 20분간 침지시킨 다음 수세하여 건조시키는 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법을 제공함으로서 달성될 수 있다.The present invention for solving the above problems is immersed PLA fiber in a scouring bath containing lipase TL (Lipase TL) or lipase PL (Lipase PL) at 50 ℃ for 20 minutes and then washed with water to dry the polylactic It can be achieved by providing a method for refining Poly Latic Acid fibers.

리파아제 피엘(Lipase PL)은 알칼리제네스 에스피(Alkaligenes sp.)종의 유제분해효소이며, 리파아제 티엘(Lipase TL)은 프슈도모나스 스툴제리(Psudomonas stulzeri)종의 유제 분해효소로서, 트리아실글리세롤 리파제(Triacylglycerol lipase) EC 3.1.1.3에 속하는 것으로 일본의 메이토 상교사(Meito Sangyo Co. Ltd)에서 제조판매하는 것으로, 후에 기술되는 표 2에 나타나 있는 바와 같은 32종의 효소 중에서 선택된 것으로 PLA 섬유에 잔류하는 유제량을 측정하고, 유제 제거 여부를 히스토케미칼스테이닝[histochemical staining(Oil Red O)]을 이용한 방법과 처리후의 섬유의 중량감소로 결정하여 선택된 것이다.Lipase PL is an emulsion of Alkaligenes sp., And lipase TL is an emulsion of Pseudomonas stulzeri, a triacylglycerol lipase. lipase) belonging to EC 3.1.1.3, manufactured and sold by Meito Sangyo Co. Ltd, Japan, selected from 32 enzymes as shown in Table 2 described below. The amount of emulsion is measured, and the removal of the emulsion is selected by the method using histochemical staining (Oil Red O) and the weight loss of the fiber after treatment.

또, 정련 욕의 온도와 처리시간은 정련실험을 통하여 확정한 것으로 정련욕의 온도가 높은 경우에는 효소의 사멸이 이루어져 좋은 정련결과를 얻을 수 없으며, 정련온도가 낮은 경우에는 효소의 활동이 느려져서 장시간에 걸쳐 정련을 하여야 하므로 경제적인 손실이 큰 문제가 있다.In addition, the temperature and processing time of the refining bath were determined through refining experiments. If the refining bath temperature is high, the enzyme is killed and a good refining result is not obtained. If the refining temperature is low, the enzyme activity is slowed down for a long time. Since the refining must be over, there is a big economic loss.

처리시간은 상기 온도에서 최적의 시간으로 상기 시간 이상으로 침지시키는 경우에는 PLA섬유로부터 유분을 제거하는데 더 나은 효과를 기대하기 어려우며, 시간을 짧게 침지하는 경우에는 유분의 제거가 원활하지 못한 문제가 있다.The treatment time is difficult to expect a better effect of removing oil from the PLA fiber when immersed in the optimum time at the temperature above the time, there is a problem that the removal of oil is not smooth when immersed for a short time. .

정련 시 욕비는 통상적으로 1:20을 사용하며 이는 처리하는 기계에 따라 1:5 내지 1:20까지 가능하고, 또 사용되는 효소의 양이 직물 중량대비로 첨가되기 때문에 정련효과에는 영향을 미치지 않으므로, 구태여 특별한 농도를 고집할 필요는 없다.When refining, the ratio is usually 1:20, which is 1: 5 to 1:20 depending on the processing machine, and since the amount of enzyme used is added to the weight of the fabric, it does not affect the refining effect. There is no need to insist on special concentrations.

사용되는 직물에 대한 효소의 량은 충분한 량을 넣으면 빠른 감량효과를 볼 수 있으나, 처리시간을 고려하여 섬유 1g당 1000U로 하는 것이 바람직하다.The amount of enzyme for the fabric to be used is a fast weight loss effect if you put a sufficient amount, but considering the treatment time is preferably set to 1000U per 1g of fiber.

이하, 본 발명을 하기의 실시예를 통하여 보다 상세히 설명하기로 하나, 하기의 실시예로서 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

<실시예 1> 효소 선정 실시예Example 1 Enzyme Selection Example

PLA 섬유의 유분 제거능력을 확인하기 위하여 하기의 표1에 나타나 있는 바와 같이 PLA섬유직물 약 5그램을 준비하여 무게를 정확히 측정하고 작은 조각으로 잘라 잔류 유분의 량을 ASE (Accelerated Solvent Extractor)를 사용하여 n-Hexane으로 50℃에서 추출하여 측정하고 샘플에 대한 백분율로 환산하였으며 실험은 3회 반복하여 그 평균값을 표1에 함께 나타내었다. In order to check the oil removal ability of PLA fiber, as shown in Table 1 below, about 5 grams of PLA fiber fabric was prepared, weighed accurately, and cut into small pieces to measure the amount of residual oil using ASE (Accelerated Solvent Extractor). Extracted by n-Hexane at 50 ℃ was measured and converted to a percentage of the sample and the experiment was repeated three times and the average value is shown in Table 1 together.

샘 플Sample 추출전 셀의 무게 (g)Weight of cell before extraction (g) 샘플의무게 (g) Sample weight (g) 추출후 셀의 무게 (g)Cell weight after extraction (g) 유제함량 (%)Emulsion Content (%) PLA-1PLA-1 33.914233.9142 5.13815.1381 34.001434.0014 1.69711.6971 PLA-2PLA-2 33.985633.9856 5.25035.2503 34.072534.0725 1.65511.6551 PLA-3PLA-3 34.156334.1563 5.22365.2236 34.245234.2452 1.70181.7018 평균 Average 1.681.68

상기 표 1에서와 같이 평균 1.68%의 유제함량을 갖는 PLA섬유직물을 약 5그램을 준비하여 무게를 정확히 측정한 후 하기의 표 2에 나타나 있는 효소를 함유하는 효소의 농도가 섬유 1g당 1000U가 되도록 하고 섬유와 물의 비율이 1 : 20이 되도록 조절하고 생산자가 제시한 각 효소의 최적 pH 및 온도에서 정련욕에 20분간 침적한 후 수세 건조하여 항온항습실에서 24시간 conditioning 후 섬유의 중량을 측정하여 직물의 중량 감소율을 표2에 함께 나타내었다.After preparing about 5 grams of PLA fiber fabric having an emulsion content of 1.68% on average, as shown in Table 1, the weight of the enzyme containing the enzyme shown in Table 2 is 1000U per 1g of fiber After adjusting the ratio of fiber to water to 1:20, immerse in a refining bath for 20 minutes at the optimum pH and temperature of each enzyme suggested by the producer, and then rinse with water and dry in a constant temperature and humidity room for 24 hours, and then measure the weight of the fiber. The weight loss rate of the fabric is shown in Table 2 together.

효소명칭Enzyme Name Bell 직물의 중량감소(%)% Weight loss of fabric 1One DEPOL 740L DEPOL 740L HumicolaHumicola 0.5630.563 22 NOVOZYM 523L NOVOZYM 523L confidentialconfidential 0.7890.789 33 NOVOZYM 435 NOVOZYM 435 confidentialconfidential 0.8420.842 44 PGA-450 Penicillin-G-AmidasePGA-450 Penicillin-G-Amidase -- 0.7740.774 55 LIPOZYME RM IM LIPOZYME RM IM Aspergillus OryzaeAspergillus oryzae 0.6850.685 66 Savinase 12T Type WSavinase 12T Type W bacteriabacteria 0.4750.475 77 ESPEPASE 4, OT ESPEPASE 4, OT bacteriabacteria 0.8210.821 88 Alcalase, OT Alcalase, OT BacillusBacillus 0.7440.744 99 Acylase "Amano" ACY0550207Acylase "Amano" ACY0550207 AspergillusAspergillus 0.8960.896 1010 Lipase PS "Amano" LPSAY0250907Lipase PS "Amano" LPSAY0250907 Burkholderia cepaciaBurkholderia cepacia 0.5220.522 1111 Lipase AYS "Amano" Lipase AYS "Amano" Candida rugosa Candida rugosa 0.8790.879 1212 Newlase F NA0351309Newlase f na0351309 Rhizopus niveusRhizopus niveus 0.7210.721 1313 Lipase AH "Amano" Lipase AH "Amano" Burkholderia cepaciaBurkholderia cepacia 0.4450.445 1414 Lipase F-AP15 LFZ05522089Lipase F-AP15 LFZ05522089 Rhizopus oryzaeRhizopus oryzae 0.8440.844 1515 Lipase M "Amano" 10 LMA0351502Lipase M "Amano" 10 LMA0351502 Mucor javanicusMucor javanicus 0.7560.756 1616 Lipase D "Amano" Conc Lipase D "Amano" Conc -- 0.4890.489 1717 Lipase AK "Amano" 20 Lipase AK "Amano" 20 Pseudomonas fluorescensPseudomonas fluorescens 0.7820.782 1818 Lipase PS-C "Amano" Ⅱ Lipase PS-C "Amano" Ⅱ Burkholderia cepaciaBurkholderia cepacia 0.8450.845 1919 Lipase PS-D "Amano" Ⅰ Lipase PS-D "Amano" Ⅰ Burkholderia cepaciaBurkholderia cepacia 0.5480.548 2020 Lipase R "Amano" Lipase R "Amano" Penicillium roquefortiPenicillium roqueforti 0.7450.745 2121 D-Aminoacylase "Amano" D-Aminoacylase "Amano" Escherichia coliEscherichia coli 0.6590.659 2222 Lipase G "Amano"Lipase G "Amano" Penicillium camembertiiPenicillium camembertii 0.8170.817 2323 Lipase "Amano" S Lipase "Amano" S Burkholderia cepaciaBurkholderia cepacia 0.7990.799 2424 Lipase G "Amano"50 LGDZ1251006Lipase G "Amano" 50 LGDZ1251006 Penicillium camembertiiPenicillium camembertii 0.5660.566 2525 Lipase QLMLipase QLM Alcaligenes sp.Alcaligenes sp. 0.2560.256 2626 Lipase MYLipase MY Candida cylindracea(C.rugosa)Candida cylindracea (C.rugosa) 0.8420.842 2727 Lipase AL(1)Lipase AL (1) Acromobacter sp.Acromobacter sp. 0.5230.523 2828 Lipase SL(1)Lipase SL (1) Pseudomonas cepaciaPseudomonas cepacia 0.7210.721 2929 Lipase OFLipase OF Candida cylindraceaCandida cylindracea 0.6880.688 3030 Lipase TLLipase TL Pseudomonas stutzeriPseudomonas stutzeri 1.3001.300 3131 Lipase PLLipase PL Alcaligenes sp.Alcaligenes sp. 1.6621.662 3232 Lipase UL(1)Lipase UL (1) Rhizopus sp.Rhizopus sp. 0.4520.452

상기의 표 2에 나타나 있는 바와 같이 30번의 리파아제 티엘(Lipase TL) 및 31번의 리파아제 피엘(Lipase PL)이 PLA섬유직물의 평균 함유량인 1.68%이 가장 가까운1.300%, 1.662%를 나타내고 있어 적합한 효소임을 확인할 수 있었다.As shown in Table 2, 30 lipase TL and 31 lipase PL show 1.300%, 1.662% of the average content of PLA fiber fabric, which is the most suitable enzyme. I could confirm it.

<실시예2> 선별된 효소로의 정련실험Example 2 Refining Experiments with Selected Enzymes

상기의 실시예 1을 기초로 하여 100% PLA섬유로 편직(24gage, 32inches, rib, frice)된 직물을 사용하고, 리파아제 피엘 또는 리파아제 티엘을 이용하여 IR 염색기에서 50℃에서 20분간 중성에서 정련 처리한 다음, 정련한 직물은 수세 후 건조시키고 24시간 conditioning(Temperature: 20℃, Humidity: 65%) 하여 인장강도, 유연성 등을 시험하여 그 결과를 표 3에 나타내었으며, 정련후 섬유의 상태를 전자현미경으로 촬영하여 도 1로서 나타내고 균염성은 제시하고 전자현미경 관찰을 하였으며 색도 및 균염성을 확인하기 위해 분산염료 3종으로 IR 염색기에서 염색하고 그 결과를 표 3 및 도 2에 나타내었다. Based on Example 1 above, using a fabric knitted with 100% PLA fiber (24 gage, 32 inches, rib, frice), and using a lipase piel or lipase thiel to refine in neutral for 20 minutes at 50 ℃ in an IR dyeing machine Then, the refined fabrics were dried after washing with water, and then tested for tensile strength and flexibility by conditioning (Temperature: 20 ° C, Humidity: 65%) for 24 hours, and the results are shown in Table 3 below. Figure 1 shows the microscopic examination and showed the homogeneity and observed the electron microscope. In order to confirm the chromaticity and the homogeneity, three dyes were dispersed in an IR dyeing machine and the results are shown in Table 3 and FIG.

또한, 종래의 정련처리 방식에 따라 온욕 정련처리, 계면활성제 처리, 알칼리용액처리 등을 행하고 본 발명과 대비가 될 수 있도록 표 3 및 도 1과 도 2에 함께 나타내었다.In addition, according to the conventional refining treatment method, the hot bath refining treatment, surfactant treatment, alkaline solution treatment, etc. are performed together with Table 3 and shown in FIG. 1 and FIG.

처리조건Treatment condition 중량감소율 (%)Weight loss rate (%) K/SK / S 인장강도The tensile strength KawabataKawabata 적색Red 청색blue 노랑색Yellow walewale coursecourse BB 2HB2HB 온수처리Hot water treatment 0.81 ±0.040.81 ± 0.04 2.83952.8395 3.63353.6335 3.80553.8055 108.7 ±6.78108.7 ± 6.78 81.0 ±3.6081.0 ± 3.60 0.0283 ±0.00390.0283 ± 0.0039 0.0629 ±0.00420.0629 ± 0.0042 계면활성제처리Surfactant Treatment 1.66 ±0.031.66 ± 0.03 2.84822.8482 3.65843.6584 4.21374.2137 96.8 ±5.3596.8 ± 5.35 80.4 ±3.4080.4 ± 3.40 0.052 ±0.0270.052 ± 0.027 0.109 ±0.0290.109 ± 0.029 알칼리처리Alkali treatment 1.72 ±0.021.72 ± 0.02 2.85672.8567 3.77443.7744 4.27254.2725 95.1 ±4.8295.1 ± 4.82 75.9 ±4.6375.9 ± 4.63 0.051 ±0.00070.051 ± 0.0007 0.088 ±0.00620.088 ± 0.0062 리파아제 피엘Lipase piel 1.66 ±0.041.66 ± 0.04 2.82872.8287 3.68363.6836 4.23494.2349 98.5 ±1.2098.5 ± 1.20 80.6 ±7.9980.6 ± 7.99 0.0286 ±0.00120.0286 ± 0.0012 0.0535 ±0.00040.0535 ± 0.0004 리파아제 티엘Lipase Thiel 1.30 ±0.081.30 ± 0.08 2.81212.8121 3.74373.7437 4.28884.2888 98.5 ±2.4398.5 ± 2.43 81.7 ±4.8581.7 ± 4.85 0.0329 ±0.00060.0329 ± 0.0006 0.0531 ±0.00060.0531 ± 0.0006

표 3으로부터 확인되는 바와 같이 정련으로 인한 중량감소는 계면활성제의 경우 1.66%, 알칼리 1.71%, 리파아제 티엘 1.30%, 리파아제 피엘 1.66%로 나타나 있음을 확인할 수 있고, 표 1로부터 확인되는 섬유에 잔존하는 평균 유제량은 직물 무게의 1.68%로 계면활성제 및 효소 처리 시의 중량감소가 거의 같은 상태로서 나타났으나, 계면활성제의 경우는 정련후 폐기되는 폐수의 오염문제가 있으므로 그와 같은 점에서 본 발명의 효소정련이 유리함을 확인할 수 있었으며, 알칼리 정련의 경우는 중량 감소율이 큰 점으로 보아 PLA 섬유 자체에 손상이 갈 수 있고 이는 도 1의 현미경사진으로도 확인이 가능하다.As confirmed from Table 3 It can be seen that the weight loss due to refining is represented by 1.66%, 1.71% of alkali, 1.30% of lipase Tiel, and 1.66% of lipase PIEL. The weight loss of the surfactant and the enzyme treatment was found to be about the same as 1.68%, but since the surfactant had the problem of contamination of the wastewater discarded after refining, it was confirmed that the enzyme refining of the present invention was advantageous in this regard. In the case of alkali refining, the weight loss rate is large, which may damage the PLA fiber itself, which can be confirmed by the micrograph of FIG. 1.

색도 측정 결과를 살펴보면 K/S값이 알칼리 정련한 직물의 경우 적색와 청색에 있어 약간 높으며 노란색의 경우에는 리파아제 티엘로 처리한 직물이 약간 높게 나타났으나 그 차이가 크지 않아 정련방법에 따라 색도가 크게 다르지 않음을 표 3 및 도 2로서 확인 할 수 있다. The results of chromaticity measurement showed that the K / S value was slightly higher in red and blue in the case of alkali-refined fabrics, and the fabric treated with lipase thiel was slightly higher in yellow, but the difference was not large. It can be confirmed that it is not different as Table 3 and FIG.

정련 처리후 직물의 인장강도를 측정한 값을 살펴보면, 인장강도 측정은 wale 방향과 courses 방향을 각각 측정하였는데 두 방향 모두가 알칼리 정련한 직물(95.1, 75.9)이 약한 것으로 나타난 점으로 보아 PLA섬유자체에 손상이 있음을 예측할 수 있다.The tensile strength of the fabric after refining was measured. The tensile strength was measured in the wale direction and the course direction, respectively.The PLA fiber itself was found to be weak in alkali-refined fabrics (95.1, 75.9) in both directions. You can predict that there is damage.

계면활성제로 정련처리한 직물의 경우는 wale 방향이 96.8, courses 방향이 80.4로 나타났고, 효소로 정련한 직물의 경우 wale 방향의 강도는 두 효소 모두 98.5를 나타났으며, courses 방향의 경우에는 리파아제 티엘과 리파아제 피엘이 각각 81.7과 80.6을 나타난 점으로 보아 효소 정련한 직물이 기존의 계면활성제를 이용한 정련방법에 비하여 손색이 없음을 확인할 수 있었으며, 환경오염의 측면까지 검토 한다면 본 발명의 효소 정련이 유리한 것임은 말할 나위도 없다.In the case of the fabric refined with surfactant, the wale direction was 96.8 and the course direction was 80.4. In the case of the enzyme-refined fabric, the strength of the wale direction was 98.5. The TEL and lipase piel showed 81.7 and 80.6, respectively, and the enzyme-refined fabrics were inferior to conventional refining methods using surfactants. Needless to say, it is advantageous.

직물의 유연성을 측정하기 위하여 KES-F을 이용하여 Bending property를 측정하였다. Bending property는 bending rigidity와 hysteresis의 두 항목으로 구성되어 있으며 값이 작을수록 직물의 유연성은 크다.In order to measure the flexibility of the fabric, the bending properties were measured using KES-F. The bending property consists of two items, bending rigidity and hysteresis. The smaller the value, the more flexible the fabric.

일반적으로 합성섬유의 정련은 계면활성제를 이용하여 고온에서 처리하거나 알칼리를 사용하여 처리하고 있는데, 고급가공 제품일수록 알칼리 정련을 반드시 거치게 된다. 본 발명에서 다루고 있는 PLA 직물은 PET 직물에 비해 흡수성이 우수하고 촉감이 좋으며 생분해성이 있어 차세대 섬유로 간주되고 있으나 섬유의 열적성질의 열세로 고온처리가 불가하며 내약품성이 떨어지는 단점이 있다. 따라서 PLA 섬유의 정련 및 염색을 위해서는 기존의 합성섬유 정련방법으로는 만족할 만한 성과를 기대하기 어렵다.In general, the refining of synthetic fibers is processed at high temperature using a surfactant or using an alkali, but the advanced processing products are subjected to alkali refining. PLA fabrics dealt with in the present invention are considered to be next-generation fibers because they have better absorbency, better feel, and biodegradability than PET fabrics, but the high-temperature treatment is not possible due to the poor thermal properties of the fibers. Therefore, for the refining and dyeing of PLA fibers, it is difficult to expect satisfactory results with conventional synthetic fiber refining methods.

본 발명에서 제시하는 바이오 정련공정은 PLA의 정련을 수행함에 있어서 천연원료만을 사용하여 중성에서 짧은 시간 내에 낮은 온도로 처리함으로써 기존의 정련법에 의한 정련공정에 비해 사용되는 물과 에너지를 절약할 수 있는 환경친화적인 처리 공정이다. 또한 효소 정련으로 섬유 손상을 줄여 강도저하를 최소화하며 유연성을 증대시킬 수 있는 효과가 있다.Biorefining process proposed in the present invention can save the water and energy used compared to the refining process by the conventional refining process by treating only PLA using a natural raw material in a low temperature within a short time in performing the refining of PLA It is an environmentally friendly treatment process. In addition, enzyme refining has the effect of reducing fiber damage to minimize strength degradation and increase flexibility.

Claims (4)

PLA섬유를 프슈도모나스 스툴제리(Psudomonas stulzeri)종의 유제 분해효소인 리파아제 티엘(Lipase TL) 또는 알칼리제네스 에스피(Alkaligenes sp.)종의 유제분해효소인 리파아제 피엘(Lipase PL)을 함유하는 정련욕에 50℃에서 20분간 침지시킨 다음 수세하여 건조시키는 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법.PLA fiber was used in a scouring bath containing Lipase TL, which is an emulsion of Psudomonas stulzeri, or Lipase PL, which is an emulsion of lipase of Alkaligenes sp. A method for refining polylactic acid (Poly Latic Acid) fibers, which is immersed at 50 ° C. for 20 minutes and then washed with water. 청구항 1에 있어서, 정련 욕의 액성이 중성인 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법.The method of refining polylactic acid fibers according to claim 1, wherein the liquidity of the refining bath is neutral. 청구항 1 또는 청구항 2에 있어서, 정련 욕의 섬유 : 물의 비율을 1 : 20으로 하는 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법.The method for refining Poly Latic Acid fibers according to claim 1 or 2, wherein the ratio of fiber to water in the refining bath is 1:20. 청구항 3에 있어서, 정련욕에서의 효소의 사용량이 섬유 1g당 1000U인 것을 특징으로 하는 폴리락틱애시드(Poly Latic Acid) 섬유의 정련방법.The method according to claim 3, wherein the amount of enzyme used in the refining bath is 1000 U per gram of fiber.
KR1020050055108A 2005-06-24 2005-06-24 Scouring Porcess of Poly Latic Acid Fabric KR100693384B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050055108A KR100693384B1 (en) 2005-06-24 2005-06-24 Scouring Porcess of Poly Latic Acid Fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050055108A KR100693384B1 (en) 2005-06-24 2005-06-24 Scouring Porcess of Poly Latic Acid Fabric

Publications (2)

Publication Number Publication Date
KR20060135262A KR20060135262A (en) 2006-12-29
KR100693384B1 true KR100693384B1 (en) 2007-03-09

Family

ID=37813306

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050055108A KR100693384B1 (en) 2005-06-24 2005-06-24 Scouring Porcess of Poly Latic Acid Fabric

Country Status (1)

Country Link
KR (1) KR100693384B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584514B1 (en) * 1998-02-21 2006-05-29 아. 몬포르츠 텍스틸마쉬넨 게엠베하 운트 콤파니 카게 Drying and fixing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294612A (en) * 2014-10-20 2015-01-21 苏州富美纺织科技有限公司 Scouring agent for silk-cotton blended fabrics
CN104313886A (en) * 2014-10-20 2015-01-28 苏州富美纺织科技有限公司 Fabric scouring agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341067A (en) * 1993-04-12 1994-12-13 Osaka Prefecture Processing agent for fiber structure and processing process
KR20010022623A (en) * 1997-08-07 2001-03-26 쯔우라 다카시 Method of production of woven/knitted fabrics using sericin fixation yarn and woven/knitted fabric produced by the method
KR20010033266A (en) * 1997-12-19 2001-04-25 노보 노르디스크 바이오켐 노스 아메리카, 인코퍼레이티드 Continuous biopolishing of cellulose-containing fabrics
JP2001316985A (en) 2001-04-09 2001-11-16 Amano Enzyme Inc Method for treating surface of aliphatic polyester fiber by using enzyme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341067A (en) * 1993-04-12 1994-12-13 Osaka Prefecture Processing agent for fiber structure and processing process
KR20010022623A (en) * 1997-08-07 2001-03-26 쯔우라 다카시 Method of production of woven/knitted fabrics using sericin fixation yarn and woven/knitted fabric produced by the method
KR20010033266A (en) * 1997-12-19 2001-04-25 노보 노르디스크 바이오켐 노스 아메리카, 인코퍼레이티드 Continuous biopolishing of cellulose-containing fabrics
JP2001316985A (en) 2001-04-09 2001-11-16 Amano Enzyme Inc Method for treating surface of aliphatic polyester fiber by using enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584514B1 (en) * 1998-02-21 2006-05-29 아. 몬포르츠 텍스틸마쉬넨 게엠베하 운트 콤파니 카게 Drying and fixing device

Also Published As

Publication number Publication date
KR20060135262A (en) 2006-12-29

Similar Documents

Publication Publication Date Title
Shahid et al. Enzymatic processing of natural fibres: white biotechnology for sustainable development
Mojsov Application of enzymes in the textile industry: a review
EP0885311B1 (en) Enzyme treatment to enhance wettability and absorbency of textiles
Evans et al. Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties
Traore et al. Environmentally friendly scouring processes.
Kim et al. Lipase treatment of polyester fabrics
US20060042020A1 (en) Treatment of fabrics, fibers, or yarns
US20090311931A1 (en) Process For Pretreatment of Cellulose-Based Textile Materials
Mojsov Enzyme scouring of cotton fabrics: a review
Kabir et al. Sustainable textile processing by enzyme applications
Roy Choudhury Sustainable textile wet processing: Applications of enzymes
Hasan et al. Benefits of enzymatic process in textile wet processing
KR100693384B1 (en) Scouring Porcess of Poly Latic Acid Fabric
Lee et al. Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis
JPH10511410A (en) Enzyme preparation having cellulolytic activity
Noreen et al. Optimization of bio-polishing of polyester/cotton blended fabrics with cellulases prepared from Aspergillus niger
Mojsov Biotechnological applications of pectinases in textile processing and bioscouring of cotton fibers
Choudhury Enzyme applications in textile chemical processing
Liu et al. Enzymatic treatment of PET fabrics for improved hydrophilicity.
US20220356643A1 (en) Method for Improving Strength and Dyeing of Wool Fibers
Sawada et al. Modification of polylactic acid fiber with enzymatic treatment
TW201636476A (en) A method of treating polyester textile
Colombi et al. A sustainable approach for cotton bioscouring: reuse of the pectate lyase containing treatment bath
Mojsov Enzyme applications in textile preparatory process: A review
KR100656838B1 (en) Method of scouring cotton with Pectate Lyase produced from strain of Aspergillus Genus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120116

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee