KR100680066B1 - Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system - Google Patents

Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system Download PDF

Info

Publication number
KR100680066B1
KR100680066B1 KR1020050116681A KR20050116681A KR100680066B1 KR 100680066 B1 KR100680066 B1 KR 100680066B1 KR 1020050116681 A KR1020050116681 A KR 1020050116681A KR 20050116681 A KR20050116681 A KR 20050116681A KR 100680066 B1 KR100680066 B1 KR 100680066B1
Authority
KR
South Korea
Prior art keywords
mussel
hydrolyzate
hydrolysate
pepsin
molecular weight
Prior art date
Application number
KR1020050116681A
Other languages
Korean (ko)
Inventor
김세권
정원교
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020050116681A priority Critical patent/KR100680066B1/en
Application granted granted Critical
Publication of KR100680066B1 publication Critical patent/KR100680066B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A method for isolating a mussel antioxidative peptide from mussel hydrolysate is provided to separate only peptides showing most strong anti-oxidative activity from mussel protein by two step hydrolysis process, centrifugal process, dialysis process, freeze-drying process and three-step purification. The method comprises the steps of: (a) reacting pepsin with a first substrate, which is prepared by mixing 20 grams of mussel with 100 ml of water and then adjusting a pH thereof to be 1.8-2.2, at a temperature of 35-40 deg.C for 1.5-2 hours, where the ratio of the first substrate to the pepsin is 250:1, so as to obtain a first hydrolysate; (b) reacting a mixture of trypsin and alpha-chymotrypsin with a second substrate, which is prepared by mixing the first hydrolysate, a bile salt mixture, 1M CaCl2, 0.25M bistris, and 0.1% porcine pancreatic lipase and then adjusting a pH to be 8.0, at a temperature of 35-40 deg.C for 2-3 hours, where the ratio of the second substrate to the mixture is 250:1, so as to obtain a second hydrolysate; (c) after centrifuging the second hydrolysate under 10,000Îg at a temperature of 4 deg.C for 15 minutes to recover supernatant therefrom, dialyzing it using an electrodialysis device having a membrane transmitting molecules with less than 100 Da and then freeze-drying it to prepare a mussel hydrolysate; and (d) purifying the mussel hydrolysate through ion exchange liquid chromatography(LC), gel filtration LC, and C18 reversed phase LC to isolate single peptide.

Description

위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합 항산화 펩타이드 분리방법{Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system} Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system}

도 1는 본 발명의 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법의 제조흐름도       1 is a flow chart of a method for separating mussel antioxidant peptides from the hydrolyzate using the gastro-intestinal digestion system of the present invention

도 2는 본 발명의 홍합 가수분해물들의 변성조건 폴리아크릴아마이드 겔 (SDS-PAGE)상에서의 전기영동결과      Figure 2 shows the results of electrophoresis on denaturing polyacrylamide gel (SDS-PAGE) of the mussel hydrolyzate of the present invention

도 3은 본 발명의 홍합 가수분해물 정제에 따른 지질과산화 저해효과그래프       Figure 3 is a graph of lipid peroxidation inhibitory effect according to the purification of the mussel hydrolyzate of the present invention

도 4a는 본 발명 활성획분의 전기분무이온화 탄뎀질량분석기(ESI-QTOF tandem mass)를 이용한 아미노산 서열분석의 최종정제 홍합항산화 펩타이드의 1차이온 피크(peak)그래프     Figure 4a is the primary ion peak graph of the final purified mussel antioxidant peptide of amino acid sequencing using the electrospray ionization tandem mass spectrometer (ESI-QTOF tandem mass) of the present invention active fraction

도 4b는 본 발명 활성획분의 전기분무이온화 탄뎀질량분석기(ESI-QTOF tandem mass)를 이용한 아미노산 서역분석의 2차 이온화 및 분자이온 분석을 통한 아미노산 서열동정그래프     Figure 4b is an amino acid sequence identification graph through the secondary ionization and molecular ion analysis of amino acid translation analysis using the electrospray ionization tandem mass spectrometer (ESI-QTOF tandem mass) of the active fraction of the present invention

도 5는 본 발명의 홍합 위장관 가수분해물로부터 최종 정제된 항산화 펩타이드의 라디칼 소거능그래프 Figure 5 is a radical scavenging activity graph of the antioxidant peptide finally purified from the mussel gastrointestinal hydrolyzate of the present invention

본 발명은 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법에 관한 것으로, 더욱 상세하게는, 홍합단백질과 물을 혼합하여 위(胃)의 소화조건과 동일한 pH로 조절한 1차기질에 대하여, 펩신(Pepsin)을 위(胃)의 소화조건과 동일한 조건에서 1차가수분해하고; 1차가수분해를 통해 얻어진 가수분해물에 담즙산염 혼합물, 1M 염화칼슘, 0.25M 비스트리스(Bistris), 0.1% 돼지췌장 리파아제(porcine pancreatic lipase)를 혼합하여 pH를 조절한 2차기질에 대하여, 트립신(trypsin)과 알파-카이모트립신(α-chymotrypsin)을 소장(小腸)의 소화조건과 유사한 환경에서 저분자 펩타이드로 2차가수분해하고; 2차가수분해를 통해 얻어진 가수분해물을 원심분리과정과 투석과정을 거친 후, 동결건조하여 얻어진 위-소장 소화분해 시스템을 거친 홍합 가수분해물을 제조한 후, 이온교환 액체크로마토그래피(Ion exchange LC:Liquid Chromatography), 겔 여과 액체크로마토그래피(Gel filtration LC), 및 C18 역상 액체크로마토그래피(Reversed phase LC)를 이용한 연속적인 3단계의 정제과정을 거쳐; 가장 강한 항산화력을 나타내는 단일 펩티드를 분리하는 것을 특징으로 하여, 종래의 천연항산화제들 보다 우수한 지질 과산화 억제 활성화를 나타낼 뿐만아니라 활성 산소종과 라디칼, 과산화물질의 독성을 효과적으로 완화 혹은 제거할 수 있는 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법에 관한 것이다.      The present invention relates to a method for separating mussel antioxidant peptides from a hydrolyzate using a gastro-intestinal digestion system, and more specifically, by mixing mussel proteins and water to adjust the pH to the same digestive conditions of the stomach (胃) 1 For teasing, Pepsin is first hydrolyzed under the same conditions as the digestive conditions of the stomach; The hydrolyzate obtained through primary hydrolysis was mixed with bile salt mixture, 1M calcium chloride, 0.25M Bistris, and 0.1% porcine pancreatic lipase to adjust the pH of the secondary substrate, which was adjusted to trypsin ( trypsin) and alpha-chymotrypsin are secondary hydrolyzed to small molecule peptides in an environment similar to the digestive conditions of the small intestine; The hydrolyzate obtained through secondary hydrolysis was subjected to centrifugation and dialysis and then lyophilized to obtain a mussel hydrolyzate obtained by gastric-intestinal digestion system, followed by ion exchange liquid chromatography (Ion exchange LC: Liquid Chromatography, Gel filtration LC, and C18 Reversed Phase LC for three successive purification steps; It is characterized by the separation of a single peptide showing the strongest antioxidant power, which not only shows superior lipid peroxidation inhibitory activity than conventional natural antioxidants, but also effectively alleviates or eliminates the toxicity of reactive oxygen species, radicals and peroxides. -Isolation method of mussel antioxidant peptide from hydrolyzate using small intestine digestion system.

일반적으로, 항산화제는 산화를 방지하는 물질을 통칭하는 것으로 그 작용기작에 따라 자동산화의 연쇄반응을 제어하는 유리 라디칼 소거제, 과산화물을 비라디칼로 분해하여 불활성화시키는 과산화물 분해제(peroxide decomposer), 미량금속의 산화 촉진작용을 불활성화하는 금속 불활성화제(metal deactivator), 자동산화에 있어서 라디칼저해제와 공존시 항산화작용을 증가시키는 상승제(synergist) 및 각종 활성산소계를 소거하는 일중항산소 제거제 등으로 분류된다. Ingold(1968)는 항산화제를 다시 크게 두 그룹으로 나누었는데, 첫째 일차 또는 연쇄반응-종료 항산화제로서 지질라디칼과 반응하여 더욱 안정한 생산물로 바꾸는 그룹과 둘째 이차 또는 지연 항산화제로서 다른 작용기작에 의해 자동산화를 지연시키는 그룹으로 나누었다. 일차 항산화제는 상대적으로 안정한 라디칼을 만들기 위해 지질 유리라디칼에 수소원자를 제공함으로서 연쇄 반응의 연장을 저지하여 자동산화를 막는다. 이러한 형태의 항산화제는 대부분 페놀 화합물로서 토코페롤, 갈산과 그 유도체, 퀄세틴(quercetin), 람네틴(rhamnetin), 캄페롤(kampferol), 루틴(rutin), 퀄시트린(quercitrin) 및 카페인산(caffeic acid) 등의 플라보노이드(flavonoid)계가 알려져 있다.       In general, antioxidants are commonly referred to as substances that prevent oxidation, free radical scavengers that control the chain reaction of autooxidation according to the mechanism of action, peroxide decomposers that deactivate the peroxides by non-radicals, Metal deactivator to deactivate the oxidation promoting action of trace metals, synergist to increase antioxidant activity when co-existing with radical inhibitor in automatic oxidation, and singlet oxygen scavenger to eliminate various active oxygen system Are classified. Ingold (1968) divided antioxidants into two broad groups: first, as a primary or chain-reactive antioxidant, a group that reacts with lipid radicals to produce more stable products, and second, as a second or delayed antioxidant as a different mechanism of action. It was divided into groups that delayed automatic oxidation. Primary antioxidants block the prolongation of the chain reaction by providing hydrogen atoms to the lipid free radicals to make relatively stable radicals, preventing automatic oxidation. Antioxidants of this type are mostly phenolic compounds, such as tocopherol, gallic acid and derivatives thereof, quercetin, rhamnetin, camperol, rutin, quercitrin and caffeic acid. Flavonoids such as acid) are known.

이차 항산화제는 순수한 지질에서 항산화 효과를 나타내지 않지만 일차 항산화제의 효과를 증대시키거나 산화촉진제의 효과를 저해시킨다. 이러한 형태의 항산화제는 토코페롤과 같은 일차 항산화제와 상승작용을 가지는 인지질과 산화촉진 금속이온과 킬레이트되는 구연산 그리고 비타민 C 등이 있다. 대표적인 산화반응인 지질의 산패는 주로 높은 온도나 빛에 의해 생성된 지질 라디칼(L·)이나 일중항 산소(singlet oxygen)에 의해 과산화물의 생성과 분해가 연쇄적으로 일어나는 반응으로 이들 페놀성 항산화제가 존재시에는 페놀성 히드록시기가 유지의 유리기 수용체로서 작용하여 유지산패의 초기 단계에 생성된 유리기들이 안정한 공명 혼성체를 형성하도록 하여 산화 억제 작용을 하게 된다. 이러한 항산화제는 각종 식물 추출물, 향료, 발효생산물 등에 플라보노이드 또는 페놀계 화합물로 존재한다. 또한 동식물의 단백질을 산이나 각종 효소를 이용하여 가수분해시켜 생산한 올리고펩티드도 항산화활성을 나타낸다고 보고되고 있다(未綱 등, 1989; 本井, 1989). 합성 항산화제로는 입체 장애를 나타내는 큰 치환기를 가져 안정한 라디칼을 형성하여 항산화성을 나타내는 페놀계 화합물과 황계 화합물, 구연산과 그 유도체들, 인산과 그 유도체들(Macrae 등, 1993) 등이 알려져 있다.       Secondary antioxidants do not have antioxidant effects on pure lipids but increase the effectiveness of or inhibit the effects of primary antioxidants. Antioxidants in this form include phospholipids, synergistic citric acid chelates with oxidative metal ions, and vitamin C, which are synergistic with primary antioxidants such as tocopherol. The oxidation of lipids, which is a typical oxidation reaction, is a reaction in which the formation and decomposition of peroxides are mainly caused by lipid radicals (L ·) or singlet oxygen produced by high temperature or light. In the presence of phenolic hydroxy groups act as free radical acceptors of fats and oils, the free radicals produced in the early stages of fat and oil have a stable resonance hybrid to act as an antioxidant. Such antioxidants are present in various plant extracts, flavorings, fermentation products, etc. as flavonoids or phenolic compounds. It has also been reported that oligopeptides produced by hydrolyzing proteins and plants using an acid or various enzymes also exhibit antioxidant activity (未 綱 et al., 1989; 本 井, 1989). Synthetic antioxidants include phenolic compounds, sulfur compounds, citric acid and derivatives thereof, phosphoric acid and derivatives thereof (Macrae et al., 1993), which have a large substituent indicating steric hindrance to form stable radicals and exhibit antioxidant properties.

현재 항산화제의 연구 방향은 종래의 식품 산화방지제로서의 한정된 연구(大澤, 1985)에서 노화나 발암의 원인이 되는 산소 라디칼이나 산화물 라디칼의 소거제로서의 역할(八木, 1981)과 생체내 지질과산화 반응의 억제 또는 라디칼의 관여로 발생된다고 추정하는 변이원성(大澤, 1982) 및 암원성의 발현억제(大澤, 1983) 등의 효과에 관한 폭넓은 연구가 이루어지고 있다.       The current research direction of antioxidants is the role of scavengers of oxygen radicals and oxide radicals that cause aging and carcinogenesis in the limited study as a conventional food antioxidant (大 澤, 1985) and the in vivo lipid peroxidation reaction. Extensive research has been conducted on effects such as mutagenicity (大 澤, 1982) and cancer-induced expression suppression (大 澤, 1983), which are presumed to be caused by inhibition or radical involvement.

합성 항산화제는 동물실험에서 발생과 각종 효소군 등에 영향을 주고, 특히 BHT는 기형발생 또는 암발생에 관여하는 것으로 보고되어(Branen, 1975) 뛰어난 항산화효과에 비해 부작용으로 인해 문제시 되고 있는 반면, 천연 항산화제는 부작용이 거의 없어 식품첨가물 또는 약품으로 현재 널리 이용되고 있다. 그러나 천연 항산화제 중 가장 널리 이용되는 토코페롤의 경우 비싼 가격과 지용성이라는 이용상 의 제약을 갖기 때문에 대체 천연 항산화제의 개발이 요망되고 있다.       Synthetic antioxidants affect incidence and various enzyme groups in animal experiments. In particular, BHT has been reported to be involved in teratogenic or cancerous development (Branen, 1975). Natural antioxidants have little side effects and are now widely used as food additives or drugs. However, since tocopherol, which is the most widely used natural antioxidant, has limitations in terms of high price and fat soluble, development of alternative natural antioxidants is desired.

종래의 천연항산화제는 식품단백질 가수분해물로서 콩단백질인 베타 콘글리신(beta conglycinin)에서 분리한 N 말단에 류신(leucine)이나 발린(valine)을 포함하고 있는 펩티드(peptide), 달걀흰자의 알부민(albumin)에서 유래된 히스티딘(histidine)을 포함하고 있는 펩티드, 소 껍질(bovine skin) 가수분해물 에서 분리된 펩티드들이 항산화 효과를 나타내고 있는 것으로 알려져 있다.      Conventional natural antioxidants are food protein hydrolysates, peptides containing leucine or valine at the N terminus isolated from beta conglycinin, a soy protein, and albumin (egg of egg white). Peptides containing histidine derived from albumin and peptides isolated from bovine skin hydrolysates are known to have antioxidant effects.

그러나 ‘수산물 섭취 비율이 암 발병률 및 사망률과 유의적으로 반비례한다.’라는 사실은 미국 일본 등 수·해양 선진국의 역학적 통계조사에 의하여 널리 알려져 있음에도 그를 뒷받침할 과학적 근거가 부족할 뿐만 아니라, 음식물 섭취 시, 위와 소장의 생리적 소화과정과 동일한 가수분해 시스템하에서 노화나 암, 당뇨 등의 난치성 질환을 억제함을 과학적으로 증명한 사실은 상기 통계자료를 비롯한 어느 문헌에도 찾아볼 수 없는 실정이었다. However, the fact that fish consumption is inversely inversely proportional to cancer incidence and mortality, although it is widely known by epidemiological statistics from advanced countries such as the United States and Japan, lacks scientific evidence to support him. In the same hydrolysis system as the physiological digestive processes of the stomach and small intestine, scientific evidence of suppressing intractable diseases such as aging, cancer, and diabetes has not been found in any of the documents including the above statistical data.

따라서 본 발명의 목적은 상기와 같은 종래의 여러 가지 문제점을 개선시키기 위하여 안출한 것으로, 홍합단백질에서 가장 강한 항산화력을 나타내는 단일 펩티드만 분리하기 위해 2단계의 가수분해과정과 원심분리과정, 투석과정, 동결건조과정, 3단계의 정제과정을 가지는 것을 특징으로 하여 종래의 천연항산화제들 보다 우수한 지질 과산화 억제 활성화를 나타낼 뿐만아니라 활성 산소종과 라디칼, 과산 화물질의 독성을 효과적으로 완화 혹은 제거할 수 있는 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법을 제공하는데 그 목적이 있다. Therefore, the object of the present invention was devised to improve the various problems as described above, two-stage hydrolysis process, centrifugation process, dialysis process to separate only a single peptide showing the strongest antioxidant power in mussel protein , Freeze-drying process, three-stage purification process, not only shows superior lipid peroxidation inhibition activity than conventional natural antioxidants, but also effectively alleviates or eliminates the toxicity of reactive oxygen species, radicals and peroxides. It is an object of the present invention to provide a method for separating mussel antioxidant peptides from hydrolysates using a gastro-intestinal digestion system.

본 발명은 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법에 관한 것으로, 더욱 상세하게는, 홍합단백질과 물을 혼합하여 위(胃)의 소화조건과 동일한 pH로 조절한 1차기질에 대하여, 펩신(Pepsin)을 위(胃)의 소화조건과 동일한 조건에서 1차가수분해하고; 1차가수분해를 통해 얻어진 가수분해물에 담즙산염 혼합물, 1M 염화칼슘, 0.25M 비스트리스(Bistris), 0.1% 돼지췌장 리파아제(porcine pancreatic lipase)를 혼합하여 pH를 조절한 2차기질에 대하여, 트립신(trypsin)과 알파-카이모트립신(α-chymotrypsin)을 소장(小腸)의 소화조건과 유사한 환경에서 저분자 펩타이드로 2차가수분해하고; 2차가수분해를 통해 얻어진 가수분해물을 원심분리과정과 투석과정을 거친 후, 동결건조하여 얻어진 위-소장 소화분해 시스템을 거친 홍합 가수분해물을 제조한 후, 이온교환 액체크로마토그래피(Ion exchange LC:Liquid Chromatography), 겔 여과 액체크로마토그래피(Gel filtration LC), 및 C18 역상 액체크로마토그래피(Reversed phase LC)를 이용한 연속적인 3단계의 정제과정을 거쳐; 가장 강한 항산화력을 나타내는 단일 펩티드를 분리하는 것을 특징으로 하여, 종래의 천연항산화제들 보다 우수한 지질 과산화 억제 활성화를 나타낼 뿐만아니라 활성 산소종과 라디칼, 과산화물질의 독성을 효과적으로 완화 혹은 제거할 수 있는 위-소장 소화분해 시스템을 이용한 가 수분해물로부터 홍합항산화 펩타이드의 분리방법에 관한 것이다.      The present invention relates to a method for separating mussel antioxidant peptides from a hydrolyzate using a gastro-intestinal digestion system, and more specifically, by mixing mussel proteins and water to adjust the pH to the same digestive conditions of the stomach (胃) 1 For teasing, Pepsin is first hydrolyzed under the same conditions as the digestive conditions of the stomach; The hydrolyzate obtained through primary hydrolysis was mixed with bile salt mixture, 1M calcium chloride, 0.25M Bistris, and 0.1% porcine pancreatic lipase to adjust the pH of the secondary substrate, which was adjusted to trypsin ( trypsin) and alpha-chymotrypsin are secondary hydrolyzed to small molecule peptides in an environment similar to the digestive conditions of the small intestine; The hydrolyzate obtained through secondary hydrolysis was subjected to centrifugation and dialysis and then lyophilized to obtain a mussel hydrolyzate obtained by gastric-intestinal digestion system, followed by ion exchange liquid chromatography (Ion exchange LC: Liquid Chromatography, Gel filtration LC, and C18 Reversed Phase LC for three successive purification steps; It is characterized by the separation of a single peptide showing the strongest antioxidant power, which not only shows superior lipid peroxidation inhibitory activity than conventional natural antioxidants, but also effectively alleviates or eliminates the toxicity of reactive oxygen species, radicals and peroxides. -Isolation method of mussel antioxidant peptide from hydrolyzate using small intestine digestion system.

본 발명의 구성을 홍합항산화 펩타이드의 분리방법을 나타낸 실시예와, 항산화성을 측정하기 위한 실험예를 통하여 설명하면 다음과 같다.      When explaining the configuration of the present invention through an embodiment showing a separation method of the mussel antioxidant peptide, and an experimental example for measuring the antioxidant properties are as follows.

[[ 실시예Example ]] 위 -소장 소화분해 시스템을 이용한 Gastrointestinal digestive system 가수분해물로부터From hydrolyzate 홍합항산화Mussel antioxidant 펩타이드의Peptide 분리방법 Separation method

[가수분해물의 제조][Production of Hydrolyzate]

홍합 단백질을 20g에 물을 100㎖ 가하고, 위(胃) 소화조건과 동일한 pH 1.8~2.2으로 맞춘 1차기질에 대하여, 펩신(Pepsin, EC 3.4.23.1)을 250:1, 온도 35~40℃, 반응시간 1시간 30분~2시간으로 위(胃)조건과 유사한 환경에서 1차가수분해 시켰다. 1차가수분해물에 담즙산염 혼합물(0.125 M 타우로콜레이트, 0.125 M 글리코데옥시콜릭산), 1M 염화칼슘(CaCl), 0.25M 비스트리스(Bistris, pH 6.5), 0.1%(w/v) 돼지췌장 리파아제(porcine pancreatic lipase, EC 3.1.1.3)들과 함께 섞은 후, pH8.0로 맞춘 2차기질에 대해여, 트립신(trypsin, EC 3.4.21.4)과 알파-카이모트립신(α-chymotrypsin, EC 3.4.21.1)을 250:1, 온도 35~40℃, 반응시간 2시간~3시간으로 소장(小腸) 조건과 유사한 환경에서 2차가수분해 시켰다. 2차가수분해 후, 원심분리(10,000×g, 15분, 4℃)하여 상층액 만 회수한 다음, 100 Da 이하 분자량 투과막을 장치한 전기투석장치(electrodialyzer, Micro Acilyzer model G3, 아사히 화학공업사 제품, 도쿄, 일본)를 이용하여 투석한 다음, 동결 건조하여 위-소장 소화분해 시스템을 거친 홍합 가수분해물로 사용하였다.     To 20 g of mussel protein, 100 ml of water is added, and pepsin (Pepsin, EC 3.4.23.1) is 250: 1 for a primary substrate adjusted to pH 1.8-2.2, which is the same as gastric digestion conditions. The reaction time was 1 hour 30 minutes to 2 hours, and the first hydrolysis was carried out in an environment similar to the above conditions. Bile salt mixture (0.125 M taurocholate, 0.125 M glycodeoxycholic acid), 1 M calcium chloride (CaCl), 0.25 M Bistris (pH 6.5), 0.1% (w / v) porcine pancreas in primary hydrolysate After mixing with lipase (porcine pancreatic lipase, EC 3.1.1.3), trypsin (EC 3.4.21.4) and alpha-chymotrypsin (α EC 3.4. .21.1) was subjected to secondary hydrolysis at 250: 1, temperature 35-40 ° C., and reaction time 2 hours to 3 hours in an environment similar to the intestine conditions. After secondary hydrolysis, centrifugation (10,000 × g, 15 min, 4 ° C.) was used to recover only the supernatant, followed by an electrodialyzer equipped with a molecular weight permeation membrane of 100 Da or less (electrodialyzer, Micro Acilyzer model G3, manufactured by Asahi Chemical Co., Ltd.). , Tokyo, Japan), followed by lyophilization and use as a mussel hydrolyzate via a gastro-intestinal digestion system.

홍합을 인체의 위(胃), 소장(小腸)의 생리조건과 동일한 과정을 통해 1, 2차가수분해시킨 결과, 대부분이 분자량 15kDa이하의 저분자 펩타이드로 가수분해 되었음을 알 수 있었다(도 2 참조).       As a result of the first and second hydrolysis of mussels through the same process as the physiological conditions of the stomach and small intestine of the human body, most of the mussels were hydrolyzed to low molecular weight peptides having a molecular weight of 15 kDa or less (see FIG. 2). .

도 2의 홍합 가수분해물들의 변성조건 폴리아크릴아마이드 겔 (SDS-PAGE)상에서 전기영동결과이며 G는 위(胃)에서 가수분해물(gastric digestion), D는 십이지장에서 가수분해물(duodenal digestion)을 나타낸다.      Denatured conditions of the mussel hydrolyzates of Figure 2 electrophoresis results on polyacrylamide gel (SDS-PAGE), G is the gastric digestion (gastric digestion) in the stomach, D represents the duodenal digestion (duodenal digestion) in the duodenum.

[항산화성 펩티드의 분리 및 정제][Isolation and Purification of Antioxidant Peptides]

위-소장 소화분해 시스템을 거친 홍합 가수분해물을 20 mM 소디움아세테이트 완충용액(sodium acetate buffer, pH 4.0) 평형화시킨 음이온 교환수지 충진 칼럼(Hiprep 16/10 DEAE FF anion exchange column)으로 분리하여 얻어진 획분을 투석(제품명 spectraper membrane tubing, 제조사 sartorius, 독일)하여 염을 제거하고 동결건조하였다. 동결건조물의 분획별 항산화성을 측정한 후 한산화력이 높은 획분을 고성능액체크로마토그래피(HPLC) 시스템 상에서 역상크로마토그래피 칼럼 (reversed-phase LC colume) 10.0 × 250㎜을 사용하여 용리하였다. 용리속도는 1.0㎖/min, 이동상으로는 증류수와 0.1-40%(v/v) 아세토니트릴을 사용하여 선형상 농도구배법으로 215과 280에서 흡광도를 측정하였다.       The fraction obtained by separating the mussel hydrolyzate from the gastro-intestinal digestion system into a Hireprep 16/10 DEAE FF anion exchange column equilibrated with 20 mM sodium acetate buffer (pH 4.0). Dialysis (product name spectraper membrane tubing, manufacturer sartorius, Germany) removed the salt and lyophilized. After measuring the fractional antioxidant properties of the lyophilisate, the highly antioxidative fraction was eluted using a reversed-phase LC column 10.0 × 250 mm on a high performance liquid chromatography (HPLC) system. The elution rate was 1.0 ml / min, and the absorbance was measured at 215 and 280 by linear phase gradient using distilled water and 0.1-40% (v / v) acetonitrile as the mobile phase.

위-소장 소화분해 시스템을 거친 홍합 가수분해물에서 가장 강한 항산화력을 나타내는 단일 펩티드만 분리하기 위해 3단계의 정제과정, 즉 이온교환 액체크로마토그래피(Ion exchange LC:Liquid Chromatography), 겔 여과 액체크로마토그래피(Gel filtration LC), 및 C18 역상 액체크로마토그래피(Reversed phase LC)를 이용하여 연속적으로 분리하였으며 각각의 지질 과산화 억제효과를 천연 항산화제인 토코페롤(vit E) 및 아스코르브산(vit C)와 비교, 정량화 하였다(도 3참조).      Three steps of purification, Ion exchange LC (Liquid Chromatography), gel filtration liquid chromatography, to separate only the single peptide with the strongest antioxidant power from the mussel hydrolyzate after gastric-intestinal digestion (Gel filtration LC) and C18 Reversed Phase LC were used to isolate and quantify each lipid peroxidation inhibitory effect compared with natural antioxidants, tocopherol (vit E) and ascorbic acid (vit C). (See FIG. 3).

음이온 크로마토그래피의 분획물 중에서 항산화성이 뛰어난 펩티드가 함유되어 있는 획분을 동결건조한 후, 역상 크로마토그래피 컬럼(ODS(octadecylsilane) C18 reversed phase column)이 장착된 고성능액체크로마토그래피(HPLC)를 이용하여 HO와 아세토니트릴(acetonitrile)용액으로 선형상 농도 구배법(0.1-40% 아세토니트릴, 40min)으로 융출시켜(1㎖) 분리한 결과 획분 3개로 나뉘어졌다. 3개로 분획된 획분의 항산화성을 측정한 결과 가장 뛰어난 활성 획분을 전기분무이온화 탄뎀질량분석(ESI-QTOF tandem mass)을 통하여 분자량과 아미노산서열을 확인하였으며, 그 결과 분자량이 1.5kDa인 단일 펩티드, 루신-발린-글라이신-글루타메이트-글루타민-알라닌-발린-프롤린-알라닌-발린-시스틴-발린-프롤린(LVGEQAVPAVCVP) 임을 확인되었다(도 4a, 도 4b 참조).      After lyophilization of the fraction containing the peptide with excellent antioxidant properties in the fraction of anion chromatography, high performance liquid chromatography (HPLC) equipped with an octadecylsilane (ODS) octadecylsilane (ODS) C18 reversed phase column (HPLC) The mixture was separated by melting (1 ml) with an acetonitrile solution by linear concentration gradient method (0.1-40% acetonitrile, 40 min) and divided into three fractions. As a result of measuring the antioxidant properties of the three fractions, the molecular weight and amino acid sequence were confirmed by the electrospray ionization tandem mass spectrometry (ESI-QTOF tandem mass). As a result, a single peptide having a molecular weight of 1.5 kDa, It was confirmed that it was leucine-valine-glycine-glutamate-glutamine-alanine-valine-proline-alanine-valine-cystine-valine-proline (LVGEQAVPAVCVP) (see FIG. 4A, FIG. 4B).

[[ 실험예Experimental Example ]] 항산화성 측정Antioxidant Measurement

[리놀레산 에멀젼(linoleic acid emulsion) 제조] [Manufacture of linoleic acid emulsion]

리놀레산 에멀젼(linoleic acid emulsion) 은 Osawa(1981)의 방법에 따라 제조하였다. 즉, 리놀레산 0.13㎖, 에탄올 10㎖, 50mM 인산완충용액(pH 7.0) 10㎖를 혼합하고, 이 혼합물에 가수분해물을 리놀레산(linoleic acid)에 대해 각각 1%(w/w)의 농도로 첨가하여 40±1℃로 조절된 항온기내에서 저장하여 자동산화를 촉진시켰다.       Linoleic acid emulsion was prepared according to the method of Osawa (1981). That is, 0.13 ml of linoleic acid, 10 ml of ethanol, and 10 ml of 50 mM phosphate buffer solution (pH 7.0) were mixed, and hydrolyzate was added to the mixture at a concentration of 1% (w / w) for linoleic acid, respectively. Storage in a thermostat controlled at 40 ± 1 ° C. promotes automatic oxidation.

[페릭치오시아네이트(Ferric thiocyanate) 방법][Ferric thiocyanate method]

페릭치오시아네이트(Ferric thiocyanate) 의한 항산화 활성 측정은 Mitsuda(1966)등의 방법에 따라 실시하였다. 즉, 유지 혼탁액 0.1㎖에 75% 에탄올 4.7㎖, 30% 암모늄 치오시아네이트(ammonium thiocyanate)0.1㎖ 및 2×10 M 염화제일철(ferrous chloride)/3.5% 염산(HCl) 0.1㎖를 가한 후 3분간 실온에서 장치한 후 500 nm에서 흡광도를 측정하였다.    Antioxidant activity was measured by Ferric thiocyanate according to the method of Mitsuda (1966) et al. That is, after adding 0.1 ml of 75% ethanol, 0.1 ml of 30% ammonium thiocyanate and 0.1 ml of 2 × 10 M ferrous chloride / 3.5% hydrochloric acid (HCl) to 0.1 ml of the oil-based turbidity solution, Absorbance was measured at 500 nm after being set at room temperature for minutes.

[자유라디칼소거능(Radical scavenging activity) 측정] [Measurement of free radical scavenging activity]

본 획분 DPPH 라디칼(radical), 슈퍼옥사이드 라디칼(cuperoxide radica), 하이드록시 라디칼(Hydroxyl radical)을 전자스핀공명 분광광도계(electron spin resonance spectroscopy)를 이용하여 측정한 자유라디칼 소거능의 실험에서 유의적인 활성을 보여주었다(도 5참조).       Significant activity of free radical scavenging activity measured by electron spin resonance spectroscopy of the DPDP radicals, cupoxide oxides, and hydroxy radicals was measured using electron spin resonance spectroscopy. Shown (see FIG. 5).

획분 소거능의 라디칼(radical) 농도 백분율의 계산은 다음과 같다.        The calculation of the radical concentration percentage of fraction scavenging ability is as follows.

1. DPPH 라디칼 소거능(radical scavenging activity) 측정 1. Measurement of DPPH radical scavenging activity

DPPH 라디칼(radical) 소거기능은 사람명 Nanjo(1996) 등의 방법에 따라 시행하였다. 즉, 60uM DPPH 에탄올 용액 60㎕ 와 60㎕ 가수분해물 용액을 혼합한 후, 혼합한 용액을 quartz capillary tube에 옮긴 후 2분후에 전자스핀공명 분광광도계(electron spin resonance spectroscopy)로 측정하였다. 스펙트럼은 전기장(field): 336.5 ± 5 mT, 파워(power): 5㎽, 진폭(amplitude): 1× 1000, 변조너비(modulation width): 0.8 mT. 일소너비(sweep width): 10 mT, 일소시간(sweep time): 30s의 조건으로 기록하였다. 아래의 식을 이용하여 DPPH 라디칼 소거능력를 계산하였다.        DPPH radical scavenging was performed according to the method of human name Nanjo (1996). That is, after mixing 60 μl of 60 μM DPPH ethanol solution and 60 μl hydrolyzate solution, the mixed solution was transferred to a quartz capillary tube and measured by electron spin resonance spectroscopy after 2 minutes. The spectrum is 336.5 ± 5 mT, power: 5 Hz, amplitude: 1 × 1000, modulation width: 0.8 mT. It was recorded under conditions of a sweep width of 10 mT and a sweep time of 30 s. DPPH radical scavenging ability was calculated using the following equation.

DPPH 라디칼 소거능력, % = [100 - (샘플처리시 전자스핀공명시그날 면적/샘플무처리시 전자스핀공명시그날 면적)]×100.        DPPH radical scavenging ability,% = [100-(electron spin resonance signal area at sample treatment / electron spin resonance signal area at no sample treatment)] × 100.

2. 슈퍼옥사이드 라디칼 소거능(Superoxide radical scavenging activity) 측정 2. Superoxide radical scavenging activity

슈퍼옥사이드 라디칼 소거능력은 Gue(1999)등의 방법에 따라 측정하였다. 즉, 0.3 mM 리보플라빈(riboflavin) 20㎕, 5.0 mM EDTA 20㎕, 0.1 M DMPO 20㎕ 와 가수분해물 용액 20㎕ 혼합한 후, 365 nM의 UV 램프로 1분간 쪼이고, 쪼인 용액을 석영모세관(quartz capillary tube)에 옮긴 후, 2분후에 전자스핀공명 분광광도계 (electron spin resonance spectroscopy)로 측정하였다. 스펙트럼은 전기장(field): 336.5 ±5 mT, 파워(power): 10㎽, 진폭(amplitude): 1× 1000, 주사너비(scan width): 10 mT, 일소시간(sweep time): 30s의 조건으로 기록하였다. 아래의 식을 이용하여 슈퍼옥사이드 라디칼 소거능력(superoxide radical scavenging activity)를 계산하였다.       Superoxide radical scavenging ability was measured according to the method of Gue (1999). That is, 20 μl of 0.3 mM riboflavin, 20 μl of 5.0 mM EDTA, 20 μl of 0.1 M DMPO and 20 μl of a hydrolyzate solution are mixed, followed by 1 minute with a 365 nM UV lamp, and the solution is added to a quartz capillary. tube), and after 2 minutes, it was measured by electron spin resonance spectroscopy (electron spin resonance spectroscopy). Spectrum is based on a field of 336.5 ± 5 mT, power: 10 ㎽, amplitude: 1 × 1000, scan width: 10 mT, sweep time: 30 s Recorded. Superoxide radical scavenging activity was calculated using the following equation.

슈퍼옥사이드 라디칼 소거능, % = [100 - (샘플처리시 전자스핀공명시그날 면적/샘플무처리시 전자스핀공명시그날 면적)]×100.       Superoxide radical scavenging ability,% = [100-(electron spin resonance signal area in sample treatment / electron spin resonance signal area in no sample treatment)] × 100.

3. 과산화수소 라디칼 소거능(Hydroxyl radical scavenging activity )측정 3. Measurement of Hydrogen Peroxide Radical Scavenging Activity

과산화수소 라디칼(Hydroxyl radical) 소거기능은 Rosen G.M (1984)의 방법에 준하여 측정하였다. 즉, 가수분해물 용액 0.2㎖에 0.3M 5,5-디메틸-1-피롤린 N-옥사이드 0.2㎖ (5,5-dimethyl-1-pyrroline N-oxide (DMPO)) 0.2㎖ 10 mM 황산철(FeSO4)를 0.2㎖, 10 mM HO 0.2㎖ 혼합한 다음 실온에서 2.5분 방치한 후에 quartz capillary tube에 옮겨 전자스핀공명 분광광도계(electron spin resonance spectroscopy) 로 측정하였다. 스펙트럼은 전기장(field): 336.5 ± 5 mT, 파워(power): 1㎽, 진폭(amplitude): 1× 200, 조정너비(modulation width): 0.1 mT. 일소너비(sweep width): 10 mT, 일소시간(sweep time): 30s의 조건으로 기록하였다. 아래의 식을 이용하여 과산화수소라디칼의 소거능(hydroxyl radical scavenging activity)를 계산하였다.       Hydrogen peroxide radical scavenging function was measured according to the method of Rosen G.M (1984). 0.2 ml of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) 0.2 ml 10 mM iron sulfate (FeSO4) in 0.2 ml of the hydrolyzate solution. ) Was mixed with 0.2 ml of 10 mM HO and 0.2 ml of 10 mM HO, and then left at room temperature for 2.5 minutes, and then transferred to a quartz capillary tube, which was measured by electron spin resonance spectroscopy. The spectrum is 336.5 ± 5 mT, power: 1 ㎽, amplitude: 1 × 200, modulation width: 0.1 mT. It was recorded under conditions of a sweep width of 10 mT and a sweep time of 30 s. Hydroxy peroxide radical scavenging activity was calculated using the equation below.

과산화수소 라디칼 소거능 = [100 - (샘플처리시 전자스핀공명시그날 면적/샘플무처리시 전자스핀공명시그날 면적)]×100.  Hydrogen peroxide radical scavenging ability = [100 − (electron spin resonance signal area when sample treated / electron spin resonance signal area when sample not treated)] × 100.

전술한 구성 및 작용에 의한 효과를 상세하게 설명하면 다음과 같다.        Referring to the effects of the above-described configuration and operation in detail as follows.

본 발명의 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합 항산화 펩타이드의 분리방법은 홍합단백질의 2단계의 가수분해 과정과 원심분리과정, 투석과정, 동결건조과정, 3단계의 정제과정을 통하여 인체에 해로운 활성 산소종과 라디칼, 과산화물질의 독성을 효과적으로 완화 혹은 제거하는 효과를 가지는 단일 펩타이드를 제공한다. Separation method of mussel antioxidant peptide from hydrolyzate using gastric-small intestine digestion system of the present invention is a human body through two steps of hydrolysis and centrifugation, dialysis, freeze-drying, three steps of purification process of mussel protein It provides a single peptide having the effect of effectively alleviating or eliminating the harmful toxins of free radicals, radicals and peroxides.

Claims (2)

항산화 펩타이드의 분리방법에 있어서,         In the method for separating the antioxidant peptide, 홍합단백질 20 g과 물100 ml 을 혼합하여 pH를 1.8 - 2.2으로 조절한 1차기질에 대하여, 체온과 같은 35~40℃에서 반응시간 1시간30분~2시간의 조건하에서 펩신(Pepsin)을 250:1로 반응시켜 1차가수분해하고;         20 ml of mussel protein and 100 ml of water were mixed with Pepsin (Pepsin) under conditions of reaction time of 1 hour 30 minutes to 2 hours at 35-40 ° C, such as body temperature, to adjust the pH to 1.8-2.2. Primary hydrolysis by reaction at 250: 1; 1차가수분해를 통해 얻어진 가수분해물에 담즙산염 혼합물(a bile salt mixture), 1M 염화칼슘(CaCl), 0.25M 비스트리스(Bistris), 0.1% 돼지췌장 리파아제(porcine pancreatic lipase)를 혼합하여 pH를 8.0으로 조절한 2차기질에 대하여, 35~40℃에서 반응시간은 2시간~3시간의 조건하에서 트립신(trypsin)과 알파-카이모트립신(α-chymotrypsin)의 혼합물을 250:1 로 반응시켜 분자량 15kDa이하의 저분자 펩타이드로 2차가수분해하고;         The pH was 8.0 by mixing a bile salt mixture, 1M calcium chloride (CaCl), 0.25M Bistris, and 0.1% porcine pancreatic lipase to the hydrolyzate obtained through primary hydrolysis. Reaction time at 35 to 40 ° C. was controlled by 250: 1 reaction mixture of trypsin and alpha-chymotrypsin at a molecular weight of 15 kDa under conditions of 2 to 3 hours. Secondary hydrolysis with the following low molecular weight peptides; 2차가수분해를 통해 얻어진 가수분해물을 10,000 × g에서, 4 ℃의 조건하에서 15분간 원심분리하여 상층액만 회수한 다음, 100 Da 이하 분자량 투과막을 장치한 전기투석장치를 이용하여 투석하여 동결건조하여 홍합 가수분해물을 제조한 후;       The hydrolyzate obtained through secondary hydrolysis was centrifuged at 10,000 x g for 15 minutes at 4 ° C to recover only the supernatant, followed by dialysis using an electrodialysis apparatus equipped with a molecular weight permeation membrane of 100 Da or less and lyophilized. To prepare mussel hydrolyzate; 제조된 위-소장 소화분해 시스템을 거친 홍합 가수분해물에 이온교환 액체크로마토그래피(Ion exchange LC:Liquid Chromatography), 겔 여과 액체크로마토그래피(Gel filtration LC), 및 C18 역상 액체크로마토그래피(Reversed phase LC)를 이용한 정제과정거쳐 단일 펩티드를 분리하는 것을 특징으로 하는 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드의 분리방법. Ion exchange LC (Liquid Chromatography), Gel filtration LC, and C18 Reversed Phase LC on mussel hydrolysate prepared through gastric-intestinal digestion system Separation method of the mussel antioxidant peptide from the hydrolyzate using a gastro-intestinal digestion system, characterized in that to separate a single peptide through a purification process. 항산화 펩타이드의 분리방법에 있어서,         In the method for separating the antioxidant peptide, 홍합단백질 20 g과 물100 ml 을 혼합하여 pH를 1.8 - 2.2으로 조절한 1차기질에 대하여, 체온과 같은 35~40℃에서 반응시간 1시간30분~2시간의 조건하에서 펩신(Pepsin)을 250:1로 반응시켜 1차가수분해하고;         20 ml of mussel protein and 100 ml of water were mixed with Pepsin (Pepsin) under conditions of reaction time of 1 hour 30 minutes to 2 hours at 35-40 ° C, such as body temperature, to adjust the pH to 1.8-2.2. Primary hydrolysis by reaction at 250: 1; 1차가수분해를 통해 얻어진 가수분해물에 담즙산염 혼합물(a bile salt mixture), 1M 염화칼슘(CaCl), 0.25M 비스트리스(Bistris), 0.1% 돼지췌장 리파아제(porcine pancreatic lipase)를 혼합하여 pH를 8.0으로 조절한 2차기질에 대하여, 35~40℃에서 반응시간은 2시간~3시간의 조건하에서 트립신(trypsin)과 알파-카이모트립신(α-chymotrypsin)의 혼합물을 250:1 로 반응시켜 분자량 15kDa이하의 저분자 펩타이드로 2차가수분해하고;        The pH was 8.0 by mixing a bile salt mixture, 1M calcium chloride (CaCl), 0.25M Bistris, and 0.1% porcine pancreatic lipase to the hydrolyzate obtained through primary hydrolysis. Reaction time at 35 to 40 ° C. was controlled by 250: 1 reaction mixture of trypsin and alpha-chymotrypsin at a molecular weight of 15 kDa under conditions of 2 to 3 hours. Secondary hydrolysis with the following low molecular weight peptides; 2차가수분해를 통해 얻어진 가수분해물을 10,000 × g에서, 4 ℃의 조건하에서 15분간 원심분리하여 상층액만 회수한 다음, 100 Da 이하 분자량 투과막을 장치한 전기투석장치를 이용하여 투석하여 동결건조하여 홍합 가수분해물을 제조한 후;        The hydrolyzate obtained through secondary hydrolysis was centrifuged at 10,000 x g for 15 minutes at 4 ° C to recover only the supernatant, followed by dialysis using an electrodialysis apparatus equipped with a molecular weight permeation membrane of 100 Da or less and lyophilized. To prepare mussel hydrolyzate; 제조된 위-소장 소화분해 시스템을 거친 홍합 가수분해물에 이온교환 액체크로마토그래피(Ion exchange LC:Liquid Chromatography), 겔 여과 액체크로마토그래피(Gel filtration LC), 및 C18 역상 액체크로마토그래피(Reversed phase LC)를 이용한 정제과정거쳐 단일 펩티드를 분리하는 것을 특징으로 하는 위-소장 소화분해 시스템을 이용한 가수분해물로부터 홍합항산화 펩타이드.        Ion exchange LC (Liquid Chromatography), Gel filtration LC, and C18 Reversed Phase LC on mussel hydrolysate prepared through gastric-intestinal digestion system Mussel antioxidant peptide from the hydrolyzate using a gastro-intestinal digestion system, characterized in that to separate a single peptide through a purification process using.
KR1020050116681A 2005-12-02 2005-12-02 Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system KR100680066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050116681A KR100680066B1 (en) 2005-12-02 2005-12-02 Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050116681A KR100680066B1 (en) 2005-12-02 2005-12-02 Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system

Publications (1)

Publication Number Publication Date
KR100680066B1 true KR100680066B1 (en) 2007-02-07

Family

ID=38105699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050116681A KR100680066B1 (en) 2005-12-02 2005-12-02 Isolation of antioxidative peptide from mussel digests hydrolyzed in gastrointestinal digestion system

Country Status (1)

Country Link
KR (1) KR100680066B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049044A (en) * 2010-11-08 2012-05-16 건국대학교 산학협력단 Anticancer composition comprising enzymatic hydrolysates of mytilus coruscus
KR101147847B1 (en) * 2010-06-02 2012-05-24 건국대학교 산학협력단 Method for isolating and purifying functional peptide derived from shellfish and the use of the functional peptide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980034825A (en) * 1996-11-08 1998-08-05 김세권 Antioxidant Peptide and Method of Production thereof
KR20050099747A (en) * 2004-04-12 2005-10-17 부경대학교 산학협력단 Composition for anti-oxidant containing hydrolysates from hoki skin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980034825A (en) * 1996-11-08 1998-08-05 김세권 Antioxidant Peptide and Method of Production thereof
KR20050099747A (en) * 2004-04-12 2005-10-17 부경대학교 산학협력단 Composition for anti-oxidant containing hydrolysates from hoki skin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147847B1 (en) * 2010-06-02 2012-05-24 건국대학교 산학협력단 Method for isolating and purifying functional peptide derived from shellfish and the use of the functional peptide
KR20120049044A (en) * 2010-11-08 2012-05-16 건국대학교 산학협력단 Anticancer composition comprising enzymatic hydrolysates of mytilus coruscus

Similar Documents

Publication Publication Date Title
Harnedy et al. Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate
Chen et al. Purification and identification of antioxidant peptides from egg white protein hydrolysate
Abeyrathne et al. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides–A review
Jiang et al. Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins
Asoodeh et al. Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis
Ko et al. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases
Maqsoudlou et al. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly
Kim et al. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion
Zhuang et al. Purification and identification of antioxidant peptides from corn gluten meal
Ahmed et al. Identification of potent antioxidant bioactive peptides from goat milk proteins
Tanzadehpanah et al. An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates
Zhu et al. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase
Nimalaratne et al. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white
Corrêa et al. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease
Moure et al. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates
Corrêa et al. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities
Je et al. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis
Qian et al. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw
Tang et al. Evaluation of antioxidant activities of zein protein fractions
Chen et al. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion
Zhang et al. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates
Hsu et al. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis)
Kim et al. Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein
Shazly et al. Release of antioxidant peptides from buffalo and bovine caseins: Influence of proteases on antioxidant capacities
Abeyrathne et al. Enzymatic hydrolysis of ovalbumin and the functional properties of the hydrolysates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110207

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee