KR100678340B1 - A compound having selectively chromogenic character by binding a specific metal-ion - Google Patents

A compound having selectively chromogenic character by binding a specific metal-ion Download PDF

Info

Publication number
KR100678340B1
KR100678340B1 KR1020040103584A KR20040103584A KR100678340B1 KR 100678340 B1 KR100678340 B1 KR 100678340B1 KR 1020040103584 A KR1020040103584 A KR 1020040103584A KR 20040103584 A KR20040103584 A KR 20040103584A KR 100678340 B1 KR100678340 B1 KR 100678340B1
Authority
KR
South Korea
Prior art keywords
compound
ion
ions
group
iii
Prior art date
Application number
KR1020040103584A
Other languages
Korean (ko)
Other versions
KR20060064903A (en
Inventor
정종화
이수진
이석훈
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to KR1020040103584A priority Critical patent/KR100678340B1/en
Publication of KR20060064903A publication Critical patent/KR20060064903A/en
Application granted granted Critical
Publication of KR100678340B1 publication Critical patent/KR100678340B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/35Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/02Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides
    • C07C245/06Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
    • C07C245/08Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings with the two nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/09Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring

Abstract

본 발명은 특정 금속이온에 대하여 선택적 발색성을 갖는 화합물에 관한 것으로 보다 상세히는 질소원자와 산소원자가 전자쌍 주개역할을 하여 금속이온과 결합하는 사이트와 발색단으로 구성되어 특정이온과의 반응시에만 선택적으로 발색하는 비고리형의 화합물에 대한 것이다.The present invention relates to a compound having selective color development for a specific metal ion, and more particularly, it is composed of a site and a chromophore in which a nitrogen atom and an oxygen atom are combined with a metal ion by acting as an electron-pair donor to selectively color only when reacting with a specific ion. To acyclic compounds.

상기 화합물은 질소원자와 산소원자를 동시에 가지므로써 전이금속 중 특히, 구리 및 알루미늄이온에 대한 선택적 발색성을 갖는 것을 특징으로 한다.The compound is characterized by having a selective color development for the transition metal, in particular copper and aluminum ions by having a nitrogen atom and an oxygen atom at the same time.

발색단, 구리이온, 선택적 발색성, 비고리형Chromophore, Copper Ion, Selective Chromaticity, Acyclic

Description

특정 금속이온에 대해 선택적 발색성을 갖는 화합물{A compound having selectively chromogenic character by binding a specific metal-ion} A compound having selectively chromogenic character by binding a specific metal-ion}             

도 1은 발색단과 인식부로 구성된 리간드의 착물형성에 의한 발색과정 도식화.1 is a schematic of the color development process by complex formation of a ligand consisting of a chromophore and a recognition unit.

도 2는 발색단이 도입된 호스트의 게스트 이온 인식 메카니즘의 도식화.2 is a schematic of the guest ion recognition mechanism of the host with the chromophore introduced.

G: 게스트; X, Y: 헤테로원자; -ㆍ-: 결합 사이트G: guest; X, Y: heteroatom; -·-: Join site

도 3은 화합물 I과 질산 금속이온(5당량)적정 후 측정한 UV 흡수스펙트럼.3 is a UV absorption spectrum measured after titration of Compound I and metal nitrate (5 equivalents).

도 4는 화합물 Ⅱ와 질산 금속이온(5당량)적정 후 측정한 UV 흡수스펙트럼.Figure 4 is a UV absorption spectrum measured after titration of compound II and metal nitrate (5 equivalents).

도 5은 화합물 Ⅲ와 질산 금속이온(5당량)적정 후 측정한 UV 흡수스펙트럼.5 is a UV absorption spectrum measured after titration of compound III and metal nitrate (5 equivalents).

도 6은 화합물 Ⅲ와 질산구리(Ⅱ)의 당량별 적정.6 is a titration according to the equivalent of compound III and copper nitrate (II).

도 7은 화합물 Ⅲ과 구리이온 착물의 흡수피크인 325nm에서 구리의 몰분율과 흡광도의 관계를 도시한 그래프.Fig. 7 is a graph showing the relationship between the mole fraction of copper and the absorbance at 325 nm, which is the absorption peak of compound III and copper ion complex.

도 8은 화합물 Ⅲ의 구리이온과 납이온에 대한 발색확인 실험결과.8 is a color confirmation test results for the copper ions and lead ions of compound III.

(a) 화합물 Ⅲ, (b) 화합물 Ⅲ와 Pb2+의 착물, (c) 화합물 Ⅲ와 Cu2+의 착물(a) Compound III, (b) Complex of Compound III with Pb 2+ , (c) Complex of Compound III with Cu 2+

본 발명은 특정 금속이온에 대하여 선택적 발색성을 갖는 화합물에 관한 것으로 보다 상세히는 질소원자와 산소원자가 전자쌍 주개역할을 하는 금속이온 결합사이트와 발색단으로 구성되어 특정이온과의 반응시에만 선택적으로 발색하는 비고리형의 화합물에 대한 것이다.The present invention relates to a compound having a selective color development for a specific metal ion, and more specifically composed of a metal ion binding site and a chromophore in which a nitrogen atom and an oxygen atom act as an electron pair opening reaction, and selectively color only when reacting with a specific ion. It is about a compound of a li form.

상기 화합물은 질소원자와 산소원자를 동시에 가지므로써 전이금속 중 특히, 구리 및 알루미늄이온에 대한 선택적 발색성을 갖는 것을 특징으로 한다.The compound is characterized by having a selective color development for the transition metal, in particular copper and aluminum ions by having a nitrogen atom and an oxygen atom at the same time.

주객 화학(host-guest chemistry)이 급속한 발전을 이루는 가운데 이를 기초로 다양한 응용성 연구가 주목을 받고 있다. 특히 특정 손님분자나 이온(guest molecules or ions)에 높은 선택성을 보이는 새로운 호스트 화합물의 등장과 이와 관련된 초분자 착물의 합성 및 구조적 연구는 다양한 응용성 때문에 많은 관심을 끌고 있다. 이는 호스트 분자의 구조를 수정(modification)함으로서 특정 게스트 분자에 대해서 매우 뛰어난 선택성을 보이기 때문이다. 또한 확장된 호스트 분자는 기존 호스트의 게스트 인식능력을 태생적으로 갖고 이와 별도로 특정 기능기가 공유 결합됨으로서 제2의 기능(secondary function)을 갖게 된다. 이러한 확장성의 범주 중의 하나로 염료가 공유결합된 고리형 화합물을 들 수 있다. 특정 금속이온을 분광학적으로 검출하기 위하여 배위능력이 있는 염료분자를 이용하는 방법은 환 경분석, 생의학 및 금속공학에서 널리 사용되어 왔다. 기본적으로 발색 검출시약은 특정시료에 대한 인식부분(recognition moiety)과 인식된 시료에 대한 응답하는 신호발생부분(signaling moiety)을 갖는다(도 1).While host-guest chemistry is rapidly developing, various applicability studies are drawing attention based on this. In particular, the emergence of new host compounds with high selectivity for specific guest molecules or ions and the synthesis and structural studies of related supramolecular complexes have attracted much attention due to their various applications. This is because the modification of the structure of the host molecule shows very good selectivity for a particular guest molecule. In addition, the expanded host molecule inherently possesses the guest recognition ability of the existing host and separately has a secondary function by covalently binding specific functional groups. One such category of scalability includes cyclic compounds in which dyes are covalently bonded. The use of coordinating dye molecules to spectroscopically detect specific metal ions has been widely used in environmental analysis, biomedical science and metallurgy. Basically, the color detection reagent has a recognition moiety for a specific sample and a signaling moiety for responding to the recognized sample (FIG. 1).

발색단이 도입된 호스트의 경우 게스트 이온의 인식에 의해 크게 세가지로 구분된다(도 2)(M. Hiraoka, in Crown ethers and analogous compounds, Elsevier, Amsterdam, 1992.).In the case of the chromophore-introduced host, the chromophore is divided into three types by recognition of guest ions (FIG. 2) (M. Hiraoka, in Crown ethers and analogous compounds , Elsevier, Amsterdam, 1992).

E1 방식은 질소와 같은 비공유 전자쌍을 갖는 헤테로 원자가 거대고리에 참여함으로써 착물 반응시 변색되는 과정이다. 이 때 비공유 전자쌍은 루이스염기로 작용하여 발색단의 전하이동을 통해 변색이 유발된다.The E1 method is a process in which heteroatoms having unpaired electron pairs such as nitrogen are discolored during complex reaction by participating in a macrocycle. At this time, the unshared electron pair acts as a Lewis base, causing discoloration through charge transfer of the chromophore.

E2 방식은 거대고리와 발색단의 연결부분에 헤테로원자에 수소가 붙은 형태이다. 이러한 형태는 게스트 이온이 들어오므로 헤테로원자의 수소는 떨어져 나가고 헤테로 원자는 음이온으로 게스트 이온과 이온쌍(ion pair)을 이룸으로서 발색단의 변색이 유발된다. 이러한 형태를 T. Kaneda는 "Acerand"라 명명하였다. 이것은 "acetic acid"와 "ligand"의 준말이다(T. Kanada, Y. Ishizaki, S. Misumi, Y. Kai, G. Hirao, N. Kasai, . J. Am. Chem. Soc. 1988, 110. 2970.).The E2 method is a form in which a heteroatom is hydrogen-bonded at the linkage between the macrocycle and the chromophore. In this form, since guest ions enter, hydrogen of heteroatoms is released and hetero atoms form ion pairs with ion ions as anions, causing chromophore discoloration. This form was named "Acerand" by T. Kaneda. This is the acronym for "acetic acid" and "ligand" (T. Kanada, Y. Ishizaki, S. Misumi, Y. Kai, G. Hirao, N. Kasai, J. Am. Chem. Soc. 1988 , 110 . 2970.).

마지막으로 S방식은 지금까지 살펴본 것과는 다른 형태이지만 유사 거대고리의 형태로써 사슬의 양쪽 끝에 전자주개 그룹과 전자받개 그룹이 붙어 있다. 착물을 형성함에 따라 사슬의 양쪽 끝에 있는 π-전자주개 그룹과 π-전자받개 그룹이 서로 가까워져 두 그룹 사이에서의 전하이동에 의하여 변색이 유발된다.Lastly, the S-type is different from the one we have seen so far, but in the form of a similar macro ring, the electron donor group and the electron acceptor group are attached to both ends of the chain. As the complex forms, the π-electron donor group and the π-electron acceptor group at both ends of the chain come closer to each other, causing discoloration by charge transfer between the two groups.

발색성 호스트에 관한 연구는 최초로 F. Vogtle와 J.P. Dix에 의해 수행되었 다. 게스트를 수용할 수 있는 이온 수용체에 발색단으로 아조(azo)기 및 디도아닐린 그룹(didoaniline group)을 부착하였다(J. P. Dix, F. Vogtle, Angew. Chem., Int. Ed. 1978, 17. 11.;J. P. Dix, F. Vogtle, Chem. Ber. 1980, 113, 457.;J. P. Dix, F. Vogtle, Chem. Ber. 1981, 114, 638.;H. G. Lhr, F. Votle, Acc. Chem. Res. 1985, 18, 65.). Studies on chromogenic hosts are the first in F. Vogtle and J.P. Performed by Dix. An azo group and a didoaniline group were attached as chromophores to ionic receptors that could accommodate guests (JP Dix, F. Vogtle, Angew. Chem., Int. Ed. 1978, 17. 11. JP Dix, F. Vogtle, Chem. Ber. 1980, 113, 457 .; JP Dix, F. Vogtle, Chem. Ber. 1981, 114, 638 .; HG Lhr, F. Votle, Acc. Chem. Res. 1985, 18, 65.).

아조기를 갖는 화학식 1의 화합물은 480nm(붉은 색)의 파장을 가지며, 알칼리 금속과 착물을 형성함으로써 단파장으로 파장이동을 한다. 이는 질소의 비공유 전자쌍의 주개 효과에 의해 n-π 또는 π-π에너지 간격이 커지기 때문이다. 특히 K+ 이온이 결합했을 때 다른 금속보다 더 큰 단파장 이동(hypsochromic band shift)을 나타내었다(J.S.Kim, O.J.Shon, J.K.Lee, S.H.Lee, J.Y. Kim, K.M.Park, S.S.Lee, J. Org. Chem. 2002, 67, 1372.; Christoph Arenz, M. Gartner, V. Wascholowski, A. Giannis, Bio. Med. Chem. 2001, 9 2901.). The compound of Formula 1 having an azo group has a wavelength of 480 nm (red color), and shifts to a short wavelength by forming a complex with an alkali metal. This is because the n-π or π-π energy interval is increased by the donor effect of the unshared electron pair of nitrogen. In particular, when combined with K + ions, it showed a larger hyperchromic band shift than other metals (JSKim, OJShon, JKLee, SHLee, JY Kim, KMPark, SSLee, J. Org.Chem. 2002, 67, 1372). Christoph Arenz, M. Gartner, V. Wascholowski, A. Giannis, Bio. Med. Chem. 2001, 9 2901.).

반면, 화학식 2의 화합물은 장파장 이동(bathochromic band shift) 시스템으로 금속염과 착물을 형성하면 들뜸 에너지가 감소하기 때문이며, 일가(1+) 금속보다는 이가(2+) 금속에 보다 좋은 선택성을 보여주고, 특히 Ca2+에 대해 선택성이 있음을 보여주었다(J. P. Dix, F. Vogtle, Chem. Ber. 1981, 114, 638.).On the other hand, the compound of the formula (2) is because the formation of the complex with the metal salt in a bathochromic band shift system, the excitation energy is reduced, it shows a better selectivity to the divalent (2+) metal than monovalent (1+) metal, In particular, it has been shown to be selective for Ca 2+ (JP Dix, F. Vogtle, Chem. Ber. 1981, 114, 638.).

Figure 112004058048317-pat00001
Figure 112004058048317-pat00001

Figure 112004058048317-pat00002
Figure 112004058048317-pat00002

R. Marti nez-Ma'nez와 그의 공동 연구자들은 산소, 황, 질소를 가지는 티오-아자크라운 에테르에 발색성 기능기를 도입하여 최초로 연구하였다(F. Sancenn, A. B. Descalzo, R. Marti nez-Ma'nez, M. A. Miranda, J. Soto, Angew. Chem. Int. Ed. 2001, 40, 2640., F. Sancenn, R. Marti nez-Ma'nez, J. Soto, Angew. Chem. Int. Ed. 2002, 41, 1416., A. B. Descalzo, R. Marti nez-Ma'nez, R. Radeglia, K. Rurack, J. Soto, J. Am. Chem. Soc. 2003, 125, 3418.). R. Marti nez-Ma'nez and his co-workers were the first to study chromogenic functional groups in thio-azacrown ethers with oxygen, sulfur and nitrogen (F. Sancenn, AB Descalzo, R. Marti nez-Ma'nez). , MA Miranda, J. Soto, Angew. Chem. Int. Ed. 2001, 40, 2640., F. Sancenn, R. Marti nez-Ma'nez, J. Soto, Angew. Chem. Int. Ed. 2002, 41, 1416., AB Descalzo, R. Marti nez-Ma'nez, R. Radeglia, K. Rurack, J. Soto, J. Am. Chem. Soc. 2003, 125, 3418.).

Figure 112004058048317-pat00003
Figure 112004058048317-pat00003

(상기 식에서 R은Where R is

Figure 112004058048317-pat00004
Figure 112004058048317-pat00004

이다.)to be.)

상기 화학식 3에서 R이 A인 화합물은 380nm의 파장을 흡수하며 여기에 ATP를 첨가하면 550nm 쪽으로 최대 흡수파장의 이동이 일어났다(F. Sancenn, A. B. Descalzo, R. Marti nez-Ma'nez, M. A. Miranda, J. Soto, Angew. Chem. Int. Ed. 2001, 40, 2640.).In Formula 3, a compound of R is A absorbs a wavelength of 380 nm, and when ATP is added thereto, the maximum absorption wavelength shifts toward 550 nm (F. Sancenn, AB Descalzo, R. Marti nez-Ma'nez, MA Miranda). , J. Soto, Angew. Chem. Int. Ed. 2001, 40, 2640.).

한편, 상기 화학식 3에서 R이 B인 화합물은 490 nm(26000M-1cm-1)를 흡수하지만, 여기에 Cu2+, Hg2+, Fe2+을 첨가함으로써 520~540nm로 파장이 이동했다. 이러한 양이온 선택성뿐만 아니라 특정 음이온에 대단히 민감함을 보였고 [HgIV2]2+로 음이온 적정을 할 경우 F-, Cl-, Br-, I-, H2PO4 -, HSO4 -등의 음이온에선 전혀 파장이동이 없는 반면에 NO3 -의 경우 색깔 변화를 나타났으며, R이 C인 화합물도 비슷한 결과가 나타났다고 보고되었다(A. B. Descalzo, R. Marti nez-Ma'nez, R. Radeglia, K. Rurack, J. Soto, J. Am. Chem. Soc. 2003, 125, 3418.)On the other hand, in Formula 3, the compound of R is B absorbs 490 nm (26000M -1 cm -1 ), but the wavelength shifted to 520 ~ 540nm by adding Cu 2+ , Hg 2+ , Fe 2+ to it. . In addition to these cationic selectivity showed that the very sensitive to specific anion [HgIV 2] When the anion-titrated with 2+ F -, Cl -, Br -, I -, H 2 PO 4 -, HSO 4 - anions, such as In While there was no wavelength shift at all, NO 3 showed a color change and similar results were reported for compounds with R of C (AB Descalzo, R. Marti nez-Ma'nez, R. Radeglia, K.). Rurack, J. Soto, J. Am. Chem. Soc. 2003, 125, 3418.)

반면, 일부 학자들은 비고리형 호스트를 합성하여 음이온에 대한 연구를 수행하여, 음이온을 선택적으로 확인할 수 있는 센서를 발표한 바가 있다(D.H.Lee, H.Y.Lee, K.H.Lee, J.I.Hong, J. Chem. Soc., Chem. Comm. 2001.1188.; D.H.Lee, K.H.Lee, J.I.Hong, Org. Lett. 2001. 3. 5.; D.H. Lee, H.Y.Lee, J.I.H, Tetrahedron Lett. 2002, 43, 7273.).Some scholars, on the other hand, have synthesized acyclic hosts to study negative ions, and have published sensors that can selectively identify negative ions (DHLee, HYLee, KHLee, JIHong, J. Chem. Soc). ., Chem. Comm. 2001.1188 .; DHLee, KHLee, JIHong, Org.Lett. 3. 5 .; DH Lee, HYLee, JIH, Tetrahedron Lett. 2002, 43, 7273.).

또한, 한국특허 제372559호는 칼륨이온을 선택적으로 흡착할 수 있는 칼릭스[4] 아렌 아자크라운 에테르 유도체에 관한 것으로, 칼륨이온을 선택적으로 흡착하는 발색성 칼릭스[4] 아렌 아자크라운 에테르 유도체와 그의 제조방법에 관하여 기재하고 있다.In addition, Korean Patent No. 372559 relates to a Kalix [4] arena azacrown ether derivative capable of selectively adsorbing potassium ions, and to a chromogenic Kalix [4] arene azacrown ether derivative that selectively adsorbs potassium ions. It describes about the manufacturing method thereof.

따라서, 본 발명은 전이금속 중 특정이온, 특히, 구리, 알루미늄, 철이온에 대한 선택적 발색성을 갖는 비고리형의 화합물을 제공하려는 것을 목적으로 한다. Accordingly, it is an object of the present invention to provide acyclic compounds having selective color development for certain ions of transition metals, in particular copper, aluminum and iron ions.                         

본 발명의 다른 목적은 상기 화합물을 이용하여 발색성을 갖는 금속이온에 대한 검출시약 및 이를 이용하여 산업폐수에서 특정금속 이온을 분리, 검출하는 등의 용도를 제공하려는 것이다.
Another object of the present invention is to provide a detection reagent for a metal ion having color development using the compound, and the use of the same for separating and detecting a specific metal ion from industrial wastewater.

상기 목적을 달성하기 위하여, 본 발명자들은 전이금속 중 특정이온에 대한 검출을 위하여 특정금속이온에 대하여 선택성을 갖는 화합물을 합성하게 되었다. 본 발명에서 합성한 화합물은 금속이온의 결합자리, 즉 리간드로서 산소 및 질소 주개원자를 도입하였으며, 발색단으로서는 아조벤젠기, 니트로기, 카르보닐기, C=N기, 탄소간 불포화 이중 또는 삼중결합 등을 갖는 화합물을 제조하였다.In order to achieve the above object, the present inventors have synthesized a compound having a selectivity for a specific metal ion for the detection of a specific ion in the transition metal. The compounds synthesized in the present invention introduced oxygen and nitrogen donor atoms as binding sites of metal ions, that is, ligands, and as chromophores, they have an azobenzene group, a nitro group, a carbonyl group, a C = N group, an unsaturated double or triple bond between carbons, etc. The compound was prepared.

본 발명은 하기 화학식 4로 표현되며 특정이온에 대하여 선택적 발색성을 갖는 화합물에 관한 것이다.The present invention relates to a compound represented by the following formula 4 and having a selective color development for a particular ion.

Figure 112004058048317-pat00005
Figure 112004058048317-pat00005

(단, 상기 식에서(Wherein

R1, R2는 수소원자, C1~C20의 직쇄상 알킬그룹 또는

Figure 112004058048317-pat00006
이고,R 1 , R 2 is a hydrogen atom, C 1 ~ C 20 linear alkyl group or
Figure 112004058048317-pat00006
ego,

여기서, R3는 수소원자 또는 C1~C20의 직쇄상 알킬그룹이고, R4는 수소원자 또는 C1~C4 의 직쇄상 알킬그룹이며,Wherein R 3 is a hydrogen atom or a straight alkyl group of C 1 to C 20 , R 4 is a hydrogen atom or a straight alkyl group of C 1 to C 4 ,

X는 아조기, 니트로기, 카르보닐기, C=N기, 탄소간 불포화 이중 또는 삼중결합 중 선택되는 1종 이상의 발색단을 갖는 화합물이다.)X is a compound having at least one chromophore selected from azo group, nitro group, carbonyl group, C = N group, unsaturated double or triple bond between carbons.)

또한, 본 발명은 상기 X가 하기 화학식 5 내지 8로 표기되는 화합물로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 특정이온에 대하여 선택적 발색성을 갖는 화합물에 관한 것이다.The present invention also relates to a compound having selective color development with respect to a specific ion, wherein X is selected from the group consisting of compounds represented by the following Chemical Formulas 5 to 8.

Figure 112004058048317-pat00007
Figure 112004058048317-pat00007

Figure 112004058048317-pat00008
Figure 112004058048317-pat00008

Figure 112004058048317-pat00009
Figure 112004058048317-pat00009

Figure 112004058048317-pat00010
Figure 112004058048317-pat00010

또한, 본 발명은 상기 화합물이 구리이온, 알루미늄이온 및 철이온에 대해 선택적으로 발색하는 것을 특징으로 한다.In addition, the present invention is characterized in that the compound selectively colors for copper ions, aluminum ions and iron ions.

본 발명의 화합물은 구리이온, 알루미늄이온 및 철이온 각각에 대해 UV 흡수파장이 다르며, 발색되는 색이 다르므로 각 이온에 대한 구별이 가능하다.The compounds of the present invention have different UV absorption wavelengths for copper ions, aluminum ions, and iron ions, and different colors can be distinguished from each other.

뿐만 아니라, 본 발명은 화합물을 포함하는 구리이온, 알루미늄이온 또는 철이온에 대한 검출시약에 관한 것이다. 상기 검출시약은 일반적인 검출시약 제조방법에 의하여 제조되며, 본 발명의 화합물을 포함하는 것을 특징으로 한다.In addition, the present invention relates to a detection reagent for copper ions, aluminum ions or iron ions containing a compound. The detection reagent is prepared by a general detection reagent production method, characterized in that it comprises a compound of the present invention.

이하, 실시예를 통하여 본원 발명의 구성을 보다 구체적으로 설명한다. 그러나, 본 발명의 범위가 실시예에 한정되는 것은 아니다.Hereinafter, the configuration of the present invention in more detail through examples. However, the scope of the present invention is not limited to the Examples.

재료 및 기기Materials and devices

1H NMR 스펙트럼은 DRX-300(Bruker, 300MHz)를 사용하였다. 적외선 스펙트럼은 IFS66(Bruker) 분광광도계를 사용하였다. UV-Vis 흡수스펙트럼은 LAMBDA- 900(Perkin elmer)를 사용하였고 반응의 진행정도는 박막크래마토그래피(TLC)로 관찰하였고, 실리카겔은 머크(Merck)사 실리카겔 60(No. 9385, 230-400 mesh)를 사용하였으며 반응에서 사용한 모든 시약은 알드리치(Aldrich)사의 특급시약을 정제없이 사용하였다. 1 H NMR spectrum was used DRX-300 (Bruker, 300MHz). Infrared spectra were used with an IFS66 (Bruker) spectrophotometer. UV-Vis absorption spectrum was used with LAMBDA-900 (Perkin elmer) and the progress of the reaction was observed by thin layer chromatography (TLC). Silica gel was manufactured by Merck silica gel 60 (No. 9385, 230-400 mesh). All reagents used in the reaction were Aldrich's special reagent without purification.

실시예 1: 화합물 I 제조Example 1 Preparation of Compound I

Figure 112004058048317-pat00011
Figure 112004058048317-pat00011

반응식 1에나타낸 바와 같이 화합물 1인 N-페닐디에탄올아민(N-phenyldiethanolamine, 10g,55.18mmol)을 피리딘 50mL에 용해시키고 이 용액을 얼음조(ice bath)에 장치하여 0℃로 낮춘 다음, p-TsCl( 22.09g, 115.85mmol)을 천천히 적가하였다. 2시간 후 이 용액에 얼음물 500mL를 넣고 유리필터를 이용하여 여과하고, 에탄올/톨루엔 혼합용액을 이용하여 재결정하여 화합물 2(25.2g, 55.17mmol, 93%)를 얻었다.As shown in Scheme 1, N-phenyldiethanolamine (N-phenyldiethanolamine (10 g, 55.18 mmol)) was dissolved in 50 mL of pyridine, and the solution was lowered to 0 ° C. in an ice bath. TsCl (22.09 g, 115.85 mmol) was added slowly dropwise. After 2 hours, 500 mL of ice water was added to the solution, and the resultant was filtered using a glass filter, and recrystallized from an ethanol / toluene mixed solution to obtain compound 2 (25.2 g, 55.17 mmol, 93%).

화합물 2: 1H NMR(300MHz, CDCl3) δ 7.72(d, 4H, J= 6.60 Hz), δ 7.29(d, 4H, J= 9.10 Hz), δ 7.14(t, 2H, J= 9.00 Hz), δ 6.72(t, 1H, J= 7.50 Hz), δ 6.45(d, 2H, J= 7.80 Hz), δ 4.10(t, 4H, J= 6.00 Hz), δ 3.56(t, 4H, J = 6.00 Hz), δ 2.43(s, 6H)Compound 2: 1 H NMR (300 MHz, CDCl 3 ) δ 7.72 (d, 4H, J = 6.60 Hz), δ 7.29 ( d , 4H, J = 9.10 Hz), δ 7.14 (t, 2H, J = 9.00 Hz) , δ 6.72 (t, 1H, J = 7.50 Hz), δ 6.45 (d, 2H, J = 7.80 Hz), δ 4.10 (t, 4H, J = 6.00 Hz), δ 3.56 (t, 4H, J = 6.00 Hz), δ 2.43 (s, 6H)

50mL들이 둥근바닥 플라스크에 화합물 2(8.00g, 16.34mmol)를 넣은 후 DMSO 15mL를 가하고 약 90℃로 환류시켰다. 3시간 후 클로로포름/물(chloroform/H2O)을 이용하여 추출 후 유기층을 무수 황산마그네슘을 이용하여 수분을 제거한 후 회전식 진공 증발기를 이용하여 클로로포름을 제거하고 다른 정제방법 없이 화합물 3을 얻었다.Compound 2 (8.00 g, 16.34 mmol) was added to a 50 mL round bottom flask, and then 15 mL of DMSO was added and refluxed at about 90 ° C. After 3 hours, the organic layer was extracted with anhydrous magnesium sulfate after extraction using chloroform / water (chloroform / H 2 O), chloroform was removed using a rotary vacuum evaporator, and compound 3 was obtained without other purification methods.

화합물 3: 1H NMR(300MHz, CDCl3) δ 7.18(m, 2H), δ 6.71(m, 2H), δ 6.63(m, 1H), δ 3.42(q, 4H, J= 6.60 Hz), δ 1.52(q, 4H, J= 6.60 Hz)Compound 3: 1 H NMR (300 MHz, CDCl 3 ) δ 7.18 (m, 2H), δ 6.71 (m, 2H), δ 6.63 (m, 1H), δ 3.42 (q, 4H, J = 6.60 Hz), δ 1.52 (q, 4H, J = 6.60 Hz)

25mL 이구 둥근바닥플라스크에 활성탄과 팔라디움(palladium on activated carbon, 0.35g)을 넣고 공기를 제거한 후 질소로 충전하였다. 화합물 3(3.5g, 15.13mmol)을 메탄올 10mL에 녹인 후 플라스크에 조심스럽게 넣었다. 수소 2기압을 플라스크에 가하고 두시간 후 필터하였다. 용액을 회전식 진공증발기(rotary evaporator)를 이용하여 모두 제거하여 무색 액체인 화합물 4를 얻었다.Activated carbon and palladium (palladium on activated carbon, 0.35g) were added to a 25 mL round bottom flask, and air was removed and charged with nitrogen. Compound 3 (3.5 g, 15.13 mmol) was dissolved in 10 mL of methanol and carefully placed in a flask. Two atmospheres of hydrogen were added to the flask and filtered after two hours. The solution was removed using a rotary evaporator to give compound 4 as a colorless liquid.

화합물 4: 1H NMR(300MHz, CDCl3) δ 7.23(m, 2H), δ 6.76(m, 2H), δ 6.71(m, 1H), δ 3.44(t, 4H, J= 6.60 Hz), δ 3.19(t, 4H, J= 6.60 Hz), δ 1.28(s, 4H)Compound 4: 1 H NMR (300 MHz, CDCl 3 ) δ 7.23 (m, 2H), δ 6.76 (m, 2H), δ 6.71 (m, 1H), δ 3.44 (t, 4H, J = 6.60 Hz), δ 3.19 (t, 4H, J = 6.60 Hz), δ 1.28 (s, 4H)

화합물 4(450mg, 2.51mmol)를 테트라하이드로퓨란(tetrahydrofurane) 10mL에 묽힌 후 트리에틸아민(2.54g, 25.10mmol)을 넣고 70℃로 끓인 후 프로피오닐 클로라이드(propionyl chloride, 0.58g, 6.28mmol)를 테트라하이드로퓨란 5mL에 묽힌 후 상기 용액에 천천히 적가하고 5시간 후 여과하였다. 여과액을 회전식 진공증발기를 이용하여 모두 제거한 후 컬럼으로 분리하여 화합물 5를 얻었다.After diluting Compound 4 (450mg, 2.51mmol) in 10mL tetrahydrofurane, triethylamine (2.54g, 25.10mmol) was added thereto and boiled at 70 ° C, followed by propionyl chloride (0.58g, 6.28mmol). Dilute to 5 mL of tetrahydrofuran and slowly dropwise add to the solution and filter after 5 hours. The filtrate was removed using a rotary vacuum evaporator and then separated by a column to obtain compound 5.

화합물 5: 1H NMR(500MHz, CDCl3) δ 7.31(m, 2H), δ 6.92(m, 2H), δ 6.82(m, 1H), δ 3.85(t, 4H, J= 7.50 Hz), δ 3.51(t, 4H, J= 7.50 Hz), δ 2.38(s, 6H)Compound 5: 1 H NMR (500 MHz, CDCl 3 ) δ 7.31 (m, 2H), δ 6.92 (m, 2H), δ 6.82 (m, 1H), δ 3.85 (t, 4H, J = 7.50 Hz), δ 3.51 (t, 4H, J = 7.50 Hz), δ 2.38 (s, 6H)

화합물 I은 디아조니움염(diazonium salt)를 이용하여 제조하였다(J. S. Kim, O. J. Shon, J. K. Lee, S, H, Lee, J, Y, Kim, K. M. Park, S. S. Lee, J. Org. Chem. 2002, 67, 1372.). 디아조니움염은 4-니트로아닐린(4-nitroanilne, 99.04mg,0.72mmol)이 들어있는 아세트산 1mL와 황산 0.3mL의 균일용액 안에 NaNO2(49.48mg, 0.72mmol)을 적가하여 제조하였다. DMF 50mL에 화합물 8(300mg, 0.55mmol)을 용해시킨 후 얼음조에 장치하고 상기 디아조니움염을 천천히 적가하고 12시간동안 교반하였다. 물 250mL와 클로로포름 50mL를 이용하여 유기층을 분리한 후 무수 황산나트륨을 이용하여 건조하고 용매를 증발시켰다. 에틸아세테이트:헥산=9:1(v/v)의 전개용매로 컬럼 크로마토그래피를 실시하여 적색의 고체(Rf=0.4)인 화합물 I을 80% 수율로 얻었다.Compound I was prepared using diazonium salt (JS Kim, OJ Shon, JK Lee, S, H, Lee, J, Y, Kim, KM Park, SS Lee, J. Org. Chem. 2002 , 67, 1372.). Diazonium salt was prepared by dropwise addition of NaNO 2 (49.48 mg, 0.72 mmol) in a homogeneous solution of 1 mL of acetic acid containing 4-nitroanilne (99.04 mg, 0.72 mmol) and 0.3 mL of sulfuric acid. Compound 8 (300 mg, 0.55 mmol) was dissolved in 50 mL of DMF, placed in an ice bath, and the diazonium salt was slowly added dropwise and stirred for 12 hours. The organic layer was separated using 250 mL of water and 50 mL of chloroform, dried over anhydrous sodium sulfate, and the solvent was evaporated. Column chromatography was performed on a developing solvent of ethyl acetate: hexane = 9: 1 (v / v) to obtain Compound I, a red solid (R f = 0.4), in 80% yield.

화합물 I: 1H NMR(300MHz, DMSO-d 6) δ 8.35(d, 2H, J= 8.10 Hz), δ 7.95(m, 4H), δ 6.93(d, 2H, J= 9.30 Hz), δ 6.04(s, 2H),δ 3.65(t, 4H, J= 6.00 Hz), δ 3.53(t, 4H, J= 6.00 Hz), δ 1.55(s, 6H)Compound I: 1 H NMR (300 MHz, DMSO- d 6 ) δ 8.35 ( d , 2H, J = 8.10 Hz), δ 7.95 (m, 4H), δ 6.93 ( d , 2H, J = 9.30 Hz), δ 6.04 (s, 2H), δ 3.65 (t, 4H, J = 6.00 Hz), δ 3.53 (t, 4H, J = 6.00 Hz), δ 1.55 (s, 6H)

실시예 2: 화합물 Ⅱ 제조Example 2: Preparation of Compound II

Figure 112004058048317-pat00012
Figure 112004058048317-pat00012

상기 실시예 1의 방법에 의하여 제조된 화합물 4(450mg, 2.51mmol)를 테트라하이드로퓨란(tetrahydrofurane) 10mL에 묽힌 후 트리에틸아민(2.54g, 25.10mmol)을 첨가하여 70℃로 끓인 후 라우로일 클로라이드(lauroly chloride, 1.37g, 6.28mmol)를 테트라하이드로퓨란 5mL에 묽힌 용액을 상기 화합물 4 용액에 천천히 적가하고 5시간 후 여과하였다. 이 여과액은 회전식 진공증발기를 이용하여 모두 제거한 후 컬럼으로 분리하여 화합물 6을 얻었다.Compound 4 (450 mg, 2.51 mmol) prepared by the method of Example 1 was diluted in 10 mL of tetrahydrofuran and then triethylamine (2.54 g, 25.10 mmol) was added to boil at 70 ° C., followed by lauroyl A solution obtained by diluting (lauroly chloride, 1.37 g, 6.28 mmol) in 5 mL of tetrahydrofuran was slowly added dropwise to the compound 4 solution and filtered after 5 hours. This filtrate was removed using a rotary vacuum evaporator and then separated by column to obtain compound 6.

화합물 6: 1H NMR(300MHz, CDCl3) δ 7.24(t, 2H, J= 7.50 Hz), δ 6.84(d, 2H, J= 7.80 Hz), δ 6.43(t, 1H, J= 7.20 Hz), δ 5.95(s, 2H), δ 3.47(m, 8H), δ 2.15(m, 4H), δ 1.60(m, 4H), δ 1.28(m, 32H), δ 0.90(t, 6H, J= 6.90 Hz)Compound 6: 1 H NMR (300 MHz, CDCl 3 ) δ 7.24 (t, 2H, J = 7.50 Hz), δ 6.84 ( d , 2H, J = 7.80 Hz), δ 6.43 (t, 1H, J = 7.20 Hz) , δ 5.95 (s, 2H), δ 3.47 (m, 8H), δ 2.15 (m, 4H), δ 1.60 (m, 4H), δ 1.28 (m, 32H), δ 0.90 (t, 6H, J = 6.90 Hz)

화합물 II는 디아조니움염(diazonium salt)를 이용하여 제조하였다(J. S. Kim, O. J. Shon, J. K. Lee, S, H, Lee, J, Y, Kim, K. M. Park, S. S. Lee, J. Org. Chem. 2002, 67, 1372.). 디아조니움염은 4-니트로아닐린(4-nitroanilne, 99.04mg,0.72mmol)이 들어있는 아세트산 1mL와 황산 0.3mL의 균일용액 안에 NaNO2(49.48mg, 0.72mmol)을 적가하여 제조하였다. Compound II was prepared using a diazonium salt (JS Kim, OJ Shon, JK Lee, S, H, Lee, J, Y, Kim, KM Park, SS Lee, J. Org. Chem. 2002 , 67, 1372.). Diazonium salt was prepared by dropwise addition of NaNO 2 (49.48 mg, 0.72 mmol) in a homogeneous solution of 1 mL of acetic acid containing 4-nitroanilne (99.04 mg, 0.72 mmol) and 0.3 mL of sulfuric acid.

DMF 50mL에 화합물 8(300mg, 0.55mmol)을 용해시킨 후 얼음조에 장치하고, 먼저 만든 디아조니움염을 천천히 적가하고 12시간동안 교반하였다. 물 250mL와 클로로포름 50mL를 이용하여 유기층을 분리한 후 무수 황산나트륨을 이용하여 건조하였고 용매를 증발시켰다. 에틸아세테이트:헥산=9:1(v/v)인 전개용매를 통하여 컬럼 크로마토그래피를 이용하여 적색의 고체(R f =0.4)인 화합물 Ⅱ를 80% 수율로 얻었다.Compound 8 (300 mg, 0.55 mmol) was dissolved in 50 mL of DMF, and then placed in an ice bath. The first diazonium salt was slowly added dropwise and stirred for 12 hours. The organic layer was separated using 250 mL of water and 50 mL of chloroform, dried over anhydrous sodium sulfate, and the solvent was evaporated. Compound II was obtained as a red solid (R f = 0.4) in 80% yield using column chromatography through a developing solvent of ethyl acetate: hexane = 9: 1 (v / v).

화합물 Ⅱ: 1H NMR(300MHz, CDCl3) δ 8.36(d, 2H, J= 9.06 Hz), δ 7.96(m, 4H), δ 6.90(d, 2H, J= 9.06 Hz), δ 4.34(t, 4H, J= 6.00 Hz), δ 3.77(d, 4H, J= 6.00 Hz), δ 2.32(d, 4H, J= 7.50 Hz), δ 1.61(m, 4H), δ 1.27(m, 32H), δ 0.90(t, 6H, J= 8.10 Hz)Compound II: 1 H NMR (300 MHz, CDCl 3 ) δ 8.36 ( d , 2H, J = 9.06 Hz), δ 7.96 (m, 4H), δ 6.90 ( d , 2H, J = 9.06 Hz), δ 4.34 (t , 4H, J = 6.00 Hz), δ 3.77 ( d , 4H, J = 6.00 Hz), δ 2.32 ( d , 4H, J = 7.50 Hz), δ 1.61 (m, 4H), δ 1.27 (m, 32H) , δ 0.90 (t, 6H, J = 8.10 Hz)

실시예 3: 화합물 Ⅲ의 제조Example 3: Preparation of Compound III

Figure 112004058048317-pat00013
Figure 112004058048317-pat00013

알라닌(alanine, 화합물 7, 1.83g, 20.57mmol)과 NaHCO3(4.85g, 45.71mmol)을 H2O 20mL에 용해시킨 후 테트라하이드로퓨란 20mL를 첨가하고, 이 혼합물을 얼음조에 장치하였다. 라우로일 클로라이드(5.00g, 22.86mmol)을 테트라하이드로퓨란 5mL에 묽힌 후 상기 알라닌 혼합물에 천천히 적가하고, 24시간동안 실내온도에서 방치하였다. 진공회전식 증발기를 이용하여 농축한 후 에틸아세테이트 50mL와 H2O 200mL를 이용하여 추출하고 유기층을 무수 황산마그네슘을 이용하여 수분을 제거하였다. 유기층을 회전식 진공증발기를 이용하여 유기용매를 제거하고 에틸에테르를 이용하여 재결정하여 흰색 고체의 화합물 8을 얻었다. Alanine (compound 7, 1.83 g, 20.57 mmol) and NaHCO 3 (4.85 g, 45.71 mmol) were dissolved in 20 mL of H 2 O, and then 20 mL of tetrahydrofuran was added, and the mixture was placed in an ice bath. Lauroyl chloride (5.00 g, 22.86 mmol) was diluted in 5 mL of tetrahydrofuran and slowly added dropwise to the alanine mixture and left at room temperature for 24 hours. The resultant was concentrated using a vacuum rotary evaporator, extracted with 50 mL of ethyl acetate and 200 mL of H 2 O, and water was removed using anhydrous magnesium sulfate. The organic layer was removed using a rotary vacuum evaporator, and recrystallized using ethyl ether to obtain Compound 8 as a white solid.

화합물 8: 1H NMR(300MHz, CDCl3) δ 9.37(s, 1H), δ 4.45(m, 1H), δ 2.24(t, 2H, J= 7.68 Hz), δ 1.58(m, 2H), δ 1.34(m, 18H), δ 0.89(t, 3H, J= 2.76 Hz)Compound 8: 1 H NMR (300 MHz, CDCl 3 ) δ 9.37 (s, 1H), δ 4.45 (m, 1H), δ 2.24 (t, 2H, J = 7.68 Hz), δ 1.58 (m, 2H), δ 1.34 (m, 18H), δ 0.89 (t, 3H, J = 2.76 Hz)

화합물 4(500mg, 2.79mmol)와 화합물 8(1.89g, 6.97mmol)을 에틸아세테이트 5mL에 녹인 후 얼음조에 장치한 후 이 혼합물에 DCC(1.87g, 9.07mmol)와 HOBt(1.22g, 9.07mmol)을 첨가하였다. 상기 용액을 실온에서 24시간동안 방치 후 필터하였다. 필터용액을 포화 NaHCO3 수용액, 포화 NaHSO4 수용액, NaHCO3 수용액을 이용하여 추출하였다. 유기층을 무수 황산 마그네슘을 이용하여 수분을 제거하였다. 9:1 에틸아세테이트:헥산을 이용하여 컬럼을 수행하여 화합물 9를 얻었다.Compound 4 (500 mg, 2.79 mmol) and compound 8 (1.89 g, 6.97 mmol) were dissolved in 5 mL of ethyl acetate, placed in an ice bath, and then mixed with DCC (1.87 g, 9.07 mmol) and HOBt (1.22 g, 9.07 mmol). Was added. The solution was filtered after standing at room temperature for 24 hours. The filter solution was extracted using saturated NaHCO 3 aqueous solution, saturated NaHSO 4 aqueous solution, and NaHCO 3 aqueous solution. The organic layer was removed with anhydrous magnesium sulfate. Compound 9 was obtained by performing a column using 9: 1 ethyl acetate: hexane.

화합물 9: 1H NMR(300MHz, DMSO-d 6) δ 7.54(s, 2H), δ 7.34(s, 2H), 7.21(t, 2H, J= 7.50 Hz), δ 6.79(d, 2H, J= 7.80 Hz), δ 6.51(t, 1H, J= 7.20 Hz), δ 4.14(m, 2H), δ 3.77(t, 4H, J= 7.68 Hz), δ 3.35(t, 4H, J= 7.68 Hz), δ 2.22(t, 4H, J= 7.14 Hz), δ 1.64(m, 8H), δ 1.31(m, 36H), δ 0.90(t, 6H, J= 2.76 Hz)Compound 9: 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.54 (s, 2H), δ 7.34 (s, 2H), 7.21 (t, 2H, J = 7.50 Hz), δ 6.79 ( d , 2H, J = 7.80 Hz), δ 6.51 (t, 1H, J = 7.20 Hz), δ 4.14 (m, 2H), δ 3.77 (t, 4H, J = 7.68 Hz), δ 3.35 (t, 4H, J = 7.68 Hz ), δ 2.22 (t, 4H, J = 7.14 Hz), δ 1.64 (m, 8H), δ 1.31 (m, 36H), δ 0.90 (t, 6H, J = 2.76 Hz)

화합물 Ⅲ는 디아조니움염을 이용하여 합성하였다. DMF 50mL에 화합물 8(580mg, 0.85mmol)을 용해시키고 얼음조에 장치한 후 상기 실시예 1과 동일하게 제조된 디아조니움염을 천천히 적가하고 12시간동안 교반시켰다. 물 50mL와 클로로포름 50mL를 이용하여 유기층을 분리한 후 무수 황산 나트륨을 이용하여 건조하였 고 용매를 증발시켰다. 에틸아세테이트:메탄올=18:3(v/v)을 전개용매로 하여 컬럼 크로마토그래피로 적색 고체(R f =0.3)인 화합물 Ⅲ를 40% 수율로 얻었다.Compound III was synthesized using diazonium salt. Compound 8 (580 mg, 0.85 mmol) was dissolved in 50 mL of DMF, and placed in an ice bath. Then, a diazonium salt prepared in the same manner as in Example 1 was slowly added dropwise and stirred for 12 hours. The organic layer was separated using 50 mL of water and 50 mL of chloroform, dried over anhydrous sodium sulfate, and the solvent was evaporated. Ethyl acetate: methanol = 18: 3 (v / v) was used as a developing solvent, and column chromatography gave Compound III as a red solid (R f = 0.3) in 40% yield.

화합물 Ⅲ: 1H NMR(300MHz, DMSO-d 6) δ 8.33(d, 2H, J= 9.06 Hz), δ 7.92(d, 2H, J= 9.06 Hz), δ 7.83(d, 2H, J= 9.06 Hz), δ 7.61(s, 2H),δ 7.38(s, 2H), δ 7.02(d, 2H, J= 9.06 Hz), δ 4.28(m, 2H), δ 3.88(t, 4H, J= 7.68 Hz), δ 3.38(t, 4H, J= 7.68 Hz), δ 2.13(t, 4H, J= 7.14 Hz), δ 1.53(m, 8H), δ 1.28(m, 36H), δ 0.89(t, 6H, J= 2.76 Hz)Compound III: 1 H NMR (300 MHz, DMSO- d 6 ) δ 8.33 ( d , 2H, J = 9.06 Hz), δ 7.92 ( d , 2H, J = 9.06 Hz), δ 7.83 ( d , 2H, J = 9.06 Hz), δ 7.61 (s, 2H), δ 7.38 (s, 2H), δ 7.02 ( d , 2H, J = 9.06 Hz), δ 4.28 (m, 2H), δ 3.88 (t, 4H, J = 7.68 Hz), δ 3.38 (t, 4H, J = 7.68 Hz), δ 2.13 (t, 4H, J = 7.14 Hz), δ 1.53 (m, 8H), δ 1.28 (m, 36H), δ 0.89 (t, 6H, J = 2.76 Hz)

시험예 1: 양이온에 대한 선택성 확인Test Example 1: Confirmation of Selectivity to Cation

본 시험예는 상기 실시예 1 내지 3에서 제조한 화합물 I~Ⅲ의 양이온에 대한 선택성을 확인하기 위한 것이다.This test example is for confirming the selectivity to the cations of the compounds I to III prepared in Examples 1 to 3.

화합물 I~Ⅲ를 각각 35.20mg, 36.05mg, 36.89mg 아세토나이트릴 100mL에서 완전히 용해시켜 화합물 I~Ⅲ 용액을 제조하였다. Ag+, Li+, K+, NH4 +, Ba2+, Ni2+, Co2+, Cu2+, Zn2+, Cd2+, Pb2+, Hg2+, Al2+, Fe3+의 각 양이온에 대하여 질산염 5당량을 각각 아세토나이트릴 5mL에 넣고 용해히였다. 상기 화합물 I~Ⅲ 용액과 각 양이온에 대한 질산염을 각각 1mL씩 섞은 후 UV-Vis 흡수스펙트럼을 측정하였다.Compounds I-III were completely dissolved in 100 mL of 35.20 mg, 36.05 mg, and 36.89 mg acetonitrile, respectively, to prepare compound I-III solutions. Ag + , Li + , K + , NH 4 + , Ba 2+ , Ni 2+ , Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Pb 2+ , Hg 2+ , Al 2+ , Fe For each cation of 3+ , 5 equivalents of nitrate were added to 5 mL of acetonitrile and dissolved. UV-Vis absorption spectrum was measured after mixing 1 mL of nitrates for each of the compounds I to III solution and each cation.

상기 UV-Vis 흡수스펙트럼을 측정는 도 3 내지 도 5에 나타냈다. 도 3 내지 도 5의 결과, 화합물 I~Ⅲ의 흡수스펙트럼은 전형적인 아조-염료 유도체가 나타나 는 약 480nm(λmax= 약30,000M-1cm-1붉은 색)에서 관찰되었으며, 화합물 I~Ⅲ은 발색단으로서 아조벤젠기를 가지고 있음을 확인할 수 있었다.The UV-Vis absorption spectrum was measured in FIGS. 3 to 5. As a result of FIGS. 3 to 5, absorption spectra of compounds I to III were observed at about 480 nm (λ max = about 30,000 M −1 cm −1 red color) in which typical azo-dye derivatives appeared. It was confirmed that the chromophore had an azobenzene group.

도 3~5에서 볼 수 있는 것처럼, 대부분의 양이온을 첨가하여도 화합물 I~Ⅲ의 최대 흡수파장은 거의 변하지 않았다. 이는 화합물 I~Ⅲ와 Ag+, Li+, K+, NH4 +, Ba2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, Hg2+ 이온들과는 착물을 형성하지 않거나, 혹은 매우 약한 착물을 이루기 때문이다.As can be seen in Figures 3 to 5, the maximum absorption wavelength of Compounds I-III was hardly changed even when most cations were added. It complexes with compounds I-III and Ag + , Li + , K + , NH 4 + , Ba 2+ , Ni 2+ , Co 2+ , Zn 2+ , Cd 2+ , Pb 2+ , Hg 2+ ions It does not form or forms a very weak complex.

그러나 화합물 I,Ⅱ,Ⅲ의 용액에 철(Ⅲ)을 첨가하였을 경우 붉은색에서 옅은 오렌지색으로 변하였다. 이는 금속이온을 첨가하였을 때와는 상반되는 현상으로서 장파장 이동을 나타내었다.However, when iron (III) was added to the solution of compounds I, II and III, the color changed from red to pale orange. This is a phenomenon opposite to when metal ions were added, showing a long wavelength shift.

또한, 화합물 Ⅰ~Ⅲ 용액이 구리(Ⅱ) 이온에 대해서는 붉은 색에서 무색으로 변하였으며,알루미늄 이온을 첨가하였을 경우도 붉은색에서 보랏빛이 변하였다. 즉, 화합물 Ⅰ~Ⅲ의 최대 흡수파장이 구리 및 알루미늄 이온의 첨가시 약 80-120nm 정도 단파장 이동하였다. 따라서, 화합물 Ⅰ~Ⅲ는 구리 및 알루미늄 이온과 선택적으로 결합하는 것을 확인하였다. In addition, the solution of Compounds I-III changed from red to colorless with respect to copper (II) ions, and also changed from red to purple when aluminum ions were added. That is, the maximum absorption wavelength of Compounds I to III shifted by about 80-120 nm when the copper and aluminum ions were added. Thus, it was confirmed that the compounds I to III selectively bind with copper and aluminum ions.

또한, 도 3, 4에서 구리(Ⅱ)을 첨가하였을 경우 소수성기로서 알킬 사슬의 길이가 다른 화합물 I,Ⅱ의 최대흡수 파장이 약 120nm의 단파장 이동이 나타났다. 이는 화합물 I, Ⅱ에 소수성 기로 붙어 있는 긴 알킬사슬은 구리와 알루미늄 이온에 선택적으로 발색하는 데는 크게 영향을 미치지 않음을 알 수 있다. In addition, when copper (II) was added in FIGS. 3 and 4, the maximum absorption wavelength of compound I and II having different alkyl chain lengths as hydrophobic groups was about 120 nm. It can be seen that the long alkyl chain attached to the compounds I and II as hydrophobic groups does not significantly affect the selective development of copper and aluminum ions.

반면, 도 5에서 볼 수 있듯이 키랄성을 갖는 알라닌기를 도입한 화합물 Ⅲ는 구리 이온 첨가시 최대흡수 파장이 150nm의 단파장 이동을 보였다(pka= 3.3X104). 이는 알라닌기에 있는 -NH 혹은 -CO 기가 구리이온과 착물을 형성시 효과적인 결합 자리로 참여함으로써, 화합물 화합물 I,II에 비해서 더욱 좋은 선택성을 가짐을 알 수 있었다.On the contrary, as shown in FIG. 5, the compound III having a chirality-added alanine group showed a short wavelength shift of 150 nm when the copper ion was added ( pka = 3.3 × 10 4 ). This suggests that -NH or -CO groups in the alanine group participate as effective binding sites when forming complexes with copper ions, and thus have better selectivity than compound compounds I and II.

시험예 2: Cu 이온(CuTest Example 2: Cu ions (Cu 2+2+ )에 대한 당량별 적정실험Titration Experiment by Equivalence for

본 시험예는 화합물 I~Ⅲ과 금속이온과의 결합 특성을 확인하기 위하여서, 상기 화합물 I~Ⅲ을 각각 35.20mg, 36.05mg, 36.89mg를 아세토나이트릴 100mL에 용해시킨 후, 0.3당량, 0.4당량, 0.6당량, 0.8당량, 1.0당량, 1.3당량, 1.5당량, 2.0당량, 5.0당량의 Cu(NO3)2용액을 각각 5mL씩 만들었다. 상기 화합물 용액과 Cu(NO3 )2 용액을 1mL씩 혼합한 후 UV-Vis 흡수스펙트럼을 측정하였다.In this test example, in order to confirm the binding properties of the compounds I-III and metal ions, 35.20 mg, 36.05 mg, and 36.89 mg of the compounds I-III were dissolved in 100 mL of acetonitrile, respectively, and then 0.3 equivalents and 0.4 equivalents. 5 mL of Cu (NO 3 ) 2 solution was prepared, 0.6 equivalent, 0.8 equivalent, 1.0 equivalent, 1.3 equivalent, 1.5 equivalent, 2.0 equivalent, and 5.0 equivalent. After mixing the compound solution and Cu (NO 3 ) 2 solution by 1mL each UV-Vis absorption spectrum was measured.

도 6은 일정 농도의 화합물 Ⅲ 용액에 구리(II)이온 농도가 증가함에 따라서 UV-vis 흡수스펙트럼으로 관찰한 결과를 나타내 것이다. 화합물 Ⅲ의 최대흡수피크인 479nm 피크가 서서히 줄어들면서 325nm에서 새로운 피크가 나타났고, 이것이 점차적으로 증가하는 것을 볼 수 있었다. 그리고 380nm에서 등흡광점(isosbestic point)이 나타났다. 일반적으로 화학반응 과정에서 한 개의 등흡광점이 나타나면, 이것은 단지 두 종류의 화학종이 존재함을 의미한다. 따라서 화합물 Ⅲ와 구리이온은 아세토니트닐 용액에서 효과적으로 착물을 형성하고, 또한 화합물 Ⅲ와 구리이 온의 결합비가 1:1 임을 알 수 있었다.Figure 6 shows the results observed by UV-vis absorption spectrum as the concentration of copper (II) ion in a certain concentration of compound III solution. As the peak of 479 nm, the maximum absorption peak of Compound III, gradually decreased, a new peak appeared at 325 nm, and this gradually increased. At 380 nm, an isosbestic point appeared. In general, when a single isotherm appears during a chemical reaction, it means that only two species exist. Therefore, it was found that compound III and copper ions effectively form a complex in the acetonitrile solution, and that the bonding ratio of compound III and copper ions is 1: 1.

또한, 화합물 I, Ⅱ의 경우도 각각 432nm와 425nm에서 등흡광점이 나타났다.In addition, in the case of compounds I and II, the iso-absorbance point was shown at 432 nm and 425 nm respectively.

시험예 3: Job's plot 적정실험Test Example 3: Job's plot titration experiment

본 실시예는 화합물 I~Ⅲ와 구리이온과의 결합에 대한 화학량론비를 알아보기 위한 것으로 Job법을 이용하였다. This example used the Job method to determine the stoichiometric ratios of the compounds I to III and copper ions.

상기 시험예 2에서 제조한 화합물 Ⅱ 용액을 1/10, 2/10, 1/3, 3/10, 4/10, 5/10, 6/10, 2/3, 7/10, 3/4, 8/10, 9/10로 각각 묽히고, Cu(NO3)2를 10mL로 만든 후 다시 9/10, 8/10, 3/4, 7/10, 2/3, 6/10, 5/10, 4/10, 3/10, 1/3, 2/10, 1/10로 묽힌 후 화합물 Ⅲ 용액과 금속염을 녹인 용액을 반대 비율로 각각 1mL씩 혼합한 후 UV-Vis 흡수 스펙트럼을 측정하였다.The compound II solution prepared in Test Example 2 was prepared in 1/10, 2/10, 1/3, 3/10, 4/10, 5/10, 6/10, 2/3, 7/10, 3/4. Dilute to 8/10, 9/10, and make 10 mL of Cu (NO 3 ) 2 and again 9/10, 8/10, 3/4, 7/10, 2/3, 6/10, 5 After diluting with / 10, 4/10, 3/10, 1/3, 2/10, 1/10, and mixing the compound III solution and the metal salt-dissolved solution in 1 mL each, the UV-Vis absorption spectrum is measured. It was.

먼저 화합물 Ⅲ과 구리이온에 대한 착물의 흡수 피크인 325nm의 파장을 선택하여 구리의 몰분율과 흡광도에 대해 그래프에 도시하였다(도 7). 그 결과 몰비가 0.5에서 가장 큰 흡광도 값이 나타났다. 이는 화합물 Ⅲ와 구리이온이 1:1로 착물을 형성함을 의미한다.First, a wavelength of 325 nm, which is an absorption peak of the complex with respect to compound III and copper ions, was selected, and the mole fraction and absorbance of copper were shown in a graph (FIG. 7). As a result, the largest absorbance value was found at molar ratio of 0.5. This means that compound III and copper ions form a complex 1: 1.

이상과 같이 본 발명은 특정금속이온에 대한 선택성을 갖는 비고리형 화합물 제공할 수 있으며, 특히, 키랄성 화합물인 알라닌기는 갖는 화합물은 구리이온에 대한 선택적 발색성에 크게 의존하는 것을 알 수 있다.As described above, the present invention can provide acyclic compounds having selectivity for specific metal ions. In particular, it can be seen that the compound having an alanine group, which is a chiral compound, is highly dependent on the selective color development of copper ions.

따라서 본 발명의 화합물은 구리, 알루미늄 및 철이온에 대해서 선택적으로 발색하는 성질을 이용하여 반도체 산업에서 나오는 산업폐수의 회수 및 검출을 위한 효과적인 도구로 활용이 가능하다.Therefore, the compound of the present invention can be utilized as an effective tool for the recovery and detection of industrial wastewater from the semiconductor industry by using the property of selectively coloring the copper, aluminum and iron ions.

또한, 환경분석, 이온센서, 디바이스, 생의학 및 금속공학 분야 등으로의 활용이 가능하다.It can also be used in environmental analysis, ion sensor, device, biomedical and metallurgy fields.

Claims (4)

하기 화학식으로 표현되며, 특정 금속이온에 대해 선택적 발색성을 갖는 화합물.A compound represented by the following formula, and having a selective color development for a specific metal ion.
Figure 112004058048317-pat00014
Figure 112004058048317-pat00014
(단, 상기 식에서 (Wherein R1, R2는 수소원자, C1~C20의 직쇄상 알킬그룹 또는
Figure 112004058048317-pat00015
이고,
R 1 , R 2 is a hydrogen atom, C 1 ~ C 20 linear alkyl group or
Figure 112004058048317-pat00015
ego,
R3는 수소원자 또는 C1~C20의 직쇄상의 알킬그룹이고, R4는 수소원자 또는 C1~C4의 직쇄상의 알킬그룹이며,R 3 is a hydrogen atom or a straight alkyl group of C 1 to C 20 , R 4 is a hydrogen atom or a straight alkyl group of C 1 to C 4 , X는 아조기, 니트로기, 카르보닐기, C=N기, 탄소간 불포화 이중 또는 삼중결합 중 선택되는 1종 이상의 발색단을 갖는 화합물임.)X is a compound having at least one chromophore selected from azo group, nitro group, carbonyl group, C = N group, unsaturated double or triple bond between carbons.)
제1항에 있어서, 상기 X는The method of claim 1, wherein X is
Figure 112004058048317-pat00016
Figure 112004058048317-pat00016
으로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 특정이온에 대해 선택적 발색성을 갖는 화합물.Compound having a selective color development for a particular ion, characterized in that selected from the group consisting of.
제1항 또는 제2항에 있어서, 상기 화합물은 구리이온, 알루미늄이온 및 철이온에 대해 발색하는 것을 특징으로 하는 특정이온에 대해 선택적 발색성을 갖는 화합물.The compound of claim 1 or 2, wherein the compound has a color development selective to a specific ion, characterized in that the color for the copper ions, aluminum ions and iron ions. 삭제delete
KR1020040103584A 2004-12-09 2004-12-09 A compound having selectively chromogenic character by binding a specific metal-ion KR100678340B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040103584A KR100678340B1 (en) 2004-12-09 2004-12-09 A compound having selectively chromogenic character by binding a specific metal-ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040103584A KR100678340B1 (en) 2004-12-09 2004-12-09 A compound having selectively chromogenic character by binding a specific metal-ion

Publications (2)

Publication Number Publication Date
KR20060064903A KR20060064903A (en) 2006-06-14
KR100678340B1 true KR100678340B1 (en) 2007-02-07

Family

ID=37160272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040103584A KR100678340B1 (en) 2004-12-09 2004-12-09 A compound having selectively chromogenic character by binding a specific metal-ion

Country Status (1)

Country Link
KR (1) KR100678340B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953913B1 (en) * 2007-12-31 2010-04-22 경상대학교산학협력단 Organic-Inorganic Hybrid-Type Adsorbent Having Selective Chromogenic Receptor for A Specific Heavy Metal-Ion and a Optical Sensor using the same
KR101539821B1 (en) * 2012-05-08 2015-07-28 서울과학기술대학교 산학협력단 Agent For Selecting Aluminium Ion Comprising ο-phenolsalicylimine And Its Derivative, Detecting Method Using The Same And Detecting Device Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472107A2 (en) 1990-08-23 1992-02-26 Kao Corporation Cationic compound and cleaning composition
KR920021621A (en) * 1991-05-17 1992-12-18 엥겔하르트, 라피체 Nitrogen containing surfactant
WO1996001805A1 (en) 1994-07-08 1996-01-25 Kao Corporation Novel amine compound and detergent composition containing the same
EP0987595A1 (en) 1998-09-15 2000-03-22 Eastman Kodak Company Method of making hydroxy-substituted hydroxylamines and color developers containing same
JP2000143611A (en) 1998-09-04 2000-05-26 Asahi Chem Ind Co Ltd New color former and recording material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472107A2 (en) 1990-08-23 1992-02-26 Kao Corporation Cationic compound and cleaning composition
KR920021621A (en) * 1991-05-17 1992-12-18 엥겔하르트, 라피체 Nitrogen containing surfactant
WO1996001805A1 (en) 1994-07-08 1996-01-25 Kao Corporation Novel amine compound and detergent composition containing the same
JP2000143611A (en) 1998-09-04 2000-05-26 Asahi Chem Ind Co Ltd New color former and recording material
EP0987595A1 (en) 1998-09-15 2000-03-22 Eastman Kodak Company Method of making hydroxy-substituted hydroxylamines and color developers containing same

Also Published As

Publication number Publication date
KR20060064903A (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Park et al. A new coumarin-based chromogenic chemosensor for the detection of dual analytes Al 3+ and F−
Natali et al. Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper
Isaad et al. A novel glycoconjugated N-acetylamino aldehyde hydrazone azo dye as chromogenic probe for cyanide detection in water
Dalapati et al. Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide via dual emission
Jiang et al. Dimethoxy triarylamine-derived terpyridine–zinc complex: a fluorescence light-up sensor for citrate detection based on aggregation-induced emission
Li et al. A rare salamo-salophen type “on-off-on” fluorescent probe for relay recognition of Hg2+ and phosphate ions and its applications
Im et al. Reaction-based dual signaling of fluoride ions by resorufin sulfonates
Ghorpade et al. Highly sensitive colorimetric and fluorometric anion sensors based on mono and di-calix [4] pyrrole substituted diketopyrrolopyrroles
Elmas et al. Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO32-anions in aqueous solution and living cells
Mikata et al. Tetrakis (2-quinolinylmethyl) ethylenediamine (TQEN) as a new fluorescent sensor for zinc
CN101768151B (en) 2-(2-pyridyl)-8-sulfonamidoquinoline derivative, synthesis method and application thereof
Rani et al. Recent progress in development of 2, 3-diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species
KR101359508B1 (en) Chemosensor having selectivity for hydrazine and method for monitoring hydrazine using the same
Rao et al. Pyridine-hydrazone-controlled cyanide detection in aqueous media and solid-state: tuning the excited-state intramolecular proton transfer (ESIPT) fluorescence modulated by intramolecular NH⋯ Br hydrogen bonding
Yan et al. A novel azathia-crown ether dye chromogenic chemosensor for the selective detection of mercury (II) ion
Ma et al. A pyridine based Schiff base as a selective and sensitive fluorescent probe for cadmium ions with “turn-on” fluorescence responses
KR20130032747A (en) Compound having selectivity for heavy metal ions, process for the same, and chemosensor comprising the same
Zhou et al. Anion binding modes in cis–trans-isomers of a binding site–fluorophore–π-extended system
KR100678340B1 (en) A compound having selectively chromogenic character by binding a specific metal-ion
Chen et al. A reusable cyanide sensor via activation of C–H group: trifluoromethylcarbinol-directed meta-C–H cyanomethylation of naphthalimide
Xue et al. Convenient syntheses and preliminary photophysical properties of novel 8-aminoquinoline appended diaza-18-crown-6 ligands
CN109232594B (en) Spiropyran-bipyridine derivative and naked eye detection of copper (II) by spiropyran-bipyridine derivative
Xu et al. Highly selective and sensitive optical probe for Fe 3+ based on a water-soluble squarylium dye
Zeng et al. The synthesis of two novel neutral receptors and their anion binding properties
Sun et al. Highly efficient turn-on fluorescence detection of zinc (II) based on multi-ligand metal chelation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
J501 Disposition of invalidation of trial
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100129

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee