KR100673987B1 - Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery - Google Patents

Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery Download PDF

Info

Publication number
KR100673987B1
KR100673987B1 KR1020050037731A KR20050037731A KR100673987B1 KR 100673987 B1 KR100673987 B1 KR 100673987B1 KR 1020050037731 A KR1020050037731 A KR 1020050037731A KR 20050037731 A KR20050037731 A KR 20050037731A KR 100673987 B1 KR100673987 B1 KR 100673987B1
Authority
KR
South Korea
Prior art keywords
sulfur
lithium
electrode
mwnt
gnf
Prior art date
Application number
KR1020050037731A
Other languages
Korean (ko)
Other versions
KR20060115267A (en
Inventor
김기원
안효준
안주현
남태현
조권구
조규봉
김종욱
정영동
김종화
정상식
최영진
박상철
김성현
류호석
김태범
신원철
이봉기
강선구
하종근
김상석
최재원
김연화
김재광
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020050037731A priority Critical patent/KR100673987B1/en
Publication of KR20060115267A publication Critical patent/KR20060115267A/en
Application granted granted Critical
Publication of KR100673987B1 publication Critical patent/KR100673987B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬/유황 이차전지의 사이클 특성을 향상시키기 위해 첨가재로 써멀(Thermal) CVD법으로 직접 제조한 탄소나노튜브(Multiwalled carbon nanotubes, MWNT)와 탄소나노섬유(graphitic nanofibes, GNF)를 양극 첨가재로 도전재와 함께 이용하여 상온에서 사이클 특성이 개선된 리튬/유황 이차전지에 관한 것으로, 본 발명의 유황전극은 기존의 도전재와 직접 제조한 첨가재인 MWNT 또는 GNF를 무게중량비 20:5로 첨가하여 전극 활물질의 표면적을 넓게 함으로서 리튬/유황이차전지의 사이클 특성을 개선시킴을 특징으로 한다.The present invention is a cathode additive material of carbon nanotubes (MWNT) and carbon nanofibers (graphitic nanofibes, GNF) manufactured directly by thermal CVD as an additive to improve cycle characteristics of lithium / sulfur secondary batteries. The present invention relates to a lithium / sulfur secondary battery having improved cycle characteristics at room temperature by using a furnace conductive material. The sulfur electrode of the present invention is added with an existing conductive material and MWNT or GNF, which are manufactured directly, in a weight ratio of 20: 5. By improving the surface area of the electrode active material to improve the cycle characteristics of the lithium / sulfur secondary battery.

상기와 같이 구성되는 본 발명의 리튬/유황이차전지의 사이클 특성을 향상시키기 위해 첨가재로 MWNT와 GNF를 이용한 유황전극은 써멀 CVD법으로 제조된 MWNT와 GNF 첨가재를 자기적교반법과 기계적교반법으로 유황양극에 고르게 분산시켜 구조적으로 안정하고 높은 비표면적을 가지는 유황전극을 형성할 수 있으며, 이렇게 제조된 유황전극은 높은 초기 용량과 향상된 사이클 수명을 가짐으로서 유황전지의 효율을 극대화시킬 수 있다.In order to improve the cycle characteristics of the lithium / sulfur secondary battery of the present invention configured as described above, the sulfur electrode using MWNT and GNF as an additive is a sulfur-based MWNT and GNF additive manufactured by thermal CVD. Evenly dispersed in the anode to form a sulfur electrode having a structurally stable and high specific surface area, the sulfur electrode thus produced has a high initial capacity and improved cycle life can maximize the efficiency of the sulfur battery.

유황전지, MWNT, GNF, 도전재, 첨가재 Sulfur Battery, MWNT, GNF, Conductive Material, Additive

Description

리튬/유황이차전지의 사이클 특성을 향상시키기 위해 첨가재로 MWNT와 GNF를 이용한 유황전극{Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery}Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium / sulfur battery as additives to improve cycle characteristics of lithium / sulfur secondary batteries

도 1은 리튬/유황 이차전지의 방전 시험 결과를 나타낸 그래프이고,1 is a graph illustrating a discharge test result of a lithium / sulfur secondary battery,

도 2는 본 발명에 따라 사용되는 탄소나노튜브(Multiwalled carbon nanotubes, MWNT)와 탄소나노섬유(graphitic nanofibes, GNF)를 제조하기 위한 써멀(Thermal) CVD 장비의 사진이고,2 is a photograph of a thermal CVD apparatus for manufacturing carbon nanotubes (MWNT) and carbon nanofibers (graphitic nanofibes, GNF) used according to the present invention.

도 3은 도전재인 아세틸렌 블랙(Acetylene black, AB)과 써멀 CVD법으로 제조된 MWNT, GNF를 주사전자현미경(Scanning electron microscope, SEM)을 이용하여 관찰한 표면형상의 사진이고,FIG. 3 is a photograph of the surface shape of acetylene black (AB), which is a conductive material, and MWNT and GNF prepared by thermal CVD using a scanning electron microscope (SEM).

도 4는 도전재인 아세틸렌블랙만 사용한 전극과 본 발명에 따라 MWNT 그리고 GNF가 첨가된 전극의 표면형상을 주사전자현미경으로 관찰한 사진이고, 4 is a photograph of observing the surface shape of an electrode using only acetylene black as a conductive material and the electrode added with MWNT and GNF according to the present invention with a scanning electron microscope,

도 5는 제조된 유황전극의 성능을 알아보기 위해 구성된 리튬/유황이차전지의 단면도이다.5 is a cross-sectional view of a lithium / sulfur secondary battery configured to investigate the performance of the manufactured sulfur electrode.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

a --- 양극의 집전체 b --- 유황전극a --- current collector of positive electrode b --- sulfur electrode

c --- 액체전해질 d --- 분리막c --- liquid electrolyte d --- separator

e --- 음극인 리튬 금속 f --- 음극의 집전체e --- lithium metal as negative electrode f --- current collector of negative electrode

본 발명은 리튬/유황 이차전지의 사이클 특성을 향상시키기 위해 첨가재로 탄소나노튜브(Multiwalled carbon nanotubes, MWNT)와 탄소나노섬유(graphitic nanofibes GNF)를 이용한 유황전극에 관한 것으로, 보다 자세하게는 써멀(Thermal) CVD법으로 직접 제조한 MWNT와 GNF를 양극 첨가재로 도전재와 함께 이용하여 상온에서 사이클 특성이 개선된 리튬/유황 이차전지의 제조에 관한 것이다.The present invention relates to a sulfur electrode using carbon nanotubes (MWNT) and carbon nanofibers (graphitic nanofibes GNF) as additives in order to improve cycle characteristics of a lithium / sulfur secondary battery. The present invention relates to the production of a lithium / sulfur secondary battery having improved cycle characteristics at room temperature by using MWNT and GNF prepared directly by CVD as a cathode additive together with a conductive material.

최근 전기, 전자 및 정보통신 분야의 급속한 발전으로 인하여 캠코더, 핸드폰, 노트북 등의 전자기기와 같이 고성능화, 경량화, 다기능화가 실현 가능한 소형 휴대기기의 수요가 폭발적으로 증가하고 있으며, 환경 문제와 관련하여 전기자동차의 필요성이 크게 대두됨에 따라 이들 제품의 동력원으로 사용되는 이차전지의 성능개선에 대한 요구도 크게 증가하고 있다.Recently, due to the rapid development in the fields of electricity, electronics and information communication, the demand for small portable devices that can realize high performance, light weight, and multifunctionality such as electronic devices such as camcorders, mobile phones, laptops, etc. is explosively increasing. As the necessity of automobiles emerges, the demand for improving the performance of secondary batteries used as a power source of these products is also greatly increased.

이차전지중의 하나로써 리튬을 음극으로 하는 리튬전지는 리튬의 낮은 밀도와 표준 환원전위로 인해 높은 전압과 고 에너지 밀도를 실현시킬 수 있으므로 많은 연구개발이 이루어져 왔다. 그러나 음극으로 리튬금속을 사용할 경우 충·방전이 진행되는 동안 수지상(dendrite)의 형성으로 인하여 전지단락에 의한 폭발의 위 험성이 있었다. 이러한 문제점을 해결하기 위한 리튬이온이차전지는 음극재료를 리튬금속 대신 탄소재료로 대체하고, 양극재료로서는 리튬전이금속산화물을 사용하여 리튬이온의 층간삽입(intercalation)반응을 이용한 전지시스템이다. 현재 상용화된 리튬이온전지에 사용되는 양극 활물질은 LiCoO2이며 최근에는 LiNiO2, LiMn2O4, V2O5등으로 대체하기 위한 많은 연구가 이루어지고 있으나, 이론에너지밀도가 낮으므로 전지의 에너지밀도를 높이는 데에는 한계가 있다. 따라서 고 에너지밀도의 전지를 개발하기 위해서는 이론에너지밀도가 큰 새로운 전극재료에 대한 연구가 필요하다.Lithium batteries using lithium as a negative electrode as one of secondary batteries can realize high voltage and high energy density due to the low density of lithium and the standard reduction potential. However, when lithium metal was used as the negative electrode, there was a risk of explosion due to battery shortage due to the formation of dendrite during charging and discharging. A lithium ion secondary battery for solving this problem is a battery system using an intercalation reaction of lithium ions using a lithium transition metal oxide as a cathode material instead of a carbon material instead of lithium metal. Currently, the cathode active material used in commercially available lithium ion batteries is LiCoO 2, and many studies have recently been conducted to replace LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , but the theoretical energy density is low. There is a limit to increasing the density. Therefore, in order to develop a battery of high energy density, research on a new electrode material having a high theoretical energy density is necessary.

이에 각광받는 전극재료가 유황(Elemental sulfur)이다. 유황은 친환경적이고 가격도 싼 재료이기에 고 에너지밀도의 전지에 적합하다는 장점이 있다.The electrode material in the spotlight is elemental sulfur. Sulfur is an environmentally friendly and inexpensive material, which makes it suitable for high energy density batteries.

리튬/유황이차전지(Li/S)는 유황(Elemental sulfur, S8)이 방전 생성물인 Li2S까지 완전히 반응한다고 가정할 경우 활물질당 1675mAh/g-sulfur(2600Wh/kg)의 이론용량을 나타낸다. 이러한 높은 이론용량으로 인해 Li/S 전지에 관한 많은 연구가 진행되어 왔지만, 반복적인 충·방전 사이클 동안 발생하는 유황전극의 퇴화에 의한 급격한 용량감소가 전지의 성능을 저하시키는 가장 큰 문제점으로 남아있다.The lithium / sulfur secondary battery (Li / S) shows a theoretical capacity of 1675 mAh / g-sulfur (2600 Wh / kg) per active material, assuming that sulfur (Elemental sulfur, S 8 ) completely reacts to Li 2 S, a discharge product. . Due to these high theoretical capacities, many studies have been conducted on Li / S batteries, but the abrupt capacity reduction caused by the degeneration of sulfur electrodes generated during repeated charge and discharge cycles remains the biggest problem that degrades the performance of the batteries. .

이러한 문제점을 해결할 수 있는 방법으로 전극 내에 첨가되어 전극의 구조적 붕괴를 막고 활물질인 유황에 도전성을 제공하기 위해 기대되는 재료로 탄소나노튜브 및 탄소나노섬유가 있다. 나노크기 탄소 소재는 21세기 핵심물질로 가장 주목받고 있으며, 나노기술(NT)에 포함되는 탄소나노튜브는 1991년 새로운 물질을 연 구하고 있던 일본전기회사(NEC)의 Iijima박사가 전기방전법을 사용하여 흑연 음극상에 형성시킨 탄소덩어리를 TEM으로 분석하다가 처음 발견하였다. 뛰어난 물성과 구조 때문에, 전자정보통신, 환경, 에너지 및 의약분야에의 응용이 기대되고 있으며 특히, 차세대 전자정보 산업분야 등에서 폭넓게 응용될 것으로 기대됨에 따라 선진각국에서는 첨단 전자정보 산업 분야와 고기능성 나노소재의 경쟁력 확보 차원에서 국가적인 지원 아래 탄소나노튜브의 합성 응용에 대한 연구를 광범위하게 수행하고 있다.In order to solve this problem, carbon nanotubes and carbon nanofibers are added to the electrode to prevent structural collapse of the electrode and to provide conductivity to sulfur as an active material. Nano-size carbon materials are receiving the most attention as core materials in the 21st century, and carbon nanotubes included in nanotechnology (NT) use the electric discharge method by Dr. Iijima of Japan Electric Company (NEC), who was studying new materials in 1991. The mass of carbon formed on the graphite negative electrode was first discovered by TEM analysis. Due to its excellent properties and structure, it is expected to be applied to the fields of electronic information communication, environment, energy and medicine, and in particular, it is expected to be widely applied in the next generation electronic information industry. In order to secure the competitiveness of materials, we are conducting extensive research on the synthesis application of carbon nanotubes with national support.

한편, 최근 한국과학기술원의 한상철은 MWNT를 유황 전극 내에 첨가하여 도전재인 탄소재료의 기지를 안정하게 형성함으로써 리튬/유황이차전지의 사이클 특성을 개선한 연구를 한 바 있으나, 상기 리튬/유황이차전지의 사이클 특성이 만족할 만한 수준을 나타내지는 못하였다.On the other hand, Han Sang-chul of the Korea Advanced Institute of Science and Technology has recently conducted studies to improve the cycle characteristics of lithium / sulfur secondary batteries by adding MWNTs in sulfur electrodes to stably form a base of carbon material as a conductive material. The cycle characteristics of did not show satisfactory levels.

따라서 본 발명자 등은 상기 리튬/유황이차전지의 사이클 특성이 만족할 만한 수준을 나타낼 수 있는 것에 대해 예의 연구하던 중, 상기 도전재로 널리 쓰이는 아세틸렌블랙과 첨가재인 탄소나노튜브와 탄소나노섬유와의 최적의 조성비를 알아내고, 이에 의해 전극 활물질의 표면적을 넓게 함으로서 리튬/유황이차전지의 사이클 특성을 개선시켜 본 발명을 완성하였다.Therefore, the present inventors, while diligently researching that the cycle characteristics of the lithium / sulfur secondary battery can exhibit satisfactory levels, the optimum of acetylene black widely used as the conductive material, carbon nanotubes and carbon nanofibers as additives The composition of the present invention was completed by improving the cycle characteristics of the lithium / sulfur secondary battery by finding the composition ratio of and increasing the surface area of the electrode active material.

따라서, 본 발명의 목적은 도전재로 널리 쓰이는 아세틸렌블랙과 첨가재인 탄소나노튜브와 탄소나노섬유를 최적의 조성비로 구성하여 전극 활물질의 표면적을 넓게 하여 사이클 특성을 개선시킨 리튬/유황이차전지의 유황전극을 제공하기 위한 것이다.Accordingly, an object of the present invention is to construct an acetylene black widely used as a conductive material, carbon nanotubes and carbon nanofibers with an optimum composition ratio, thereby improving the cycle characteristics by widening the surface area of the electrode active material and improving sulfur characteristics. It is for providing an electrode.

일반적으로, 리튬/유황이차전지의 경우 부도체인 유황을 양극 활물질로 이용하기 때문에 효율적으로 전도성을 부여하기 위해서는 유황 주위에 도전재인 탄소재료가 균일하고 분포하고 있어야한다. 그러나 널리 사용되고 있는 아세틸렌블랙의 경우 충/방전이 진행되는 동안 활물질의 뭉침이 일어날 때 구형의 미세한 아세틸렌블랙 또한 뭉치게 되어 전극의 구조적 붕괴가 일어나는 동시에 활물질에 전도성을 부여해 주기 어렵게 된다.In general, in the case of a lithium / sulfur secondary battery, since a non-conductive sulfur is used as a positive electrode active material, in order to effectively provide conductivity, a carbon material as a conductive material should be uniform and distributed around the sulfur. However, in the case of widely used acetylene black, when the active material is agglomerated during charging / discharging, spherical fine acetylene black is also agglomerated, thereby making it difficult to impart conductivity to the active material at the same time.

따라서, 본 발명은 리튬/유황이차전지용 유황전극에 도전재로 널리 이용되는 아세틸렌블랙과 MWNT와 GNF를 최적의 조성으로 첨가하여 유황전극의 전도성과 기계적 강도를 향상시켜 리튬/유황이차전지의 사이클 특성을 향상시키기 위한 것이다.Accordingly, the present invention improves the conductivity and mechanical strength of the sulfur electrode by adding acetylene black, MWNT, and GNF, which are widely used as conductive materials, to the sulfur electrode for lithium / sulfur secondary battery to improve the cycle characteristics of the lithium / sulfur secondary battery. Is to improve.

상기 본 발명의 목적을 달성하기 위한 리튬/유황이차전지의 사이클 특성을 향상시키기 위해 첨가재로 MWNT와 GNF를 이용한 유황전극은;Sulfur electrode using MWNT and GNF as an additive to improve the cycle characteristics of the lithium / sulfur secondary battery for achieving the object of the present invention;

기존의 도전재와 직접 제조한 첨가재인 MWNT 또는 GNF를 무게중량비 20:5로 첨가하여 전극 활물질의 표면적을 넓게 함으로서 리튬/유황이차전지의 사이클 특성을 개선시킴을 특징으로 한다.MWNT or GNF, which is an additive prepared directly with the existing conductive material, is added in a weight ratio of 20: 5 to increase the surface area of the electrode active material, thereby improving cycle characteristics of a lithium / sulfur secondary battery.

본 발명의 다른 구성에 따르면, 상기 유황전극은 S, NaS, MnS, FeS, FeS2, NiS, CuS 또는 이들의 혼합물로 이루어지는 것을 특징으로 한다. According to another configuration of the invention, the sulfur electrode is characterized in that consisting of S, NaS, MnS, FeS, FeS 2, NiS, CuS or a mixture thereof.

본 발명의 또 다른 구성에 따르면, 상기 유황전극의 제조는 자기교반법, 아트리터형볼밀 또는 상기 두 방법의 혼합으로 수행됨을 특징으로 한다.According to another configuration of the invention, the production of the sulfur electrode is characterized in that it is carried out by a magnetic stirring method, an atlit ball mill or a mixture of the two methods.

본 발명의 또 다른 구성에 따르면, 상기 본 발명에 따른 유황 전극을 사용하고 음극 물질로서 Li, Na의 금속, 또는 이들의 혼합물로 이루어지는 것을 특징으로 하는 유황전지가 제공된다.According to another configuration of the present invention, there is provided a sulfur battery which uses the sulfur electrode according to the present invention and consists of a metal of Li, Na, or a mixture thereof as a negative electrode material.

이하, 본 발명을 첨부 도면을 참고로 보다 자세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 따라 첨가재로 사용한 MWNT와 GNF와 이를 이용한 유황전극은 다음과 같이 제조될 수 있다.MWNT and GNF used as an additive according to the present invention and a sulfur electrode using the same can be prepared as follows.

(1) MWNT의 제조(1) Preparation of MWNT

도 2는 본 발명에 사용된 MWNT와 GNF를 제조하기 위한 써멀 CVD 장비이다.Figure 2 is a thermal CVD equipment for manufacturing MWNT and GNF used in the present invention.

MWNT와 GNF의 제조는 촉매를 제조한 후 이를 합성하는 방법으로 이루어진다. 금속 촉매는 Fe 나이트레이트(nitrate) 와 Mo 나이트레이트를 이용하여 공침법으로 제조한다. MWNT의 합성은 제조한 금속촉매을 전기로에 장입하고 적정 온도에서 C2H4 가스와 H2 혼합 가스를 이용하여 합성한다.The production of MWNT and GNF consists of preparing a catalyst and then synthesizing it. Metal catalysts are prepared by coprecipitation using Fe nitrate and Mo nitrate. Synthesis of MWNT is carried out by charging the prepared metal catalyst into an electric furnace and using a mixture of C 2 H 4 gas and H 2 at an appropriate temperature.

(2) GNF의 제조(2) manufacture of GNF

금속 촉매는 Cu 니트레이트 와 Ni 니트레이트를 이용하여 공침법으로 제조한다.Metal catalysts are prepared by coprecipitation using Cu nitrate and Ni nitrate.

나선형(Spiral type)의 GNF의 합성은 제조한 금속촉매을 전기로에 장입하고 적정 온도에서 C2H4 가스와 H2 혼합 가스를 이용하여 합성한다.Spiral type GNF is synthesized by charging the prepared metal catalyst into an electric furnace and using a mixture of C 2 H 4 gas and H 2 at a proper temperature.

(3) 유황 전극의 제조(3) Preparation of Sulfur Electrode

전 처리 과정에서 원료분말을 진공 건조한 후, 유황, 아세틸렌 블랙, MWNT 또는 GNF, 그리고 PEO 고분자의 무게중량비를 바람직하기로는 60 : 20 : 5 : 15로 하여 유황전극을 제조한다.In the pretreatment process, the raw material powder is vacuum dried, and sulfur, acetylene black, MWNT or GNF, and a weight ratio of the PEO polymer are preferably 60: 20: 5: 15 to prepare a sulfur electrode.

제조 방법은 유황전극의 구성요소 중 유황과 아세틸렌 블랙, MWNT 또는 GNF를 30㎖의 삼각플라스크에 넣은 후, 16cc의 ACN(acetonitrile, 99.5%, Junsei chemical Co.)을 첨가하여, 1시간 동안 초음파를 이용하여 분산시킨다. 분산된 시료에 결합제인 PEO 고분자를 가하여 2시간 동안 자기교반을 실시한다. 교반이 끝난 시료를 어트리터 자(attritor jar)에 넣고 2시간 동안 볼밀링 하여 균일한 슬러리를 제조하였다. 이때 볼과 시료는 무게중량비 60 : 1로 함이 바람직하다. 제조된 균일한 슬러리를 유리판 위에 도포한 후 상온에서 가능한 용매를 완전히 제거하고 60℃에서 약 24시간 진공 건조시킨다. 이렇게 제조된 유황전극을 약 0.825cm2의 원형으로 펀칭하여 리튬/유황이차전지에 적용할 수 있다.In the manufacturing method, sulfur and acetylene black, MWNT, or GNF among the components of the sulfur electrode were placed in a 30 ml Erlenmeyer flask, and 16 cc of ACN (acetonitrile, 99.5%, Junsei chemical Co.) was added, followed by ultrasonic wave for 1 hour. To disperse. PEO polymer as a binder is added to the dispersed sample and subjected to magnetic stirring for 2 hours. The stirred sample was placed in an attritor jar and ball milled for 2 hours to prepare a uniform slurry. At this time, the ball and the sample is preferably weight ratio 60: 1. After applying the prepared uniform slurry on a glass plate, possible solvents are completely removed at room temperature and vacuum dried at 60 ℃ for about 24 hours. The sulfur electrode thus prepared may be punched into a circular shape of about 0.825 cm 2 and applied to a lithium / sulfur secondary battery.

이하, 본 발명을 실시예에 의해 보다 자세히 설명하지만 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this.

실시예 1 내지 2Examples 1-2

본 실시예에 사용된 모든 원재료는 전 처리를 통해 수분과 불순물을 제거하였다. 전극의 활물질로 사용된 유황(100mesh이하, Aldrich Co.)과 도전재로 사용된 아세틸렌 블랙(Acetylene Black, 1μm이하, 99.9%이상, Alfa Co.)과 직접 제조한 MWNT(multi-walled carbon nanotubes)와 GNF(graphitic nanofibers)는 120℃에서 24시간 진공건조를 하였다. 그리고 결합제인 PEO(poly ethylene oxide, Aldrich Co.)는 약 50℃에서 24시간 진공건조를 하였으며, 용매인 ACN(acetonitrile, 99.9%, Aldrich Co.)은 전 처리를 하지 않았다. All raw materials used in this example were pretreated to remove moisture and impurities. MWNT (multi-walled carbon nanotubes) manufactured directly with sulfur (less than 100mesh, Aldrich Co.) used as active material of electrode and acetylene black (Acetylene Black, less than 1μm, more than 99.9%, Alfa Co.) used as conductive material And GNF (graphitic nanofibers) were vacuum dried at 120 ° C for 24 hours. And the binder PEO (polyethylene oxide, Aldrich Co.) was vacuum dried at about 50 ℃ for 24 hours, the solvent ACN (acetonitrile, 99.9%, Aldrich Co.) was not pretreated.

각각 MWNT와 GNF를 첨가재로 사용한 실시예 1 및 2의 유황전극은 다음과 같이 제조하였다.Sulfur electrodes of Examples 1 and 2 using MWNT and GNF as additives, respectively, were prepared as follows.

실시예 1의 유황 전극은 전 처리 과정을 거친 유황과 아세틸렌 블랙, MWNT를 30㎖의 삼각플라스크에 넣은 후, 16cc의 ACN을 첨가하여, 1시간 동안 초음파를 이용하여 분산시켰다. 분산된 시료에 결합제인 PEO 고분자를 첨가하여 2시간 동안 자기교반을 실시하였다. In the sulfur electrode of Example 1, sulfur, acetylene black, and MWNT, which were pretreated, were placed in a 30 ml Erlenmeyer flask, and 16 cc of ACN was added thereto, followed by dispersion for 1 hour using ultrasonic waves. PEO polymer as a binder was added to the dispersed sample, followed by magnetic stirring for 2 hours.

반면 실시예 2의 유황 전극은 MWNT 대신 GNF를 사용하는 외에는 실시에 1과 동일하게 하였다. On the other hand, the sulfur electrode of Example 2 was the same as in Example 1 except for using GNF instead of MWNT.

상기 자기교반이 끝난 시료를 어트리터 자에 넣고 2시간 동안 볼밀링 하여 균일한 슬러리를 제조하였다. 이때 볼과 시료의 비율은 무게중량비 60 : 1로 하였다. 제조된 균일한 슬러리를 유리판 위에 일정량을 도포한 후 상온에서 가능한 용매를 완전히 제거한 후 약 60℃에서 약 24시간 정도 진공 건조시켰다.The self-stirred sample was placed in an attritor and ball milled for 2 hours to produce a uniform slurry. At this time, the ratio of the ball and the sample was 60: 1 weight ratio. A uniform amount of the prepared slurry was coated on a glass plate, and then solvents were completely removed at room temperature, followed by vacuum drying at about 60 ° C. for about 24 hours.

상기 각 실시예에서의 유황, 아세틸렌 블랙, MWNT, PEO 결합제의 비율을 60 : 20 : 5 : 15 (실시예1), 및 유황, 아세틸렌 블랙, GNF, PEO 결합제의 비율을 60 : 20 : 5 : 15 (실시예2)로 하였다.The ratio of sulfur, acetylene black, MWNT, and PEO binder in each of the above examples was 60: 20: 5: 15 (Example 1), and the ratio of sulfur, acetylene black, GNF, and PEO binder was 60: 20: 5: 15 (Example 2) was set.

전해질은 1M농도의 LiTFSI(lithium trifluoromethanesulfonimide) 리튬염을 TEGDME(Tetraglyme, tetra(ethylene glycol)dimethyl ether)전해액에 녹인 액체 전해질을 사용한다.The electrolyte is a liquid electrolyte obtained by dissolving lithium trifluoromethanesulfonimide (LiTFSI) lithium salt in 1M concentration in a TEGDME (Tetraglyme, tetra (ethylene glycol) dimethyl ether) electrolyte.

음극으로 사용된 리튬 호일은 다른 처리를 하지 않았다.The lithium foil used as the negative electrode did not undergo any other treatment.

상기 유황전극, 액체전해질, 리튬 포일을 아르곤 분위기의 글로브 박스(glove box)에서 유황전극, 액체전해질, 분리막, 리튬 호일 순으로 적층하여 리튬/유황이차전지를 제조하였다. 제조된 유황 전극을 리튬/유황이차전지에 적용하여 25℃의 온도에서 충/방전 실험을 하였다. 충/방전 시 전류 밀도는 100 mA/g-sulfur로 하였으며, 충전 종지 전압은 3.2V로 방전 종지 전압은 1.5V로 하였다. The sulfur electrode, the liquid electrolyte, and the lithium foil were stacked in the order of the sulfur electrode, the liquid electrolyte, the separator, and the lithium foil in a glove box of an argon atmosphere to prepare a lithium / sulfur secondary battery. The prepared sulfur electrode was applied to a lithium / sulfur secondary battery to perform a charge / discharge experiment at a temperature of 25 ° C. During charging / discharging, the current density was 100 mA / g-sulfur, the end voltage of charging was 3.2V, and the end voltage of discharge was 1.5V.

비교예Comparative example

각 구성 성분들을 위와 동일하게 전 처리를 한 후, 유황과 아세틸렌 블랙, PEO 고분자를 무게중량비를 60 : 25 : 15로 하며 기타 제조 방법은 상기 실시예 1과 같다. 제조된 유황 전극을 리튬/유황이차전지에 적용하여 25℃의 온도에서 충/방전 실험을 하였다. 충/방전 시 전류 밀도는 100 mA/g-sulfur로 하였으며, 충전 종지 전압은 3.2V로 방전 종지 전압은 1.5V로 하였다.After pre-treatment of each component in the same manner as above, sulfur and acetylene black, PEO polymer weight ratio of 60: 25: 15 and other manufacturing methods are the same as in Example 1. The prepared sulfur electrode was applied to a lithium / sulfur secondary battery to perform a charge / discharge experiment at a temperature of 25 ° C. During charging / discharging, the current density was 100 mA / g-sulfur, the end voltage of charging was 3.2V, and the end voltage of discharge was 1.5V.

시험예Test Example

상기 실시예와 비교예의 방법으로 제조한 유황전극을 리튬/유황이차전지에 적용하여 실시된 사이클 시험을 나타낸다. 실시예에서 제조된 리튬/유황이차전지의 경우 MWNT를 첨가재로 사용했을 때 초기방전용량이 이론방전용량의 약 75%인 1200mAh/g-sulfur을 나타내었으며, 사이클 초기에는 횟수 당 50~10mAh/g-sulfur의 용량감소가 일어났으나 30사이클이 진행된 이후에는 용량감소가 줄어들면서 50회 사이클 이후 약 600mAh/g-sulfur이상의 높은 방전 용량을 나타내었다. GNF를 첨가재로 사용하여 제조한 리튬/유황이차전지의 경우960mAh/g-sulfur의 초기방전용량을 나타내었다. MWNT를 첨가재로 사용한 유황전극과 같이 사이클 초기에는 횟수 당 상당량의 용량감소가 일어났으나 30 사이클이 진행된 후 용량감소가 완만해지면서 50회 사이클 이후 약 500mAh/g-sulfur이상의 높은 방전용량을 나타내었다. 그러나 비교예에서 제조된 유황전극을 이용하여 리튬/유황이차전지의 사이클 특성을 시험한 결과 870mAh/g-sulfur의 초기방전용량을 나타내었고 사이클이 진행되는 동안 용량감소가 꾸준히 일어나 50회 사이클이 진행되는 동안 400mAh/g-sulfur의 용량을 보였다. 이로써 첨가재로 MWNT와 GNF를 사용하면 충/방전 동안 유황전극에서 일어나는 구성물질들의 뭉침을 지연시켜며, 활물질에 원활하게 전자를 공급함으로써 리튬/유황이차전지의 사이클 특성이 향상됨을 알 수 있다.The cycle test performed by applying the sulfur electrode manufactured by the method of the said Example and a comparative example to a lithium / sulfur secondary battery is shown. In the case of the lithium / sulfur secondary battery prepared in Example, when the MWNT was used as an additive, the initial discharge amount was about 1200 mAh / g-sulfur, which was about 75% of the theoretical discharge rate, and 50 to 10 mAh / g per cycle at the beginning of the cycle. The capacity reduction of -sulfur occurred, but after 30 cycles, the capacity decrease was reduced, showing a high discharge capacity of about 600mAh / g-sulfur after 50 cycles. In case of lithium / sulfur secondary battery manufactured using GNF as an additive, the initial discharge capacity of 960mAh / g-sulfur was shown. As with the sulfur electrode using MWNT as an additive, a considerable amount of capacity reduction occurred at the beginning of the cycle, but after 30 cycles, the capacity decreases slowly and shows a high discharge capacity of about 500mAh / g-sulfur after 50 cycles. . However, as a result of testing the cycle characteristics of the lithium / sulfur secondary battery using the sulfur electrode manufactured in the comparative example, the initial discharge capacity of 870mAh / g-sulfur was shown, and the capacity decreases steadily during the cycle, which results in 50 cycles. While being shown a capacity of 400mAh / g-sulfur. Thus, it can be seen that the use of MWNT and GNF as additives delays the aggregation of constituents occurring in the sulfur electrode during charging and discharging, and improves cycle characteristics of the lithium / sulfur secondary battery by smoothly supplying electrons to the active material.

상기와 같이 구성되는 본 발명의 리튬/유황이차전지의 사이클 특성을 향상시키기 위해 첨가재로 MWNT와 GNF를 이용한 유황전극은 써멀 CVD법으로 제조된 MWNT 와 GNF 첨가재를 자기적교반법과 기계적교반법으로 유황양극에 고르게 분산시켜 구조적으로 안정하고 높은 비표면적을 가지는 유황전극을 형성할 수 있으며, 이렇게 제조된 유황전극은 높은 초기 용량과 향상된 사이클 수명을 가짐으로서 유황전지의 효율을 극대화시킬 수 있다.In order to improve the cycle characteristics of the lithium / sulfur secondary battery of the present invention configured as described above, the sulfur electrode using MWNT and GNF as an additive is a sulfur-based MWNT and GNF additive manufactured by thermal CVD. Evenly dispersed in the anode to form a sulfur electrode having a structurally stable and high specific surface area, the sulfur electrode thus produced has a high initial capacity and improved cycle life can maximize the efficiency of the sulfur battery.

Claims (6)

유황 양극활물질, 아세틸렌 블랙 도전재, 전기전도성 첨가재로 탄소나노튜브 또는 탄소나노섬유를 아세토니트릴과 혼합하여 초음파 분산시키는 단계; 분산된 혼합물에 결합제로 PEO 고분자를 가하고 자기 교반시키는 단계; 이를 아트리션 볼 밀링하여 슬러리를 제조하는 단계; 및 이 슬러리를 유리판에 도포하여 건조시키는 단계를 포함하는 리튬/유황 이차전지용 유황 전극의 제조 방법.Dispersing ultrasonically by mixing carbon nanotubes or carbon nanofibers with acetonitrile as a sulfur cathode active material, an acetylene black conductive material, and an electrically conductive additive; Adding a PEO polymer to the dispersed mixture as a binder and magnetic stirring; Atrium ball milling it to prepare a slurry; And applying the slurry to a glass plate and drying the slurry. 삭제delete 제 1항에 있어서, 상기 전기전도성 첨가재는 도전재에 대해 무게 중량비로 20 내지 50중량%로 첨가됨을 특징으로 하는 방법.The method of claim 1, wherein the electrically conductive additive is added in an amount of 20 to 50% by weight based on the weight of the conductive material. 제 1항에 있어서, 상기 양극 활물질은 S, NaS, MnS, FeS, FeS2, NiS, CuS 또는 이들의 혼합물로 이루어지는 것을 특징으로 하는 방법.The method of claim 1, wherein the cathode active material is S, NaS, MnS, FeS, FeS 2, NiS, CuS or a mixture thereof. 삭제delete 상기 제1항의 방법으로 제조된 유황 전극을 사용하고 음극 물질로서 Li, Na의 금속, 또는 이들의 혼합물로 이루어지는 것을 특징으로 하는 유황전지.A sulfur battery using the sulfur electrode prepared by the method of claim 1 and comprising a metal of Li, Na, or a mixture thereof as a negative electrode material.
KR1020050037731A 2005-05-04 2005-05-04 Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery KR100673987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050037731A KR100673987B1 (en) 2005-05-04 2005-05-04 Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050037731A KR100673987B1 (en) 2005-05-04 2005-05-04 Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery

Publications (2)

Publication Number Publication Date
KR20060115267A KR20060115267A (en) 2006-11-08
KR100673987B1 true KR100673987B1 (en) 2007-01-24

Family

ID=37652769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050037731A KR100673987B1 (en) 2005-05-04 2005-05-04 Sulfur electrode using multiwalled carbon nanotubes and graphitic nanofibes for lithium/sulfur battery

Country Status (1)

Country Link
KR (1) KR100673987B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099272A1 (en) * 2015-12-09 2017-06-15 주식회사 엘지화학 Lithium secondary battery positive electrode material slurry comprising at least two types of conductive materials, and lithium secondary battery using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244474A (en) * 2015-09-08 2016-01-13 上海空间电源研究所 High-specific capacity lithium-sulfur secondary battery composite cathode and preparation method thereof
CN108390044B (en) * 2018-03-08 2020-06-26 湖南大学 Nickel disulfide-carbon composite material and preparation method and application thereof
CN111446418B (en) * 2020-04-17 2021-08-03 中国航发北京航空材料研究院 High-sulfur-loading-capacity lithium-sulfur battery positive plate and preparation method thereof
CN112382743A (en) * 2020-11-09 2021-02-19 上海空间电源研究所 Flexible copper sulfide composite electrode, preparation method thereof and magnesium-based secondary battery comprising flexible copper sulfide composite electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099272A1 (en) * 2015-12-09 2017-06-15 주식회사 엘지화학 Lithium secondary battery positive electrode material slurry comprising at least two types of conductive materials, and lithium secondary battery using same
US10128508B2 (en) 2015-12-09 2018-11-13 Lg Chem, Ltd. Positive electrode material slurry for lithium secondary battery including at least two conductive materials and lithium secondary battery using the same

Also Published As

Publication number Publication date
KR20060115267A (en) 2006-11-08

Similar Documents

Publication Publication Date Title
Wang et al. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries
Liu et al. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries
Choi et al. Improvement of cycle property of sulfur electrode for lithium/sulfur battery
Di Lecce et al. Multiwalled carbon nanotubes anode in lithium-ion battery with LiCoO2, Li [Ni1/3Co1/3Mn1/3] O2, and LiFe1/4Mn1/2Co1/4PO4 cathodes
Hou et al. An electrochemical study of Sb/acetylene black composite as anode for sodium-ion batteries
Han et al. Hydrothermal self-assembly of α-Fe 2 O 3 nanorings@ graphene aerogel composites for enhanced Li storage performance
Wang et al. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life
Zhang et al. NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery
TWI614211B (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
Jin et al. Effect of different carbon conductive additives on electrochemical properties of LiFePO 4-C/Li batteries
CN113471415A (en) Composite coated lithium ion battery anode material and preparation method thereof
Hou et al. Hollow opening nanoflowers MoS2-CuS-EG cathodes for high-performance hybrid Mg/Li-ion batteries
Sun et al. Electrostatic shield effect: an effective way to suppress dissolution of polysulfide anions in lithium–sulfur battery
Zhao et al. Facile scalable synthesis and superior lithium storage performance of ball-milled MoS 2–graphite nanocomposites
TWI553048B (en) Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
Yang et al. A novel route to constructing high-efficiency lithium sulfur batteries with spent graphite as the sulfur host
Zhou et al. Selective carbon coating techniques for improving electrochemical properties of NiO nanosheets
Liu et al. Influence of Na-substitution on the structure and electrochemical properties of layered oxides K0. 67Ni0. 17Co0. 17Mn0. 66O2 cathode materials
Xia et al. A biomass-derived biochar-supported NiS/C anode material for lithium-ion batteries
Li et al. Silicon/graphite/carbon nanotubes composite as anode for lithium ion battery
Feng et al. One-dimensional architecture with reduced graphene oxide supporting ultrathin MoO2 nanosheets as high performance anodes for lithium-ion batteries
Xu et al. Migration behavior, oxidation state of iron and graphitization of carbon nanofibers for enhanced electrochemical performance of composite anodes
Lv et al. Hierarchical carbon-coated Fe1-xS/mesocarbon microbeads composite as high-performance lithium-ion batteries anode
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
Fahad et al. In-situ TEM observation of fast and stable reaction of lithium polysulfide infiltrated carbon composite and its application as a lithium sulfur battery electrode for improved cycle lifetime

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee