KR100671619B1 - 복호 장치 및 복호 방법 - Google Patents

복호 장치 및 복호 방법 Download PDF

Info

Publication number
KR100671619B1
KR100671619B1 KR1020067000682A KR20067000682A KR100671619B1 KR 100671619 B1 KR100671619 B1 KR 100671619B1 KR 1020067000682 A KR1020067000682 A KR 1020067000682A KR 20067000682 A KR20067000682 A KR 20067000682A KR 100671619 B1 KR100671619 B1 KR 100671619B1
Authority
KR
South Korea
Prior art keywords
probability
time
calculating
calculated
backward
Prior art date
Application number
KR1020067000682A
Other languages
English (en)
Other versions
KR20060035743A (ko
Inventor
지펭 리
Original Assignee
마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드 filed Critical 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드
Publication of KR20060035743A publication Critical patent/KR20060035743A/ko
Application granted granted Critical
Publication of KR100671619B1 publication Critical patent/KR100671619B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/395Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using a collapsed trellis, e.g. M-step algorithm, radix-n architectures with n>2
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3723Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using means or methods for the initialisation of the decoder
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3905Maximum a posteriori probability [MAP] decoding or approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3972Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using sliding window techniques or parallel windows

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Correction Of Errors (AREA)

Abstract

처리량 및 회로 규모의 증대를 억제하면서, 고속으로 우도 정보를 산출할 수 있는 복호 장치.
이 장치는, 후방 확률 연산부(112)에서의 후방 확률의 연산에 있어서는, 한쪽의 처리 계통이 후방 확률 βk+2로부터 후방 확률 βk를 산출하는 동안에, 다른 한쪽의 처리 계통이 병행하여 후방 확률 βk+1로부터 후방 확률 βk-1을 산출한다. 구체적으로 k=1인 경우를 생각해 보면, 2개의 처리 계통에 의해, 후방 확률 β1 및 후방 확률 β0이 병행하여 산출되게 된다. 산출된 후방 확률은, 윈도우 단위로 기억부(114)에 기억된다. 또, 후방 확률과 마찬가지로, 전방 확률 연산부(113)에 있어서도, 2개의 처리 계통에 의해, 전방 확률 αk와 전방 확률 αk+1이 병행하여 산출된다. 전방 확률이 산출되면, 우도 연산부(115)에 의해, 전방 확률 및 기억부(114)에 기억되어 있는 후방 확률이 이용되어 우도 정보가 산출된다.

Description

복호 장치 및 복호 방법{Decoding Device and Decoding Method}
본 발명은, 복호 장치 및 복호 방법에 관한 것으로, 특히 Max-Log-MAP 알고리즘을 이용한 터보 복호를 행하는 복호 장치 및 복호 방법에 관한 것이다.
최근, 제4세대 이동체 통신에 채용되는 방식의 가장 유력한 후보로서 VSF-OFCDM(Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing:가변 확산율 직교주파수·부호 분할 다중)이 주목받고 있다. VSF-OFCDM가 채용된 경우에는, 대체로 50-100 MHz 대역폭을 이용하여, 100 Mbps 이상의 최대 전송 속도를 실현하는 것이 가능해 진다. 이러한 초고속 통신 방식에는, 오류 정정 방식으로서 터보 부호·복호의 적용이 유효하다.
터보 부호·복호 방식은, 송신 데이터에 대해서, 컨벌루션 부호화(convolutional coding)와 인터리브(interleaved)를 병용하여, 복호시에 반복해서 복호하는 것을 특징으로 하고 있다. 반복하여 복호 처리를 함으로써, 랜덤 오류는 물론, 버스트(burst) 오류에 대해서도 뛰어난 오류 정정 능력을 나타내는 것으로 알려져 있다.
이하, 터보 복호의 절차에 대해서 간단히 설명한다.
터보 복호의 처리 절차는, 크게 전방 확률 산출, 후방 확률 산출, 및 우도( 尤度) 정보 산출로 나눌 수 있다.
전방 확률 α의 산출은, 아래의 식 (1)에 의해 상태마다 행해진다.
Figure 112006001841464-pct00001
...식 (1)
위의 식 (1)에 있어서, logα는 대수 영역에서의 전방 확률, k는 시점, m 및 m'은 상태 천이 격자(trellis)상에 있어서의 상태를 각각 나타내고 있다. 즉, 식 (1)의 좌변은, 시점 k의 상태 m에 있어서의 전방 확률을 자연대수로 나타내고 있다. 또, 위의 식 (1)에 있어서, logα는 대수 영역에서의 이행 확률, m'∃(m'→m)은 상태 m으로 천이 가능한 모든 상태 m', b는 송신 신호의 조합, 즉 시스템적(systematic) 비트와 패리티 비트가 취할 수 있는 조합을 나타내고 있다.
식 (1)에서 분명한 바와 같이, 전방 확률 αk는, 이전 시점 k-1에 있어서의 전방 확률 αk-1로부터 산출된다.
이어서, 후방 확률 β의 산출은, 아래의 식 (2)에 의해 상태마다 행해진다.
Figure 112006001841464-pct00002
...식 (2)
계산법은 전방 확률과 거의 동일하지만, 크게 다른 점은, 후방 확률 βk는, 이후 시점 k+1에 있어서의 후방 확률 βk+1로부터 산출되는 점이다. 즉, 전방 확률은, 시간축상의 순방향으로 계산해 나가는데 대해, 후방 확률은, 시간축상의 역방 향으로 계산해 나가게 된다.
이어서, 우도 정보 L(uk)의 산출은, 아래의 식 (3)에 의해 행해진다.
Figure 112006001841464-pct00003
...식 (3)
식 (3)에 있어서, 분자는 송신 신호중의 시스템적 비트 uk=0이 되는 모든 상태 천이 조합에 있어서의 연산을 나타내며, 분모는 uk=1이 되는 모든 상태 천이 조합에 있어서의 연산을 나타낸다.
위의 식 (1)~(3)의 계산은, 매우 번잡하기 때문에, 터보 복호의 하나의 알고리즘인 Max-Log-MAP 알고리즘에 있어서는, 식 (4)에 나타내는 근사식이 이용된다.
Figure 112006001841464-pct00004
...식 (4)
식 (4)를 이용하여 식 (1) 및 식 (2)를 변형하면, 각각 이하의 식 (5) 및 식 (6)과 같이 된다.
Figure 112006001841464-pct00005
...식 (5) 및 식 (6)
또, 이러한 식 (5), (6)를 이용하여 식 (3)을 변형하면, 이하의 식 (7)과 같이 된다.
Figure 112006001841464-pct00006
...식 (7)
Max-Log-MAP 알고리즘을 이용한 터보 복호에 있어서는, 식 (7)을 이용하여 산출된 우도 정보 L(uk)가 임계값 0과 비교되어, 우도 정보 L(uk)가 0 이상이면, 시점 k에서 송신된 시스템적 비트 uk=1로 경판정(hard decision)되고, 우도 정보 L(uk)가 0 미만이면, 시점 k에서 송신된 시스템적 비트uk=0 로 경판정된다.
여기서, 식 (7)에 나타낸 바와 같이, 시점 k에 있어서의 우도 정보 산출을 위해서는, 시점 k-1에 있어서의 전방 확률 αk-1, 및 시점 k에 있어서의 후방 확률 βk 및 이행 확률 γk가 필요하게 된다. 이 때, 시점 1~k에 있어서의 각 시점에서의 전방 확률 및 후방 확률을 각각 산출하고, 그 후, 우도 정보를 산출하는 경우는, 모든 상태의 모든 시점에서의 확률값을 기억할 필요가 있기 때문에, 메모리량은 방대하게 된다.
이 메모리량을 삭감하기 위해서는, 예를 들면 아래와 같은 산출 절차를 취하는 것이 생각된다. 즉, 우선 후방 확률을 시점 k~1에 대해서 산출하여 메모리에 축적한다. 다음에 매 시점마다 전방 확률을 산출하고, 이 전방 확률 및 먼저 산출한 후방 확률로부터, 우도 정보를 순차적으로 산출한다. 이 방법에 의하면, 산출된 전방 확률이 즉석에서 우도 정보 산출에 이용되기 때문에, 전방 확률의 축적은 행해지지 않아, 전방 확률의 축적 분량만큼 메모리량을 삭감할 수 있다.
또, 후방 확률을 축적하기 위한 메모리량의 삭감 방법으로서, 예를 들면 비특허 문헌 1에 기재된 슬라이딩 윈도우(sliding window/신축윈도우)법이 있다. 슬라이딩 윈도우법은, 데이터의 전(全)계열을 소정의 윈도우 단위로 분할하고, 각 윈도우에 트레이닝 구간을 설치함으로써, 계열의 최후방으로부터 계산하지 않으면 안되는 후방 확률을, 계열의 중간에서부터 계산하는 방법이다. 이 슬라이딩 윈도우법에 의하면, 윈도우 단위로 후방 확률을 축적하면 되어, 시점 k~1의 모든 후방 확률을 축적하는 경우에 비해 메모리량을 대폭 삭감할 수 있다.
또, 슬라이딩 윈도우법에 있어서, 확률값 및 우도 정보의 연산을 병렬로 행함으로써 연산의 고속화를 꾀할 수 있다. 즉, 예를 들면 도 1의 A에 나타내는 바와 같이, 전계열 길이 nW인 데이터가 n개 윈도우로 분할되는 경우, 이 윈도우를 병렬로 처리함으로써 연산의 고속화를 꾀할 수 있다. 예를 들면 도 1의 B에 나타내는 바와 같이, #1 및 #2의 2개의 처리 계통을 이용하여 병렬로 연산을 행함으로써, 연산 시간을 반으로 할 수 있다.
[비특허 문헌 1] Andrew J. Viterbi, "An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes", IEEE J. Sel. Areas Commun., vol.16, no.2, pp.260-264, Feb. 1998.
[발명이 해결하려고 하는 과제]
그렇지만, 위에서 설명한 바와 같이 병렬로 슬라이딩 윈도우법을 실시하는 경우에서도, 윈도우 사이즈에 대응하는 처리 지연이 생긴다는 문제가 있다. 특히, Max-Log-MAP 알고리즘을 이용하여 우도 정보 L(uk)를 산출할 경우, 시점 k가 작은 쪽에서부터 순서대로 산출할 필요가 있는데, 우도 정보 L(uk) 산출에 필요한 확률값은, 각 윈도우 내에서는 직렬로 산출되기 때문에, 윈도우를 병렬로 처리하여도, 결국 우도 정보 L(uk)의 산출에는 지연이 생기게 된다.
이 문제에 대해, 도 2의 A 내지 C를 참조하여 구체적으로 설명한다.
도 2의 A 내지 C는, 슬라이딩 윈도우법의 윈도우 사이즈가 64인 경우에, 2개의 처리 계통 #1, #2를 이용하여 우도 정보 L(uk)를 산출하는 타이밍 예를 나타내는 도면이다. 도 2의 A는, 후방 확률 βk를 산출하는 타이밍을 나타내며, 도 2의 B는, 전방 확률 αk를 산출하는 타이밍을 나타내며, 도 2의 C는, 우도 정보 L(uk)를 산출하는 타이밍을 나타내고 있다.
도 2의 A에 있어서, 후방 확률 β630 및 후방 확률 β12764를 산출하기 위해서, 각각 트레이닝 구간이 설치되어 있다. 트레이닝 구간의 선두(여기서는, β95 및 β159)는, 항상 0으로 가정되고, 트레이닝 구간내에서 상기의 식 (6)의 연산이 행해짐으로써, 윈도우 내의 후방 확률 β630 및 후방 확률 β12764를 올바르게 산출할 수 있다. 따라서, 트레이닝 구간으로서는, 적어도 20 정도의 사이즈가 필요하다.
도 2의 A에 있어서는, 시각 T1에서 후방 확률 β0, β64의 산출이 완료된다. 각 처리 계통 #1, #2는, 계속하여 후방 확률 β191128 및 후방 확률 β255192를 산출한다.
그리고, 도 2의 B에 나타내는 바와 같이, 시각 T1부터 전방 확률 α063 및 α64127의 산출이 개시된다. 이 때, 전방 확률 α64127의 산출에 관해서는, α32를 0으로 가정하고, α263이 트레이닝 구간으로 되어 있다.
한편, 도 2의 C에 나타내는 바와 같이, 시각 T1부터 우도 정보 L(u0)~L(u63)의 산출이 개시된다. 시각 T1 에 있어서는, 후방 확률 β063은 이미 산출되어 있으며, 전방 확률 α0도 산출되기 때문에, 처리 계통 #1은, 우도 정보 L(u0)를 산출할 수 있다.
그러나, 시각 T1에 있어서, 후방 확률 β64127이 이미 산출되어 있고, 전방 확률 α64도 산출되어 있음에도 불구하고, 처리 계통 #2는, 우도 정보 L(u64)를 산출하지 못하고 대기한다. 이것은, 상술한 것처럼 우도 정보 L(uk)는, 시점 k가 작은 쪽에서부터 순서대로 산출될 필요가 있는데, 시각 T1에 있어서는, 우도 정보 L(u0)가 산출될 뿐이며, 우도 정보 L(u63)는 나중에 처리 계통 #1에 의해 산출되기 때문이다.
따라서, 도 2의 C에 나타내는 바와 같이, 시각 T1부터 처리 계통 #1에 의해 우도 정보 L(u0)~L(u63)가 산출되고, 시각 T2부터 처리 계통 #2에 의해 우도 정보 L(u64)~L(u127)가 순차적으로 산출된다.
즉, 후방 확률 및 전방 확률의 산출은 완료해 있는데도 불구하고, 우도 정보 산출에 있어서 병렬처리를 행하지 못하고, 윈도우 사이즈에 대응하는 처리 지연이 생겨 버린다. 이 처리 지연을 줄이기 위해서는, 윈도우 사이즈를 작게 하면 좋지만, 윈도우 사이즈를 작게 했을 경우에는, 윈도우 수가 증가하게 되고, 이에 수반하여 트레이닝 구간에 대한 처리량이 증대한다. 트레이닝 구간은, 실제 복호에는 기여하지 않는 구간이기 때문에, 트레이닝 구간에 대한 처리량이 증대되면, 전체의 처리량은 증대되고, 결과적으로 회로 규모가 증대되는 경우가 있다.
본 발명의 목적은, 처리량 및 회로 규모 증대를 억제하면서, 고속으로 우도 정보를 산출할 수 있는 복호 장치 및 복호 방법을 제공하는 것이다.
[과제를 해결하기 위한 수단]
본 발명의 복호 장치는, 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에서 병렬로 복호 연산을 행하는 복호 장치로서, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순차적으로 연산하는 전방 확률 연산 수단과, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 후방 확률 연산 수단과, 상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 우도 연산 수단을 가지는 구성을 취한다.
본 발명의 복호 방법은, 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에서 병렬로 복호 연산을 행하는 복호 방법으로서, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 스텝과, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순차적으로 연산하는 스텝과, 상기 전방 확률이 연산될 때마다 상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 스텝을 가지도록 했다.
[발명의 효과]
본 발명에 의하면, 처리량 및 회로 규모의 증대를 억제하면서, 고속으로 우도 정보를 산출할 수 있다.
도 1은 윈도우를 이용한 처리를 설명하기 위한 도면,
도 2는 슬라이딩 윈도우법에 의한 복호 동작의 타이밍 예를 나타내는 도면,
도 3은 본 발명의 일 실시형태에 따른 복호 장치의 전체 구성을 나타내는 블록도,
도 4는 일 실시형태에 따른 복호기의 내부 구성을 나타내는 블록도,
도 5는 일 실시형태에 따른 복호 동작의 타이밍 예를 나타내는 도면,
도 6은 일 실시형태에 따른 복호 동작의 타이밍의 다른 예를 나타내는 도면.
이하, 본 발명의 일 실시형태에 대해, 도면을 참조하여 상세하게 설명한다.
도 3은, 본 발명의 일 실시형태에 따른 복호 장치의 전체 구성을 나타내는 블록도이다. 동 도면에 나타내는 복호 장치는, 인터리버(100), 복호기(110), 인터리버(120), 복호기(130), 디인터리버(140), 디인터리버(150), 경판정부(160), 및 오류 검출부(170)를 가지고 있다. 또한, 도 3에 나타내는 복호 장치는, 터보 부호화에 의해 얻어지는 정보 비트 그 자체인 시스템적 비트(systematic bit) xa, 정보 비트를 컨벌루션 부호화 하여 얻어지는 패리티 비트 xb, 및 정보 비트를 인터리브한 후에 컨벌루션 부호화 하여 얻어지는 패리티 비트 xc에, 각각 통신로에서의 잡음이 부가된 시스템적 비트 ya, 패리티 비트 yb, 및 패리티 비트 yc를 복호하는 것으로 한다.
인터리버(100)는, 시스템적 비트 ya를 인터리브 한다. 인터리버(100)를 이용한 인터리브는, 부호화 측에서의 인터리브와 동일하게 행해진다.
복호기(110)는 SISO(Soft Input/Soft Output)복호기로서, 이전회의 복호 결과로부터 얻어지는 사전정보 우도 Le와 시스템적 비트 ya와 패리티 비트 yb를 이용하여 복호를 행하고 복호 결과를 인터리버(120)에 출력한다. 복호기(110)를 이용한 복호에 대해서는 나중에 상세하게 서술한다.
인터리버(120)는, 복호기(110)의 복호 결과를 인터리브한다. 인터리버(120)를 이용한 인터리브는, 부호화 측에서의 인터리브와 동일하게 행해진다.
복호기(130)는, SISO(Soft Input/Soft Output)복호기로서, 인터리버(120)로부터 출력되는 사전정보 우도와 인터리버(100)로부터 출력되는 시스템적 비트 ya와 패리티 비트 yc를 이용하여 복호를 행하고, 복호 결과를 디인터리버(140) 및 디인터리버(150)에 출력한다.
디인터리버(140) 및 디인터리버(150)는, 복호기(130)의 복호 결과를 디인터리브 한다. 디인터리버(140) 및 디인터리버(150)에 의한 디인터리브는, 인터리버(100) 또는 인터리버(120)에 의한 인터리브를 원상태로 되돌리도록 행해진다.
경판정부(160)는, 디인터리버(150)로부터 출력되는 우도 정보를 경판정하여, 0 또는 1의 경판정값을 출력한다. 구체적으로 경판정부(160)는, 디인터리버(150)로부터 출력되는 우도 정보를 임계값인 0과 비교하여, 우도 정보가 0 이상이면 경판정값으로서 1을 출력하고, 우도 정보가 0 미만이면 경판정값으로서 0을 출력한다.
오류 검출부(170)는, 경판정 결과에 부가되어 있는 CRC(Cyclic Redundancy Check) 등의 오류 검출 부호를 이용해 오류 검출을 행하여, 복호 데이터를 출력한다.
이어서, 도 4 및 도 5를 이용하여, 상기와 같이 구성된 복호 장치에 있어서의 복호기 동작에 대해 구체적으로 설명한다.
도 4는, 복호기(110)의 내부 구성을 나타내는 블록도이다. 동 도면에 나타내는 바와 같이, 복호기(110)는, 이행 확률 연산부(111), 후방 확률 연산부(112), 전방 확률 연산부(113), 기억부(114), 및 우도 연산부(115)를 가지고 있다. 또한, 복호기(130)도 복호기(110)와 동일한 내부구성을 가지고 있는 것으로 한다. 또, 이하의 복호 동작은, 소정 사이즈의 윈도우 단위로 행해지는 것으로 한다.
우선, 이전회의 복호 결과로부터 얻어지는 사전 정보 우도 Le, 시스템적 비트 ya, 및 패리티 비트 yb가 이행 확률 연산부(111)에 입력되어, 이행 확률이 연산된다. 이하에서는, 시점 k에 있어서 상태 천이 격자상의 상태 m'으로부터 상태 m으로 이행하는 이행 확률을 γk(m', m)라고 표기한다.
산출된 이행 확률 γk(m', m)은, 후방 확률 연산부(112) 및 전방 확률 연산부(113)에 출력되어, 각각 후방 확률 및 전방 확률이 산출된다. 이하에서는, 시점 k의 상태 m에 있어서의 후방 확률을 βk(m)라고 표기하고, 시점 k의 상태 m에 있어서의 전방 확률을 αk(m)이라고 표기한다.
여기서, 후방 확률 연산부(112) 및 전방 확률 연산부(113)에 의한 확률값의 산출에 대해서 설명한다.
상술한 바와 같이, 전방 확률 αk(m)및 후방 확률 βk(m)은, 식(5), (6)에 의해 산출된다. 식(5), (6)은, 각각 아래의 식(8), (9)와 같이 변형시킬 수 있다.
Figure 112006001841464-pct00007
...식 (8) 및 식 (9)
이러한 식(8), (9)를 재차 식(5), (6)에 대입하면, 아래의 식(10), (11)이 얻어진다.
Figure 112006001841464-pct00008
...식 (10) 및 식 (11)
식(10)은, 시점 k의 전방 확률 αk를 시점 k-2의 전방 확률 αk-2로부터 산출하는 것을 나타내며, 식(11)은, 시점 k의 후방 확률 βk을 시점 k+2의 후방 확률 βk+2로부터 산출하는 것을 나타내고 있다.
후방 확률 연산부(112) 및 전방 확률 연산부(113)는, 각각 식(10), (11)을 이용하여, 2개의 처리 계통에서 병렬로 후방 확률 및 전방 확률을 연산한다. 즉, 예를 들면 후방 확률 연산부(112)에 있어서의 후방 확률의 연산에 있어서는, 한쪽의 처리 계통이 후방 확률 βk+2로부터 후방 확률 βk를 산출하는 동안에, 다른 한쪽 의 처리 계통이 병행해서 후방 확률 βk+1로부터 후방 확률 βk-1을 산출한다. 구체적으로 k=1인 경우를 생각해 보면, 2개의 처리 계통에 의해, 후방 확률 β1 및 후방 확률 β0이 병행하여 산출되게 된다.
산출된 후방 확률은, 윈도우 단위로 기억부(114)에 기억된다. 또, 후방 확률과 마찬가지로, 전방 확률 연산부(113)에 있어서도, 2개의 처리 계통에 의해, 전방 확률 αk과 전방 확률 αk+1이 병행하여 산출된다. 전방 확률이 산출되면, 우도 연산부(115)에 의해, 전방 확률 및 기억부(114)에 기억되어 있는 후방 확률이 이용되어 상술한 식(7)에 의해 우도 정보가 산출된다.
이 때, 종래와는 달리, 전방 확률 연산부(113)에 있어서의 2개의 처리 계통은, 전방 확률 αk 및 전방 확률 αk+1을 병행하여 산출하기 때문에, 시점 k가 작은 쪽에서부터 순서대로 우도 정보 L(uk)를 산출할 경우에, 양쪽 처리 계통에 의해 산출되는 전방 확률을 동시에 이용해 우도 정보를 산출할 수가 있다.
이하, 도 5의 A 내지 C를 참조하여, 우도 정보를 산출하는 타이밍에 대해, 구체적으로 설명한다.
도 5의 A는, 후방 확률 연산부(112)에 있어서의 2개의 처리 계통 #1, #2에 의한 후방 확률 βk의 산출 타이밍을 나타내고 있다. 동 도면에 나타내는 바와 같이, 처리 계통 #1은, β190128을 트레이닝 구간으로 하여, 후방 확률 β1260 중 시점 k가 짝수인 것을 순차적으로 산출해 간다. 마찬가지로, 처리 계통 #2는, β 191129를 트레이닝 구간으로 하여, 후방 확률 β1271 중 시점 k가 홀수인 것을 순차적으로 산출해 간다. 그리고, 시각 T1에 있어서, 후방 확률 β0 및 후방 확률 β1이 산출된다.
도 5의 B는, 전방 확률 연산부(113)에 있어서의 2개의 처리 계통 #1, #2에 의한 전방 확률 αk의 산출 타이밍을 나타내고 있다. 동 도면에 나타내듯이, 처리 계통 #1은, 시각 T1부터 전방 확률 α0126 중 시점 k가 짝수인 것을 순차적으로 산출해 간다. 마찬가지로, 처리 계통 #2는, 시각 T1부터 전방 확률 α1127 중 시점 k가 홀수인 것을 순차적으로 산출해 간다.
도 5의 C는, 우도 연산부(115)에 있어서의 2개의 처리 계통 #1, #2에 의한 우도 정보 L(uk)의 산출 타이밍을 나타내고 있다. 동 도면에 나타내듯이, 처리 계통 #1은, 시각 T1에 있어서 우도 정보 L(u0)를 산출한다. 그리고, 처리 계통 #2는, 시각 T1에 있어서 전방 확률 α0 및 이미 기억부(114)에 기억되어 있는 후방 확률 β1을 이용하여 우도 정보 L(u1)을 산출한다.
이와 같이 종래와는 달리, 처리 계통 #2는 우도 정보 L(uk)의 산출을 대기하는 일 없이, 병렬처리를 행할 수 있다. 이 때문에, 도 2의 C와 도 5의 C를 비교하면 분명히, 우도 정보 L(uk)의 연산을 대폭으로 고속화 할 수 있다.
이와 같이, 본 실시형태에 의하면, 처리 계통수(여기서는 2) 만큼 이전 또는 이후 시점의 확률값으로부터 현시점에서의 확률값을 산출하는 연산을, 각 처리 계통에서 병렬로 행하기 때문에, 확률값을 이용한 우도 정보 산출에 있어서의 처리 지연이 없어, 처리량 및 회로 규모의 증대를 억제하면서 고속으로 우도 정보를 산출할 수 있다.
또한, 본 실시형태에 있어서는, 트레이닝 구간의 사이즈를 32로 하고, 윈도우 사이즈를 64로 하여 설명했지만, 본 발명은 이러한 사이즈에 한정되지 않는다. 트레이닝 구간의 사이즈로서는, 약 20 정도 이상이면 된다.
또, 본 실시형태에 있어서는, 2개의 처리 계통에서 병렬로 연산하는 경우에 대해 설명했지만, 처리 계통수는 2 이상이면 몇 개라도 좋다. 이 경우에는, 식(10), (11)과 동일한 사고방식으로, 전방 확률 및 후방 확률을 처리 계통수만큼 이전 및 이후 시점의 전방 확률 및 후방 확률로 나타내는 식을 이용하면 좋다. 즉, 처리 계통수를 m(m은 2 이상의 정수)이라 한다면, 전방 확률 αk 및 후방 확률 βk를 각각 전방 확률 αk-m 및 후방 확률 βk+m으로 나타내는 식을 이용하여 확률값을 연산하면 된다.
또, 예를 들면 도 6에 나타내듯이, 트레이닝 구간에 대해서는 어느 쪽이든 1개의 처리 계통에 있어서만 연속한 연산을 행하고, 이 트레이닝 결과를 모든 처리 계통에서 공통되게 이용함으로써, 장치 전체의 연산량을 한층 더 삭감할 수 있다.
본 발명의 복호 장치는, 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에 서 병렬로 복호 연산을 행하는 복호 장치로서, 상기 윈도우 내에 있어서 상기 복수 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순차적으로 연산하는 전방 확률 연산 수단과, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 후방 확률 연산 수단과, 상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 우도 연산 수단을 가지는 구성을 취한다.
이 구성에 의하면, 처리 계통수만큼 전후 시점의 전방 확률 및 후방 확률로부터 현시점의 전방 확률 및 후방 확률을 연산하기 때문에, 각 윈도우 내에 있어서도 복수의 처리 계통이 병렬로 확률값의 연산을 행할 수가 있으며, 확률값이 연산될 때 마다 후단의 우도 연산을 행하여, 처리량 및 회로 규모의 증대를 억제하면서, 고속으로 우도 정보를 산출할 수 있다.
본 발명의 복호 장치에서, 상기 후방 확률 연산 수단은, 상기 윈도우보다 이후 시점의 데이터를 트레이닝 데이터로 하여 현시점의 후방 확률을 연산하는 구성을 취한다.
이 구성에 의하면, 처리 대상 윈도우보다 이후 시점의 데이터를 트레이닝 데이터로 하여 현시점의 후방 확률을 연산하기 때문에, 임의의 윈도우에 관해서 후방 확률의 연산 처리를 행할 수 있다.
본 발명의 복호 장치에서, 상기 후방 확률 연산 수단은, 상기 복수의 처리 계통에서 공통된 트레이닝 데이터를 이용하는 구성을 취한다.
이 구성에 의하면, 복수의 처리 계통에서 공통된 트레이닝 데이터를 이용하 기 때문에, 트레이닝 데이터에 필요한 연산량을 삭감할 수 있어, 장치 전체의 처리량을 한층 더 삭감할 수 있다.
본 발명의 기지국 장치는, 상기에 기재한 임의의 복호 장치를 가지는 구성을 취한다.
이 구성에 의하면, 상기에 기재한 임의의 복호 장치와 동일한 작용 효과를 기지국 장치에서 실현할 수 있다.
본 발명의 이동국 장치는, 상기에 기재한 임의의 복호 장치를 가지는 구성을 취한다.
이 구성에 의하면, 상기에 기재한 임의의 복호 장치와 동일한 작용 효과를 이동국 장치에서 실현할 수 있다.
본 발명의 복호 방법은, 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에서 병렬로 복호 연산을 행하는 복호 방법으로서, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 스텝과, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순차적으로 연산하는 스텝과, 상기 전방 확률이 연산될 때 마다 상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 스텝을 가지도록 했다.
이 방법에 의하면, 처리 계통수만큼 전후 시점의 전방 확률 및 후방 확률로부터 현시점의 전방 확률 및 후방 확률을 연산하기 때문에, 각 윈도우 내에 있어서도 복수의 처리 계통이 병렬로 확률값의 연산을 행할 수 있어, 확률값이 연산될 때 마다 후단의 우도 연산을 행하여, 처리량 및 회로 규모 증대를 억제하면서, 고속으로 우도 정보를 산출할 수 있다.
본 명세서는, 2003년 7월 11 일에 출원한 일본특허출원 2003-273378에 기초하고 있는 것이다. 이 내용은 모두 여기에 포함시켜 놓는다.

Claims (6)

  1. 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에서 병렬로 복호 연산을 행하는 복호 장치로서, 상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순차적으로 연산하는 전방 확률 연산 수단과,
    상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 후방 확률 연산 수단과,
    상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 우도 연산 수단을 가지는 복호 장치.
  2. 제 1항에 있어서,
    상기 후방 확률 연산 수단은, 상기 윈도우보다 이후 시점의 데이터를 트레이닝 데이터로 하여 현시점의 후방 확률을 연산하는 복호 장치.
  3. 제2항에 있어서,
    상기 후방 확률 연산 수단은, 상기 복수의 처리 계통에서 공통된 트레이닝 데이터를 이용하는 복호 장치.
  4. 제1항에 기재한 복호 장치를 가지는 기지국 장치.
  5. 제1항에 기재한 복호 장치를 가지는 이동국 장치.
  6. 소정 사이즈의 윈도우에 대해서 복수의 처리 계통에서 병렬로 복호 연산을 행하는 복호 방법으로서,
    상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이후 시점의 후방 확률로부터 현시점의 후방 확률을 순차적으로 연산하는 스텝과,
    상기 윈도우 내에 있어서 상기 복수의 처리 계통수만큼 이전 시점의 전방 확률로부터 현시점의 전방 확률을 순서대로 연산하는 스텝과,
    상기 전방 확률이 연산될 때 마다 상기 전방 확률 및 상기 후방 확률을 이용하여 우도 정보를 연산하는 스텝을 가지는 복호 방법.
KR1020067000682A 2003-07-11 2004-07-09 복호 장치 및 복호 방법 KR100671619B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003273378A JP4227481B2 (ja) 2003-07-11 2003-07-11 復号装置および復号方法
JPJP-P-2003-00273378 2003-07-11

Publications (2)

Publication Number Publication Date
KR20060035743A KR20060035743A (ko) 2006-04-26
KR100671619B1 true KR100671619B1 (ko) 2007-01-19

Family

ID=34056018

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067000682A KR100671619B1 (ko) 2003-07-11 2004-07-09 복호 장치 및 복호 방법

Country Status (7)

Country Link
US (1) US7539256B2 (ko)
EP (1) EP1655846B1 (ko)
JP (1) JP4227481B2 (ko)
KR (1) KR100671619B1 (ko)
CN (1) CN100547935C (ko)
DE (1) DE602004012417T2 (ko)
WO (1) WO2005006564A1 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571683B2 (en) * 2001-03-27 2009-08-11 General Electric Company Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein
US7929646B2 (en) * 2006-01-27 2011-04-19 Qualcomm Incorporated Map decoder with bidirectional sliding window architecture
US8194760B2 (en) * 2006-06-01 2012-06-05 Ntt Docomo, Inc. Method and apparatus for distributed space-time coding in wireless radio networks
US8027407B2 (en) * 2006-11-06 2011-09-27 Ntt Docomo, Inc. Method and apparatus for asynchronous space-time coded transmission from multiple base stations over wireless radio networks
US8059732B2 (en) 2006-11-28 2011-11-15 Ntt Docomo, Inc. Method and apparatus for wideband transmission from multiple non-collocated base stations over wireless radio networks
US8861356B2 (en) * 2007-03-13 2014-10-14 Ntt Docomo, Inc. Method and apparatus for prioritized information delivery with network coding over time-varying network topologies
US20090285323A1 (en) * 2008-05-15 2009-11-19 Sundberg Carl-Erik W Adaptive soft output m-algorithm receiver structures
US8064548B2 (en) * 2007-05-18 2011-11-22 Ntt Docomo, Inc. Adaptive MaxLogMAP-type receiver structures
US20090075686A1 (en) * 2007-09-19 2009-03-19 Gomadam Krishna S Method and apparatus for wideband transmission based on multi-user mimo and two-way training
US8325840B2 (en) * 2008-02-25 2012-12-04 Ntt Docomo, Inc. Tree position adaptive soft output M-algorithm receiver structures
US8279954B2 (en) * 2008-03-06 2012-10-02 Ntt Docomo, Inc. Adaptive forward-backward soft output M-algorithm receiver structures
US8565329B2 (en) * 2008-06-03 2013-10-22 Ntt Docomo, Inc. Soft output M-algorithm receiver structures with generalized survivor selection criteria for MIMO systems
US8229443B2 (en) * 2008-08-13 2012-07-24 Ntt Docomo, Inc. Method of combined user and coordination pattern scheduling over varying antenna and base-station coordination patterns in a multi-cell environment
US8705484B2 (en) * 2008-08-15 2014-04-22 Ntt Docomo, Inc. Method for varying transmit power patterns in a multi-cell environment
US8451951B2 (en) * 2008-08-15 2013-05-28 Ntt Docomo, Inc. Channel classification and rate adaptation for SU-MIMO systems
US8542640B2 (en) * 2008-08-28 2013-09-24 Ntt Docomo, Inc. Inter-cell approach to operating wireless beam-forming and user selection/scheduling in multi-cell environments based on limited signaling between patterns of subsets of cells
US8855221B2 (en) * 2008-09-15 2014-10-07 Ntt Docomo, Inc. Method and apparatus for iterative receiver structures for OFDM/MIMO systems with bit interleaved coded modulation
US9048977B2 (en) * 2009-05-05 2015-06-02 Ntt Docomo, Inc. Receiver terminal driven joint encoder and decoder mode adaptation for SU-MIMO systems
US8514961B2 (en) * 2010-02-04 2013-08-20 Ntt Docomo, Inc. Method and apparatus for distributed space-time coding in wireless radio networks
US20130142057A1 (en) * 2011-12-01 2013-06-06 Broadcom Corporation Control Channel Acquisition
KR101674724B1 (ko) 2014-08-25 2016-11-09 주식회사 엔케이 단열블록 고정턱이 형성된 서포트 구조체 및 이를 이용한 2중벽 탱크
US20190064223A1 (en) * 2017-08-25 2019-02-28 Keysight Technologies, Inc. Method and Apparatus for Detecting the Start of an Event in the Presence of Noise
JP2023517030A (ja) * 2020-03-05 2023-04-21 ノキア テクノロジーズ オサケユイチア 両極性符号のための拡張復号

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933462A (en) 1996-11-06 1999-08-03 Qualcomm Incorporated Soft decision output decoder for decoding convolutionally encoded codewords
EP1156588B1 (en) 1999-03-01 2007-05-09 Fujitsu Limited Method and apparatus for maximum a posteriori probability decoding
JP3244121B2 (ja) 1999-04-07 2002-01-07 株式会社ワイ・アール・ピー移動通信基盤技術研究所 復号装置
US6980605B2 (en) 2000-01-31 2005-12-27 Alan Gatherer MAP decoding with parallelized sliding window processing
FI109162B (fi) * 2000-06-30 2002-05-31 Nokia Corp Menetelmä ja järjestely konvoluutiokoodatun koodisanan dekoodaamiseksi
US7027531B2 (en) * 2000-12-29 2006-04-11 Motorola, Inc. Method and system for initializing a training period in a turbo decoding device
US6952457B2 (en) * 2000-12-29 2005-10-04 Motorola, Inc. Method and system for adapting a training period in a turbo decoding device
JP3828791B2 (ja) * 2001-11-27 2006-10-04 松下電器産業株式会社 誤り訂正復号装置
SG125061A1 (en) * 2001-12-07 2006-09-29 Oki Techno Ct Singapore Pte A turbo decoder, and a map decoder component of the turbo decoder
FI20020108A0 (fi) * 2002-01-21 2002-01-21 Nokia Corp Menetelmõ ja laite polkumetriikoiden muodostamiseksi trelliksessõ
US7246295B2 (en) * 2003-04-14 2007-07-17 Agere Systems Inc. Turbo decoder employing simplified log-map decoding
JP2005167513A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 復号装置及び復号方法

Also Published As

Publication number Publication date
EP1655846A1 (en) 2006-05-10
CN1823474A (zh) 2006-08-23
US7539256B2 (en) 2009-05-26
WO2005006564A1 (ja) 2005-01-20
DE602004012417D1 (de) 2008-04-24
CN100547935C (zh) 2009-10-07
KR20060035743A (ko) 2006-04-26
EP1655846A4 (en) 2006-07-19
JP2005033705A (ja) 2005-02-03
DE602004012417T2 (de) 2008-06-19
JP4227481B2 (ja) 2009-02-18
EP1655846B1 (en) 2008-03-12
US20060176945A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
KR100671619B1 (ko) 복호 장치 및 복호 방법
US9048877B2 (en) Turbo code parallel interleaver and parallel interleaving method thereof
JP2004531116A (ja) ターボデコーダ用インタリーバ
US20040025103A1 (en) Turbo decoding method and turbo decoding apparatus
EP1314254A4 (en) ITERATION TERMINATION THROUGH TURBO CODES QUALITY INDEX CRITERIA
EP1471677A1 (en) Method of blindly detecting a transport format of an incident convolutional encoded signal, and corresponding convolutional code decoder
CN112332864A (zh) 一种自适应有序移动剪枝列表的极化码译码方法及系统
US20130007568A1 (en) Error correcting code decoding device, error correcting code decoding method and error correcting code decoding program
US7925964B2 (en) High-throughput memory-efficient BI-SOVA decoder architecture
KR100390416B1 (ko) 터보 디코딩 방법
Kene et al. Soft output decoding algorithm for turbo codes implementation in mobile Wi-Max environment
CN108134612B (zh) 纠正同步与替代错误的级联码的迭代译码方法
US7165210B2 (en) Method and apparatus for producing path metrics in trellis
CN101217336B (zh) TD-SCDMA/3G硬核turbo译码器
KR20070065831A (ko) 연산 회로
CN1129257C (zh) 串行回溯的最大似然解码方法及其使用该方法的解码器
KR101923701B1 (ko) 무선 통신 시스템에서의 반복적 검출 및 복호 방법 및 이의 장치
EP1677423A1 (en) Decoder apparatus and decoding method
KR100625242B1 (ko) 터보 복호화 장치 및 방법
CN114448448B (zh) 一种基于ca-scl的极化码编译码方法
CN106533453B (zh) 一种译码方法及译码器
KR101496455B1 (ko) 다중 사용자 통신시스템의 수신 장치 및 제어 방법
Seethal et al. A low complex turbo decoding algorithm with early iteration termination
Xu et al. Convolutional Codes
KR100627723B1 (ko) 터보 복호화를 위한 병렬 복호 방법 및 이를 사용한 터보복호기

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131219

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180110

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 14