KR100673092B1 - Method for manufacturing piston - Google Patents

Method for manufacturing piston Download PDF

Info

Publication number
KR100673092B1
KR100673092B1 KR1020050076999A KR20050076999A KR100673092B1 KR 100673092 B1 KR100673092 B1 KR 100673092B1 KR 1020050076999 A KR1020050076999 A KR 1020050076999A KR 20050076999 A KR20050076999 A KR 20050076999A KR 100673092 B1 KR100673092 B1 KR 100673092B1
Authority
KR
South Korea
Prior art keywords
piston
preform
fiber
metal material
manufacturing
Prior art date
Application number
KR1020050076999A
Other languages
Korean (ko)
Inventor
주대헌
김철현
Original Assignee
동양피스톤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동양피스톤 주식회사 filed Critical 동양피스톤 주식회사
Priority to KR1020050076999A priority Critical patent/KR100673092B1/en
Application granted granted Critical
Publication of KR100673092B1 publication Critical patent/KR100673092B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/02Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor of cylinders, pistons, bearing shells or like thin-walled objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

A piston manufacturing method which reduces casting defective proportion when manufacturing the piston while easily performing partial reinforcement of desired positions of the piston, and can prevent formation of fatigue cracks caused by a thermal stress problem generated on a boundary part between a reinforcement and a matrix of the piston while the piston is used is provided. A method for manufacturing a piston comprises: a step(S1) of forming a preform with a corresponding shape on a reinforcement-required portion using a porous ceramic fiber; a step(S2) of impregnating the interior of the preform with a matrix alloy to manufacture a fiber reinforced metal material; a step(S3) of installing the fiber reinforced metal material in a mold, and pouring a molten matrix alloy into the mold; a step(S4) of cooling the mold; and a step(S5) of opening and demolding the mold. The matrix alloy has higher average thermal expansion rate than the matrix alloy. The fiber reinforced metal material has the same average thermal expansion rate as the matrix alloy.

Description

피스톤 제조방법{Method for manufacturing piston}Method for manufacturing piston

도 1은 본 발명의 실시예에 따른 피스톤 제조방법의 흐름도,1 is a flow chart of a piston manufacturing method according to an embodiment of the present invention,

도 2a 내지 도 2c는 도 1에 나타낸 피스톤 제조방법에 따라 피스톤을 제조하기 위한 피스톤 제조공정을 개략적으로 나타낸 개념도,2a to 2c is a conceptual diagram schematically showing a piston manufacturing process for manufacturing a piston in accordance with the piston manufacturing method shown in FIG.

도 3은 도 1에 나타낸 피스톤 제조방법에 따라 제작된 피스톤소재의 단면도,3 is a cross-sectional view of the piston material produced in accordance with the piston manufacturing method shown in FIG.

도 4는 도 3에 도시된 피스톤소재를 가공한 피스톤 상태를 나타낸 단면도이다.4 is a cross-sectional view showing a piston state of the piston material shown in FIG.

<도면의 간단한 설명><Brief Description of Drawings>

10...하부금형 20...섬유강화금속재료10 ... Double mold 20 ... Fiber reinforced metal material

30...탕구 40...상부금형30 ... steaming 40 ... upper mold

50...피스톤소재 60...가공된 피스톤50 Piston material 60 Machined piston

61...연소실-림부 62...탑-링부61.Combustion chamber-62

본 발명은 피스톤 제조방법에 관한 것으로서, 보다 상세하게는 피스톤의 연소실-림(Bowl-Rim)부 혹은 탑-링(Top-Ring)부 등과 같이 열 부하를 많이 받는 부분 의 내열특성을 향상시키기 위하여 섬유강화금속을 이용한 피스톤 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a piston, and more particularly, to improve heat resistance characteristics of a portion subjected to high heat load, such as a combustion chamber-rim portion or a top-ring portion of a piston. It relates to a piston manufacturing method using a fiber-reinforced metal.

섬유강화금속은 금속과 같은 기계적 강도를 가지면서도 가볍고 고온특성이 뛰어나서, 피스톤 제조 시 열부하를 가장 많이 받는 피스톤의 연소실 림부 혹은 탑-링부 등의 강화를 위해 이용된다.Fiber-reinforced metals have the same mechanical strength as metals, but are light and have high temperature characteristics, and are used for reinforcing the combustion rim or top-ring of pistons that receive the most heat during piston manufacture.

이러한 섬유강화금속을 이용한 피스톤을 제조하기 위한 방법에 있어서는, 종래에 세라믹 섬유로 만든 예비성형체(preform)를 이용한 강화피스톤 제조방법이 공지되어 있다.In the method for manufacturing a piston using such a fiber-reinforced metal, a method of manufacturing a reinforced piston using a preform made of ceramic fiber is known.

종래 강화피스톤 제조방법에서는 다공성의 세라믹 섬유로 만든 예비성형체를 강화가 필요한 부위에 설치한 후 스퀴즈캐스팅을 포함한 가압주조법으로 예비성형체의 공극 내부에 금속용탕을 침투시켜 강화피스톤을 제조한다. 이와 같이 강화된 예비성형체를 내부에 포함한 피스톤 소재는 피스톤 형상으로 가공되며, 가공 후에 용탕이 침투된 예비성형체가 피스톤의 강화부에 남게 되어 강화피스톤이 완성된다.In the conventional reinforcing piston manufacturing method, the preform made of porous ceramic fiber is installed on the part requiring reinforcement, and then the reinforcing piston is manufactured by infiltrating the molten metal into the pores of the preform using a pressure casting method including squeeze casting. The piston material including the reinforced preform as described above is processed into a piston shape, and after processing, the preform in which the molten metal penetrates is left in the reinforcing portion of the piston, thereby completing the reinforcing piston.

그러나 상기와 같은 종래의 피스톤 제조방법은 다음과 같은 문제점을 가지고 있다.However, the conventional piston manufacturing method as described above has the following problems.

첫째, 제조시 예비성형체의 내부로 금속용탕을 침투시키는 과정에서 고압에 의해서 예비성형체의 변형이 발생되기 쉽다.First, the deformation of the preform is likely to occur due to the high pressure in the process of penetrating the molten metal into the inside of the preform during manufacture.

둘째, 제조시 가압력이 충분하지 않거나 공극 등의 설계가 잘못되어 있을 경우 예비성형체의 공극 내로 금속용탕의 침투가 잘 이루어지지 않아 주조불량이 발생하기 쉽다.Second, if the pressing force is not sufficient during manufacture or the design of the voids is incorrect, the casting molten metal is likely to occur due to poor penetration of the molten metal into the voids of the preform.

셋째, 예비성형체의 강성한계 때문에 원하는 부분의 강화를 위해서 주변의 불필요한 부분까지 강화하여야 한다.Third, due to the rigid limit of the preform, it should be strengthened to the unnecessary parts around to enhance the desired part.

넷째, 피스톤의 강화부는 350℃ 이상의 고온에 노출되므로 열팽창에 의한 응력이 발생하는데, 강화재부분과 모재의 열팽창률이 상이하므로 피스톤의 사용 중 강화재와 모재의 경계부분에서의 반복적인 열응력이 발생하게 된다. 이로 인해 피스톤은 피로크랙(Fatigue crack)이 발생하고 결국 파단에 이르게 되는 문제점이 있다.Fourth, the reinforcement part of the piston is exposed to high temperature of 350 ℃ or more, the stress caused by thermal expansion occurs, the thermal expansion coefficient of the reinforcement part and the base material is different, so that repeated thermal stress at the boundary between the reinforcement material and the base material during the use of the piston do. As a result, the piston has a problem that fatigue crack (Fatigue crack) occurs and eventually leads to breakage.

본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 원하는 위치의 부분 강화가 용이하면서도 피스톤을 제조할 때 주조불량률이 낮고, 피스톤 사용 중에 피스톤의 강화재와 모재의 경계부분에서의 열응력 문제로 인한 피로크랙을 방지할 수 있는 피스톤 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, it is easy to reinforce the portion of the desired position, but the low casting failure rate when manufacturing the piston, due to the thermal stress problem at the boundary between the reinforcement of the piston and the base material during use of the piston It is an object of the present invention to provide a piston manufacturing method that can prevent fatigue cracking.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구 범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. In addition, the objects and advantages of the invention may be realized by the means and combinations indicated in the claims.

상기와 같은 목적을 달성하기 위한 본 발명의 피스톤 제조방법은 다공성 세라믹섬유를 이용하여 강화가 필요한 부분에 대응하는 형상의 예비성형체를 성형하는 단계와; 상기 예비성형체 내부에 기지합금을 함침시켜 섬유강화금속재료를 제조하는 단계와; 금형 내에 상기 섬유강화금속재료를 설치하고, 모재합금 용탕을 주입 하는 단계; 및 냉각 후 금형을 개방하여 탈형시키는 단계를 포함하는 피스톤 제조방법을 포함한다.Piston manufacturing method of the present invention for achieving the above object comprises the steps of forming a preform of the shape corresponding to the portion that needs to be reinforced using a porous ceramic fiber; Manufacturing a fiber-reinforced metal material by impregnating a base alloy in the preform; Installing the fiber-reinforced metal material in a mold and injecting a base alloy molten metal; And a piston manufacturing method comprising the step of demolding by opening the mold after cooling.

또한, 상기 기지합금은 상기 모재합금보다 평균 열팽창률이 높은 것이 바람직하다.In addition, the base alloy is preferably higher in average thermal expansion coefficient than the base alloy.

또한, 상기 섬유강화금속재료의 평균 열팽창률은 모재합금의 평균 열팽창률과 대략 동일한 것이 바람직하다.In addition, the average thermal expansion rate of the fiber-reinforced metal material is preferably about the same as the average thermal expansion rate of the base metal alloy.

또한, 섬유강화금속재료는 링(Ring) 또는 튜브(Tube)형상을 갖는 반응용기 내에 상기 예비성형체와 상기 기지합금을 충진시키고, 반응가스의 존재하에서 가열시키면서 반응용기를 고속회전시킴으로써 원심력과 모세관현상에 의해 상기 예비성형체에 상기 기지합금이 침투되도록 하여 제조되는 것이 바람직하다.In addition, the fiber-reinforced metal material is filled with the preform and the base alloy in a reaction vessel having a ring or tube shape, and centrifugal force and capillary phenomenon by rotating the reaction vessel at high speed while heating in the presence of the reaction gas. It is preferable that the base alloy is made to penetrate the preform by.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 본 발명의 실시예에 따른 피스톤 제조방법의 흐름도이다.1 is a flow chart of a piston manufacturing method according to an embodiment of the present invention.

본 발명의 바람직한 실시예에 따른 피스톤을 제조하기 위해서는, 도시된 바와 같이, 먼저 예비성형체를 성형한다(S1). 이러한 예비성형체는 세라믹계(Al2O3,SiC 등) 단섬유를 약간의 결합제가 투입된 물과 혼합하여 금형(미도시)에 투입한 후, 단섬유의 분포가 고르게 유지되도록 하면서 탈수, 가압, 건조하여 성형될 수 있다. 이렇게 성형된 예비성형체는 기공률 70~90%의 다공성 특성을 가지게 된다.In order to manufacture a piston according to a preferred embodiment of the present invention, as shown, first, a preform is molded (S1). The preform is mixed with ceramic (Al 2 O 3 , SiC, etc.) short fibers with water with a small amount of binder and added to a mold (not shown), followed by dehydration, pressurization, It can be dried and molded. The preform thus formed has a porosity of 70-90% porosity.

상기 예비성형체가 성형되면, 그 예비성형체의 내부에 기지금속을 함침시켜 섬유강화금속재료를 제조한다(S2). 이러한 섬유강화금속재료는 원심력이나 기타 외력에 의해 제조될 수 있다. 바람직하게는, 튜브형태의 기지금속을 반응용기(미도시)에 넣고 그 외주면에 예비성형체를 충진시킨 다음 반응용기를 밀봉시키고 가열 회전반응을 실시한다. 이 때, 상기 반응용기 내의 반응을 촉진시키기 위해 반응용기의 중공부로 반응가스를 주입한다. 반응가스는 반응이 종료될 때까지 연속적으로 주입시켜서, 예비성형체와 기지합금에 충분히 주입되도록 한다. 이 때 사용되는 반응가스는 질소가스(N2)가 바람직하지만 이에 한정되는 것은 아니다. 상기와 같은 과정을 거치고 나면 기지합금이 용융되면서 단섬유 사이로 침투해 최종적으로 예비성형체와 기지합금이 혼재되어 있는 섬유강화금속재료가 완성된다.When the preform is molded, a fiber-reinforced metal material is prepared by impregnating a base metal in the preform (S2). Such fibre-reinforced metal materials can be produced by centrifugal or other external forces. Preferably, the base metal in the form of a tube is placed in a reaction vessel (not shown), and a preform is filled on the outer circumferential surface thereof, and then the reaction vessel is sealed and heated and rotated. At this time, the reaction gas is injected into the hollow portion of the reaction vessel to promote the reaction in the reaction vessel. The reaction gas is continuously injected until the reaction is completed, so that the preform and the base alloy are sufficiently injected. In this case, the reaction gas used is preferably nitrogen gas (N 2 ), but is not limited thereto. After the above process, the base alloy is melted and penetrated between the short fibers, and finally, the fiber reinforced metal material in which the preform and the base alloy are mixed is completed.

또한, 섬유강화금속재료의 기기조직은 모재합금과 동일할 필요가 없으며 원하는 대로 조정이 가능하다. 이를 위해 기지합금의 조성을 조절하여 예비성형체에 의한 열팽창률 저하치 만큼 기지합금의 열팽창률을 증대시킨다. 그럼으로써, 섬유강화금속재료의 평균 열팽창률은 모재합금과 대략 동일하게 조절될 수 있다, 따라서 피스톤 사용 중에 피스톤의 강화재와 모재의 경계부분에서 일어나는 열응력문제로 인한 피로크랙(fatigue crack)이 방지될 수 있다.In addition, the device structure of the fiber reinforced metal material does not need to be the same as that of the base metal alloy, and can be adjusted as desired. To this end, by adjusting the composition of the base alloy, the thermal expansion rate of the base alloy is increased as much as the thermal expansion rate decrease by the preform. Thus, the average thermal expansion rate of the fiber-reinforced metal material can be adjusted to be approximately equal to that of the base alloy, thus preventing fatigue cracks due to thermal stress problems at the boundary of the piston reinforcement and the base material during piston use. Can be.

섬유강화금속재료가 제조되면 금형 내에 상기 섬유강화금속재료(20)를 설치하고, 모재합금 용탕을 주입한다(S3). 이하 이에 대한 자세한 설명을 도 2a 내지 도 2c를 참조하여 상세히 설명한다.When the fiber-reinforced metal material is manufactured, the fiber-reinforced metal material 20 is installed in the mold and the base metal molten metal is injected (S3). Hereinafter, a detailed description thereof will be described in detail with reference to FIGS. 2A to 2C.

도 2a에 도시된 바와 같이, 먼저 하부금형(10)에 섬유강화금속재료(20)를 설치한다. 그리고 도2b에 도시된 바와 같이 섬유강화금속재료(20)가 설치된 하부금형(10)에 탕구(30)를 통해서 모재합금 용탕을 붓는다. 그런 다음, 도2c에 도시된 바와 같이 모재합금 용탕을 상부금형(40)으로 눌러 피스톤소재(50)가 주조된다. 모재합금으로써 알루미늄합금을 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다. 또한, 상기된 피스톤 제조방법은 강도가 높은 섬유강화금속재료(20)를 사용하기 때문에 강화가 필요한 부분을 강화하기 위해서 주변의 불필요한 부분까지 강화할 필요가 없다. 강화가 필요한 부분의 형상으로 강화가 필요한 부분에만 섬유강화금속재료(20)를 설치하여 원하는 부분만을 강화하면 된다. 더욱이, 상기된 피스톤 제조방법은 가압과정이 필요하지 않은데, 이는 피스톤을 제조할 때 사용되는 섬유강화금속재료(20)의 공극이 이미 기지합금으로 채워져 있기 때문이다. 따라서 종래와 같이 예비성형체 내부에 모재합금을 함침시키기 위해 높은 압력을 가해줄 필요가 없다. 이와 같은 특징 때문에 섬유강화금속재료(20)가 가압에 의해서 그 형태가 변형될 염려가 없고, 피스톤 제조자는 가압주조 외의 다른 주조방식을 자유롭게 선택할 수 있다.As shown in FIG. 2A, first, the fiber-reinforced metal material 20 is installed in the lower mold 10. As shown in FIG. 2B, the base alloy molten metal is poured into the lower mold 10 in which the fiber-reinforced metal material 20 is installed through the spout 30. Then, the piston material 50 is cast by pressing the base alloy molten metal to the upper mold 40, as shown in Figure 2c. It is preferable to use aluminum alloy as the base metal alloy, but is not limited thereto. In addition, the piston manufacturing method described above does not need to be reinforced to unnecessary parts around to reinforce the part requiring the reinforcement because the fiber reinforced metal material 20 having high strength is used. The fiber-reinforced metal material 20 may be installed only in a portion that needs to be reinforced in the shape of the portion that needs to be reinforced. Moreover, the piston manufacturing method described above does not require a pressurization process, since the voids of the fiber-reinforced metal material 20 used when manufacturing the piston are already filled with the base alloy. Therefore, it is not necessary to apply high pressure to impregnate the base alloy inside the preform as in the prior art. Because of this feature, the fiber-reinforced metal material 20 is not deformed by pressurization, and the piston manufacturer can freely select a casting method other than press casting.

마지막으로, 주조된 피스톤을 냉각시키고(S4), 탈형시키면(S5), 도 3에 도시된 것과 같이 피스톤소재(50)의 제작이 완성된다. 이러한 피스톤소재(50)는 디젤엔진용 뿐 아니라 가솔린엔진용, 가스엔진용 등으로 다양하게 제작될 수 있다.Finally, if the cast piston is cooled (S4), demolding (S5), as shown in Figure 3, the production of the piston material 50 is completed. The piston material 50 may be produced in various ways, such as for gasoline engines, gas engines, as well as for diesel engines.

도 4는 본 발명의 실시예에 따른 피스톤 제조방법에 따라 주조된 피스톤소재(50)를 가공한 상태를 나타낸 단면도이다. 도시된 바와 같이, 피스톤(60)의 상부에 포함된 섬유강화금속재료(21)는 연소실-림부(61)를 강화하게 되고, 피스톤(60)의 측부에 포함된 섬유강화금속재료(22)는 탑-링부(62)를 강화하게 된다.Figure 4 is a cross-sectional view showing a state in which the processed piston material 50 cast in accordance with the piston manufacturing method according to an embodiment of the present invention. As shown, the fiber-reinforced metal material 21 included in the upper portion of the piston 60 is to strengthen the combustion chamber-rim portion 61, the fiber-reinforced metal material 22 included in the side of the piston 60 is The top ring portion 62 is reinforced.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The person of ordinary skill in the art to which this invention belongs, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

본 발명의 피스톤 제조방법에 따르면, 다공성이 아니면서 강도가 강한 섬유강화금속재료를 사용하기 때문에 피스톤 제작 시 그 형태가 변형될 염려가 없고, 주조방식에 대한 제약이 없으며, 필요한 부위만을 강화하는 것이 용이하다.According to the piston manufacturing method of the present invention, since the fiber reinforced metal material is not porous but the strength is strong, there is no fear that the shape of the piston is deformed, there is no restriction on the casting method, reinforcing only necessary parts It is easy.

또한 기지합금의 조성을 조절하여 섬유강화금속재료와 모재합금의 평균 열팽창률을 대략 동일하게 조절할 수 있기 때문에, 피스톤 제조 후 모재와 강화부의 경계부분에서 열응력 문제로 인한 피로크랙을 방지할 수 있다는 장점이 있다.In addition, by controlling the composition of the base alloy, the average thermal expansion rate of the fiber-reinforced metal material and the base alloy can be controlled to be about the same, which prevents fatigue cracks due to thermal stress problems at the boundary between the base material and the reinforcing part after the piston is manufactured. There is this.

Claims (4)

다공성 세라믹섬유를 이용하여 강화가 필요한 부분에 대응하는 형상의 예비성형체(preform)를 성형하는 단계와;Molding a preform having a shape corresponding to the portion requiring reinforcement using the porous ceramic fiber; 상기 예비성형체 내부에 기지합금을 함침시켜 섬유강화금속재료를 제조하는 단계와;Manufacturing a fiber-reinforced metal material by impregnating a base alloy in the preform; 금형 내에 상기 섬유강화금속재료를 설치하고, 모재합금 용탕을 주입하는 단계; 및Installing the fiber-reinforced metal material in a mold and injecting a base alloy molten metal; And 냉각 후 금형을 개방하여 탈형시키는 단계를 포함하는 피스톤 제조방법.A piston manufacturing method comprising the step of demolding by opening the mold after cooling. 제 1항에 있어서,The method of claim 1, 상기 기지합금은 상기 모재합금보다 평균 열팽창률이 높은 것을 특징으로 하는 피스톤 제조방법.The base alloy is a piston manufacturing method, characterized in that the average thermal expansion coefficient is higher than the base alloy. 제 2항에 있어서,The method of claim 2, 상기 섬유강화금속재료의 평균 열팽창률은 모재합금의 평균 열팽창률과 동일한 것을 특징으로 하는 피스톤 제조방법.And an average thermal expansion rate of the fiber-reinforced metal material is the same as the average thermal expansion rate of the base metal alloy. 제 1항에 있어서, 상기 섬유강화금속재료는The method of claim 1, wherein the fiber reinforced metal material 링 또는 튜브형상을 갖는 반응용기 내에 상기 예비성형체와 상기 기지합금을 충진시키고, 반응가스의 존재하에서 가열시키면서 반응용기를 고속회전시킴으로써 원심력과 모세관현상에 의해 상기 예비성형체에 상기 기지합금이 침투되도록 하여 제조되는 것을 특징으로 하는 피스톤 제조방법.The preform and the base alloy are filled in a reaction vessel having a ring or tube shape, and the base alloy is penetrated into the preform by centrifugal force and capillary action by rotating the reaction vessel at high speed while heating in the presence of the reaction gas. Piston manufacturing method characterized in that it is manufactured.
KR1020050076999A 2005-08-22 2005-08-22 Method for manufacturing piston KR100673092B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050076999A KR100673092B1 (en) 2005-08-22 2005-08-22 Method for manufacturing piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050076999A KR100673092B1 (en) 2005-08-22 2005-08-22 Method for manufacturing piston

Publications (1)

Publication Number Publication Date
KR100673092B1 true KR100673092B1 (en) 2007-01-22

Family

ID=38014579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050076999A KR100673092B1 (en) 2005-08-22 2005-08-22 Method for manufacturing piston

Country Status (1)

Country Link
KR (1) KR100673092B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100216A1 (en) * 2011-12-27 2013-07-04 주식회사 티엠시 Method for manufacturing engine piston combined with composite sintered insert ring for use in vehicle engine, and engine piston manufactured using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202766A (en) * 1985-03-07 1986-09-08 Mitsubishi Motors Corp Production of casting
JPH0486358A (en) * 1990-07-27 1992-03-18 Suzuki Motor Corp Fiber reinforced piston
JPH07180606A (en) * 1993-12-24 1995-07-18 Mitsubishi Chem Corp Fiber reinforced metal made piston

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202766A (en) * 1985-03-07 1986-09-08 Mitsubishi Motors Corp Production of casting
JPH0486358A (en) * 1990-07-27 1992-03-18 Suzuki Motor Corp Fiber reinforced piston
JPH07180606A (en) * 1993-12-24 1995-07-18 Mitsubishi Chem Corp Fiber reinforced metal made piston

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100216A1 (en) * 2011-12-27 2013-07-04 주식회사 티엠시 Method for manufacturing engine piston combined with composite sintered insert ring for use in vehicle engine, and engine piston manufactured using same
KR20140109912A (en) * 2011-12-27 2014-09-16 주식회사 티엠시 Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it
KR101636762B1 (en) * 2011-12-27 2016-07-06 주식회사 티엠시 Method for manufacturing a vehicle engine piston joined with a combined sintered insert ring, and an engine piston made by it

Similar Documents

Publication Publication Date Title
US6035923A (en) Method of and apparatus for producing light alloy composite member
US4852630A (en) Short fiber preform, method of making it, and composite material manufactured from it
US5198167A (en) Process for producing fiber molding for fiber-reinforced composite materials
CN109468549A (en) A kind of near-net-shape method of 3D braided fiber enhancing metal-base composites
EP0710729B1 (en) Fibre-reinforced metal pistons
KR20000005112A (en) Process for producing cylinder heads for internal combustion engines
CN110724847B (en) Method for preparing bicontinuous phase composite material by pressureless infiltration
KR100673092B1 (en) Method for manufacturing piston
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
US20170028464A1 (en) Method for producing a piston for a combustion engine
JP3126704B2 (en) Casting method for castings with composite materials cast
CN112648104A (en) Whisker reinforced aluminum alloy piston and preparation method thereof
CN101524743A (en) Casting mould for producing hollow steel ingot and casting method thereof
JP2000158119A (en) Preliminary formed element to be compounded, and compounded light metal member
JPH02169846A (en) Manufacture of piston for internal combustion engine
WO2023136100A1 (en) Metal-coated metal-matrix composite and manufacturing method of metal-coated metal-matrix composite
CN206256970U (en) A kind of anti-key seat cracking piston
CN101389848A (en) Carbon piston for an internal combustion engine
CN106555140A (en) A kind of method that use vacuum pressure infiltration method prepares network structure aluminum matrix composite
KR100245744B1 (en) Rocker arm casting method of automobile valve
CN101524744B (en) Casting mould core for hollow steel ingot and manufacture method thereof
CN117028449A (en) Automobile brake disc and processing technology thereof
KR100320238B1 (en) method for producing connecting rod made from aluminium alloy
JP2599586B2 (en) Fiber reinforced cylinder block
CN116277391A (en) Ceramic fiber prefabricated part for local reinforcement of aluminum piston and preparation process thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130116

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140117

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170118

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 13