KR100665878B1 - Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise - Google Patents

Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise Download PDF

Info

Publication number
KR100665878B1
KR100665878B1 KR1020050101575A KR20050101575A KR100665878B1 KR 100665878 B1 KR100665878 B1 KR 100665878B1 KR 1020050101575 A KR1020050101575 A KR 1020050101575A KR 20050101575 A KR20050101575 A KR 20050101575A KR 100665878 B1 KR100665878 B1 KR 100665878B1
Authority
KR
South Korea
Prior art keywords
blasting
vibration
delay time
primer
low
Prior art date
Application number
KR1020050101575A
Other languages
Korean (ko)
Inventor
윤지선
이진무
Original Assignee
에스케이건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이건설 주식회사 filed Critical 에스케이건설 주식회사
Priority to KR1020050101575A priority Critical patent/KR100665878B1/en
Application granted granted Critical
Publication of KR100665878B1 publication Critical patent/KR100665878B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/06Relative timing of multiple charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
    • F42D5/045Detonation-wave absorbing or damping means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

A low-vibration and low-noise blasting pattern design method by means of most suitable delayed time of electronic detonator is provided to increase digging efficiency and breaking grain size by applying most suitable delayed time to the tunnel explosion. A low-vibration and low-noise blasting pattern design method by means of most suitable delayed time of an electronic detonator comprises a step(110) of collecting an explosion vibration wave form through an individual delay time test explosion for each hole of the electronic detonator; a step(120) of analyzing the explosion vibration wave form through the synthesis for each time; a step(130) of deciding the most suitable delayed time having the lowest explosion vibration; and a step(140) of designing an explosion pattern by applying the decided delayed time. The individual delayed time test explosion for each hole is carried on with 200ms to 10000ms delayed time in the step of collecting the explosion vibration wave form.

Description

전자뇌관의 최적 지연초시 결정을 통한 저진동저소음 발파패턴 설계방법{blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise} Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise}

도1은 본 발명에 따른 저진동저소음 발파패턴 설계방법을 도시한 순서도이다. 1 is a flowchart illustrating a method for designing a low vibration low noise blasting pattern according to the present invention.

도2는 본 발명에 따른 전자뇌관 공당 개별단차 시험발파를 위한 발파패턴 예시도이다.Figure 2 is an illustration of the blast pattern for the electron blast capillary individual step test blasting in accordance with the present invention.

도3a (가)는 본 발명에 따른 전자뇌관 공당 개별단차 시험발파에서 계측된 발파진동파형을 프로그램에 저장한 예시도이며, (나)는 저장된 발파진동파형을 아스키 코드로 변환한 텍스트 문서이다.Figure 3a (a) is an exemplary diagram in which the blasting vibration waveform measured at the individual step test blast of the electron primer hall according to the present invention in the program, (b) is a text document converted from the stored blasting vibration waveform to ASCII code.

도3b는 본 발명에 따른 1ms 단위로 파형을 중첩하는 과정을 나타내는 모식도이다.Figure 3b is a schematic diagram showing a process of superimposing the waveform in units of 1ms according to the present invention.

도3c는 본 발명에 따른 발파진동파형을 합성하는 프로그램을 도시한 것이다.Figure 3c shows a program for synthesizing the blasting vibration waveform in accordance with the present invention.

도4는 본 발명에 따른 전자뇌관 최적 지연초시 적용 발파패턴 예시도이다.Figure 4 is an illustration of the blast pattern applied to the optimal primer delay delay primer according to the present invention.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

110 : 공당개별단차 시험발파를 통한 발파진동 파형 수집단계110: blast vibration waveform collection step through the individual blast test shot

120 : 초시별 합성을 통한 파형 비교분석단계120: Comparative waveform analysis step through super time synthesis

130 : 최적 지연초시 결정단계130: determining the optimum delay time

140 : 최적 지연초시를 적용한 발파패턴 설계단계140: Design stage of blast pattern applying optimal delay time

본 발명은 암반발파에 전자뇌관이 적용되었을 때 발파진동을 최소화하면서 발파효율을 최대로 하기 위한 전자뇌관의 최적 지연초시 결정과 발파패턴 설계에 관한 것이다.The present invention relates to the determination of the optimum delay time and design of the blast pattern of the electron primer for maximizing the blast efficiency while minimizing the blast vibration when the electron primer is applied to the rock blasting.

1867년 Alfred Nobel에 의해 개발된 공업용 뇌관에 도화선을 부착시키는 방식에서 시작한 기폭시스템은 전기뇌관에 이어 비전기식 시스템(Non-electric system)의 발명에 이르기까지 기폭성과 안정성 및 정밀성에 부합하는 방향으로 발전되어 왔다. 특히 1990년대 초반에 전자 타이머에 의한 초 정밀시차를 가지고 특수한 용도로 사용하기 위해 개발된 전자뇌관(Electronic detonator)은 단차별 기폭시간에 대한 단차별 정밀도와 지연시차의 부여방법에서 기존의 기폭 시스템과 많은 차이를 보인다. The detonation system, which began in 1867 by attaching a conductor to an industrial primer developed by Alfred Nobel, developed in the direction of detonation, stability and precision from the electrical detonator to the invention of a non-electric system. Has been. Especially, in the early 1990s, the electronic detonator developed for the special purpose with the ultra precision parallax by the electronic timer is different from the existing detonation system in the method of granting the step difference precision and the delay time for the step time detonation time. It seems a lot of difference.

오늘날 가장 일반화되어 우리의 현장에서 사용되고 있는 전기뇌관과 비전기뇌관의 경우 그 정밀도가 MS(Milli Second) 단위까지 이르렀으나, 오늘날의 현장에 서는 이보다 더 정확하고 정밀한 지연시차를 갖는 뇌관을 점차적으로 요구하고 있는 실정이다. 왜냐하면 우리나라의 경우 국토의 면적이 좁고 지형적지리적 조건에 따라 발파현장이 도심지 지하 및 도심의 근접 지역에서 발파가 이루어지고 있는 실정이어서 발파의 진동 및 소음 등의 환경피해로부터 많은 민원이 발생되어지기 때문이다. 그 중 대표적인 환경피해로 진동과 소음을 들 수 있으며, 이의 직접적인 원인중의 하나로 뇌관 지연시차의 부정확성과 정밀성 부족을 들 수 있다. The precision of electric and non-electric primers, which are the most common and used in our field today, has reached MS (Milli Second) units, but in today's field, there is a gradual demand for primers with more accurate and precise delay time. I'm doing it. This is because in Korea, the area of land is narrow and the blasting site is being blasted at the basement of the downtown area and the vicinity of the downtown area according to the geographical and geographical conditions, and many complaints are generated from environmental damage such as vibration and noise of the blasting site. . Representative environmental damages include vibration and noise, and one of the direct causes of this is the inaccuracy and lack of precision of primer delay.

현재 국내에 일반적으로 보급되어 사용되고 있는 전기뇌관과 비전기뇌관의 지연시차는 최소 20∼25ms으로부터 최대 수 천 ms에 이르기 때문에 그 정밀성을 ±10%로 놓을 경우 그 오차 범위는 2ms∼수백ms에 이르게 된다. 국내 터널 현장의 경우 대게 지발기폭 방식으로 발파가 이루어지고 있는데, 이를 기폭시킬 경우 현재의 일반 뇌관으로 기폭하면 같은 지발내에서 발생되는 뇌관별 오차로 인해 진동과 소음 공해를 적절히 제어하지 못하므로 근접거리에서 민원인들이 문제를 제기하는 일이 허다하다. 또한 한정된 단차와 지연시차로 인해 현장에 적절한 발파패턴을 정하기가 어려운 실정이다. Since the delay time of electric and non-electrical primers, which are generally widely used in Korea, ranges from 20 to 25 ms to thousands of ms, the error range is 2ms to hundreds of ms when the precision is set to ± 10%. do. In the case of domestic tunnel sites, blasting is usually carried out by a delayed explosion method. If you detonate it by using a general detonator, it is not possible to properly control vibration and noise pollution due to the error of each primer generated in the same delay. There are a lot of complaints that people complain about. In addition, due to the limited step and delay time, it is difficult to determine the appropriate blasting pattern in the field.

문제는 여기에서 그치지 않고 뇌관 시차의 비정밀성은 공사의 효율성에도 많은 영향을 미치게 된다. 예를 들어 외곽공의 경우 제발 발파(암석발파에서 2개 이상의 발파 공을 동시에 발파하는 공법)를 실시하는 것이 지발 발파(암석발파에서 2개 이상의 발파 공을 단차를 두어 순차로 발파하는 방법)로 하는 것보다 파단면이 미려하고 여굴량이 적은 것으로 나와 있다. The problem does not end here, and the inaccuracy of primer parallax will have a great impact on the efficiency of construction. For example, in the case of a periphery, please carry out blasting (the method of blasting two or more blasting balls at the same time) by slow blasting (the method of blasting two or more blasting balls in a step by step). The fracture surface is more beautiful than it is and the amount of overcast is shown.

하지만 국내 발파 여건상 진동이나 소음이 문제로 대두될 수 있기 때문에 외 곽공 전부를 제발로 기폭시킬 수 없고, 몇 개의 지발로 분할하여 기폭시키는 것이 일반적인 방법이다. 그러나 이렇게 몇 개의 지발로 기폭시킬 경우 일반뇌관의 오차로 인해 여굴량이나, 파쇄도, 손상영역 등에 좋지 않은 영향을 미치게 되어 발파 후 숏크리트(Shotcrete) 및 콘크리트 추가 발생량 증가와 주변 암반의 손상영역 확대 등의 결과를 가져오게 된다. However, due to domestic blasting conditions, vibration and noise may be a problem, so it is not possible to detonate all of the outside holes. However, if a few delays are triggered, the error of the general primer will adversely affect the amount of excavation, the degree of fracture, the damage area, etc., resulting in the increase of additional shotcrete and concrete after blasting, and the damage area of the surrounding rock. Will result in

본 발명은 상기와 같은 문제점을 해소하기 위해 터널발파에 1ms 단위로 지연초시배열이 가능하고 0ms∼25,000ms까지 단차 조절이 가능한 전자뇌관을 적용하여 다양한 지반조건 발파진동 및 소음이 가장 저감되는 최적 지연초시를 구현하는 것을 목적으로 한다. In order to solve the problems described above, the present invention is capable of delayed initial arrangement in 1ms units for tunnel blasting, and by applying an electromagnetic primer capable of adjusting a step from 0ms to 25,000ms, an optimum delay is achieved in which various ground conditions blasting vibration and noise are most reduced. It aims to implement Choshi.

이를 위해, 본 발명의 구체적인 목적은 전자뇌관의 공당 개별단차 시험발파로 획득한 발파진동파형을 소프트웨어를 통하여 합성한 후 이를 분석하여 현장지반에서 발파진동이 가장 저감되는 최적 지연초시를 결정하고 이를 이용한 전자뇌관 발파패턴 설계방법을 제시하고자 한다.To this end, a specific object of the present invention is to synthesize the blasting vibration waveform obtained by the test blast of the individual step test of the electron primer through software and then to analyze it to determine the optimal delay time that the blasting vibration is most reduced in the field ground. We propose a method of designing an electron primer blast pattern.

본 발명의 또 다른 목적은 전자뇌관을 이용한 최적화된 지연초시를 터널발파에 적용함으로써 기존 뇌관(MS, DS)에 비해 굴진효율 및 파쇄입도를 증진시키고, 제어발파(Control Blasting) 효과를 극대화하여 터널 외곽공 발파(Contour Blasting in Tunnel)에서 미려한 파단면 생성에 따른 숏크리트(Shotcrete) 및 콘크리트 추가 발생량 감소와 주변암반의 손상영역을 저감하는데 있다.Another object of the present invention is to apply the optimized delay and start using the electron primer to the tunnel blasting to increase the excavation efficiency and crushing degree compared to the existing primer (MS, DS), and maximize the control blasting (Control Blasting) effect Contour Blasting in Tunnel reduces the amount of additional shotcrete and concrete caused by the creation of beautiful fracture surface and reduces the damage area of the surrounding rock.

이러한 목적 달성을 위하여 본 발명은 전자뇌관의 최적 지연초시 결정을 통한 저진동저소음 발파패턴 설계방법에 있어서, 전자뇌관의 공당 개별단차 시험발파를 통하여 발파진동파형을 수집하는 단계; 초시별 합성을 통한 발파진동파형을 분석하는 단계; 발파진동이 최소가 되는 최적 지연초시를 결정하는 단계; 결정된 지연초시를 적용하여 발파패턴을 설계하는 단계를 포함하되, 상기 발파진동파형을 수집하는 단계에서의 공당 개별단차 시험발파는 200ms ~ 10000ms의 지연시차를 두고 시행하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for designing a low vibration and low noise blasting pattern by determining the optimum delay time of an electron primer, the method comprising: collecting blasting vibration waveforms through test blasting of individual steps of an electron primer; Analyzing the blasting vibration waveform through super time synthesis; Determining an optimum delay time at which the blasting vibration is minimized; Including the step of designing the blast pattern by applying the determined delay time, the individual step test blast in the step of collecting the blasting vibration waveform is characterized by performing with a delay of 200ms ~ 10000ms.

이하, 첨부된 도면을 참조하여 본 발명에 따른 전자뇌관 최적 지연초시를 결정하는 방법 및 그에 따른 발파패턴 설계방법에 대해 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the method for determining the optimum electron detonation delay and the blast pattern design method according to the present invention.

본 발명의 첫번째 단계는 전자뇌관의 공당 개별단차 시험발파를 통하여 발파진동파형을 수집하는 단계(110)로, 터널발파에 사용되는 심발공법에 따라 소정의 지연초시로 공당 개별단차 발파를 실시한 후 측정된 발파진동파형을 수집한다. 이때, 공당 개별단차 발파의 지연시차는 200ms ~ 10000ms의 범위에서 시행하는 것이 바람직한 데, 이는 현장지반별 상황에 따라 약간씩의 차이는 있지만 200ms 미만일 경우에는 잔여진동의 중첩에 의해 각 공별 발파진동파형을 분리하는데 문제점이 있고, 10000ms 초과일 경우에는 현재 국내에서 사용하고 있는 발파진동계측기 일부 기종의 1회 발파 측정시간(Trigger time)이 10000ms이하로 되어 있어 2개 이상의 발파공을 측정하기 불가능하기 때문이다(도1, 도2, 도3a 참조).The first step of the present invention is to collect the blasting vibration waveform through the test blast of the individual step test of the electron primer (110), and after performing the individual step blast of the predetermined time delay according to the cardiac method used for tunnel blasting Collected blasting vibration waveforms. At this time, it is preferable to carry out delay time of individual step blasting in the range of 200ms ~ 10000ms, which is slightly different depending on the site ground situation, but if it is less than 200ms, the blasting vibration wave of each part by overlapping residual vibration This is because it is impossible to measure two or more blast holes because the one-time blast measurement time (Trigger time) of some models of blasting vibration measuring instruments currently used in Korea is less than 10000ms. (See FIG. 1, FIG. 2, FIG. 3A).

본 발명의 두 번째 단계는 초시별 합성을 통한 발파진동파형을 분석하는 단계(120)로, 이는 계측된 진동파를 중첩시켜 합성된 파의 간섭원리를 이용하여 발파진동의 저주파음을 경감시킬 수 있도록 분석하는 과정으로서 그 세부 진행공정은 다음과 같다.The second step of the present invention is the step 120 of analyzing the blasting vibration waveform through ultra-time synthesis, which can reduce the low frequency sound of the blasting vibration by using the interference principle of the synthesized wave by superimposing the measured vibration waves. The detailed process is as follows.

(1) 발파진동 계측기로 측정한 값을 Blastware 라는 프로그램으로 다운받고 그 진동파형을 아스키 코드로 변환시켜 텍스트 파일로 저장한다. (도3a (가), (나) 참조)(1) Download the measured value with blasting vibration measuring instrument by Blastware program and convert the vibration waveform into ASCII code and save it as text file. (See Figure 3a (a) and (b).)

(2) 텍스트 파일상에 수치로 변환된 진동파형을 중첩하여 합성한다. 이때 파의 합성은 전자뇌관이 1ms 단위로 지연시차를 부여할 수 있는 점을 감안하여 측정된 T(Transverse), V(Vertical), L(Longitudinal) 진동파형값을 1ms 단위로 합성하고, 발파공당 파형을 중첩하여 합성한다. 합성하는 파형의 범위는 계측된 데이터를 참고하여 선정한다. 도3b는 1ms 단위로 파형을 중첩하는 과정을 나타내는 모식도이며 그림에서와 같이 발파공 A의 파형에 발파공 B의 파형을 1ms 단위로 이동하면서 중첩시켜서 파형을 합성한다. 도3c는 상기의 과정을 통해 발파진동파형을 합성하는 프로그램이다.(2) Synthesize by overlaying the vibration waveform converted into numerical value on the text file. At this time, the synthesis of wave synthesizes the T (Transverse), V (Vertical), and L (Longitudinal) vibration waveform values measured in 1ms unit in consideration of the fact that the electron primer can give a delay time in 1ms unit. Superimpose and synthesize waveforms. The range of the synthesized waveform is selected by referring to the measured data. Figure 3b is a schematic diagram showing the process of superimposing the waveform in units of 1 ms, and as shown in the figure, the waveform of the blast hole B is superimposed and moved in units of 1 ms to synthesize the waveform. Figure 3c is a program for synthesizing the blasting vibration waveform through the above process.

(3) 합성된 파형의 PVS(Peak Vector Sum)가 최소로 되는 지점의 값과 ms를 구한다. (3) The value and ms of the point where the peak vector sum (PVS) of the synthesized waveform becomes minimum are obtained.

이때,

Figure 112005061234016-pat00001
에 의해 산출된다.At this time,
Figure 112005061234016-pat00001
Calculated by

본 발명의 세 번째 단계는 발파진동이 최소가 되는 최적 지연초시를 결정하는 단계(130)로, 합성된 발파진동파형을 분석하여 발파진동이 최소가 되는 지연초시를 결정한다.(도1 참조)The third step of the present invention is a step 130 for determining an optimum delay time when the blasting vibration is minimized, and analyzing the synthesized blasting vibration waveform to determine the delay time when the blasting vibration is minimum (see FIG. 1).

본 발명의 마지막 단계는 결정된 지연초시를 적용하여 발파패턴을 작성하는 단계(140)로, 상기에 의해 최적 지연초시가 결정되면, 결정된 지연초시를 적용하여 발파패턴을 설계한다.(도1, 도4 참조)The final step of the present invention is to generate a blasting pattern by applying the determined delayed seconds, and when the optimum delayed time is determined by the above, design the blasting pattern by applying the determined delayed seconds. 4)

<실시예><Example>

이하에서는 상기와 같은 구성으로 이루어진 본 발명을 실시하기 위해, 일반뇌관과 전자뇌관의 비교시험발파를 도로터널현장에서 3회, 석산에서 6회를 시행하였다. 이와 같은 초기의 시험에서는 전자뇌관의 지연초시를 문헌을 참고한 개인적인 경험으로 산정하여 적용한 것이다.Hereinafter, to carry out the present invention having the above configuration, the comparative test blasting of the general primer and the electron primer was carried out three times in the road tunnel site, six times in Seoksan. In these early tests, the delayed start of the electron primer was calculated and applied as a personal experience referring to the literature.

전자뇌관의 지연초시 결정에 있어 보다 객관적이며 현장 적용성을 높이기 위해 본원 발명을 구상하였으며 이를 시행하기 위해 심발공법은 Burn-cut, V-cut과 분착식다단발파공법(SUPEX-cut)을 사용하여 일반뇌관과 비교발파를 실시하였다. 이때, Burn-cut과 V-cut은 소규모 터널현장에서 시행하였으며, SUPEX-cut은 철도 터널현장에서 비교 발파를 시행하였다.The present invention was designed to improve the objective and field applicability in determining the delay time of electron primer. To implement this, the cardiac technique uses burn-cut, V-cut, and split-stage blast method (SUPEX-cut). And a comparative blasting was carried out with a general primer. At this time, Burn-cut and V-cut were carried out at small tunnel site, and SUPEX-cut was carried out comparative blasting at railway tunnel site.

비교발파에서 심발에 Burn-cut을 적용하였을때는 일반뇌관발파 1회, 파형합성을 위한 공당 개별단차 발파 2회, 전자뇌관 최적 지연초시 적용 발파 1회를 시행하였으며, 결정된 전자뇌관 최적 지연초시는 17ms이다.When the burn-cut was applied to the heart blast in the comparative blasting, the general primer blasting was performed once, the individual step blasting per hall for synthesizing the wave, and the optimal blasting time for the electron primer was applied. 17 ms.

또한, 비교발파에서 심발에 V-cut을 적용하였을때는 일반뇌관발파 1회, 파형합성을 위한 공당 개별단차 발파 2회, 전자뇌관 최적 지연초시 적용 발파 1회를 시행하였으며, 결정된 전자뇌관 최적 지연초시는 11ms이다.In addition, when V-cut was applied to the heart blast in the comparative blasting, the general primer blasting was performed once, the individual step blasting of the hall for synthesizing the wave was performed, and the blasting was applied once at the optimal time of the electron primer. The seconds are 11ms.

또한, 비교발파에서 심발에 분착식다단발파공법(SUPEX-cut)을 적용하였을 때 는 일반뇌관발파 3회, 파형합성을 위한 공당 개별단차 발파 3회, 전자뇌관 최적 지연초시 적용 발파 2회를 시행하였으며, 결정된 최적 지연초시는 13ms이다.In addition, when the SUPEX-cut was applied to the heart blast in the comparative blasting, three general primer blastings, three blast individual step blastings for waveform synthesis, and two blastings applied at the optimal delaying time of the electron primer The optimal delay time determined was 13ms.

각 일반뇌관 및 전자뇌관의 적용 발파에서는 굴진효율, H.C.F(half cast factor), 파쇄입도, 발파진동을 측정하여 비교하였다.Application blasting of each general primer and electron primer was measured by comparing the excavation efficiency, H.C.F (half cast factor), crushing degree, blast vibration.

굴진효율은 정량적인 비교를 위하여 천공장 및 굴진장을 줄자를 이용 실측한 후 다음의 식을 이용하였다.For quantitative comparison, the drilling efficiency was measured by using a tape measure at the mill and the drilling yard.

Figure 112005061234016-pat00002
Figure 112005061234016-pat00002

H.C.F(half cast factor)는 발파 후 육안으로 관측된 외곽공의 천공흔적을 실측하여 전 천공장의 비로서 환산해 주는 것으로서 H.C.F의 값이 높을수록 원활한 굴착선이 형성되었다고 할 수 있다. H.C.F는 스타프를 이용하여 측정하였으며 다음의 식으로 구하였다.The H.C.F (half cast factor) measures the perforation traces of the outer periphery observed with the naked eye after blasting and converts them to the ratio of the all-cheon plant. The higher the H.C.F value, the smoother the excavation line is. H.C.F was measured using staff and was calculated by the following equation.

Figure 112005061234016-pat00003
Figure 112005061234016-pat00003

파쇄입도는 디지털 카메라로 촬영 후 Split Desktop이라는 프로그램을 사용하였다. 비교발파 결과 측정된 평균값은 다음과 같다.The fracture granularity was taken with a digital camera and then used a program called Split Desktop. The average values measured by the comparative blasting results are as follows.

구 분division Burn-cutBurn-cut 전자뇌관 적용효과 (%)Electron primer application effect (%) 일반뇌관General Primer 전자뇌관Electron primer 굴진효율(%)Excavation efficiency (%) 93.093.0 95.095.0 2% 굴진률 향상2% increase in digging rate H.C.F(%)H.C.F (%) 39.239.2 73.573.5 47% 상승47% increase 파쇄입도(cm)Crushing Particle Size (cm) 6.96.9 5.55.5 21% 감소21% reduction 발파진동(cm/sec)Blasting vibration (cm / sec) 0.320.32 0.250.25 22% 진동저감22% vibration reduction

구 분division V-cutV-cut 전자뇌관 적용효과 (%)Electron primer application effect (%) 일반뇌관General Primer 전자뇌관Electron primer 굴진효율(%)Excavation efficiency (%) 87.087.0 88.088.0 1% 굴진률 향상1% increase in excavation rate H.C.F(%)H.C.F (%) 29.429.4 33.333.3 12% 상승12% increase 파쇄입도(cm)Crushing Particle Size (cm) 8.68.6 7.07.0 19% 감소19% reduction 발파진동(cm/sec)Blasting vibration (cm / sec) 0.700.70 0.410.41 41% 진동저감41% vibration reduction

구 분division SUPEX-cutSUPEX-cut 전자뇌관 적용효과 (%)Electron primer application effect (%) 일반뇌관General Primer 전자뇌관Electron primer 굴진효율(%)Excavation efficiency (%) 88.688.6 94.094.0 6% 굴진률 향상6% increase in excavation rate H.C.F(%)H.C.F (%) 23.023.0 27.027.0 15% 상승15% up 파쇄입도(cm)Crushing Particle Size (cm) 16.116.1 11.511.5 29% 감소29% reduction 발파진동(cm/sec)Blasting vibration (cm / sec) 1.041.04 0.560.56 46% 진동저감46% vibration reduction

상기 표와 같은 결과는 뇌관의 종류 외에 사용폭약, 천공장비, 작업자 등의 제반조건이 같은 상황에서 본 시험이 수행된 것을 감안할 때, 일반뇌관에 비해 오차 범위가 적은 전자뇌관을 이용하여 최적 지연초시를 결정하고 이를 발파패턴 설계에 적용할 경우 굴진효율, H.C.F, 파쇄입도, 발파진동 등의 효과가 향상됨을 알 수 있다. The results shown in the table above show that this test was performed under the same conditions of explosives, drilling equipment, workers, etc. in addition to the types of primers. In this case, the effects of excavation efficiency, HCF, crushing particle size, blasting vibration, etc. can be improved.

한편, 상술한 본 발명은 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 즉, 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.On the other hand, the present invention described above has been described with respect to specific embodiments, of course, various modifications are possible without departing from the scope of the invention. That is, the present invention is not limited to the above-described embodiments and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

상술한 바와 같이 본 발명에 따르면, 현장지반에서 공당 개별단차 시험발파에 의해 계측된 발파진동파형을 분석하여 발파진동이 최소가 되는 전자뇌관의 최적 지연초시를 결정한 후 이를 실제 발파패턴 설계시 적용함으로써, 다양한 현장상황에 따라 최적의 저진동저소음 발파패턴을 정확하고 효율적으로 설계할 수 있게 된다.As described above, according to the present invention, by analyzing the blasting vibration waveform measured by the test blast vibration individual site in the field ground to determine the optimum delay time of the electron primer to minimize the blasting vibration and then apply it in the design of the actual blasting pattern Therefore, it is possible to accurately and efficiently design the optimum low vibration low noise blasting pattern according to various site situations.

또한, 본 발명은 지금까지 전자뇌관이 주로 문헌을 참고한 개인적 경험적 요소에 의존하여 지연초시를 결정함으로써 발생된 비효율성 및 부정확성의 문제점을 해결하고, 가변적인 현장상황을 유효하게 적용할 수 있게 된다.In addition, the present invention solves the problems of inefficiency and inaccuracy caused by determining the delay time based on the individual empirical factors that the electron primer has mainly referred to the literature, and can effectively apply the variable field situation. .

Claims (3)

전자뇌관의 최적 지연초시 결정을 통한 저진동저소음 발파패턴 설계방법에 있어서, In the low vibration low noise blasting pattern design method by determining the optimum delay time of the electron primer, 전자뇌관의 공당 개별단차 시험발파를 통하여 발파진동파형을 수집하는 단계; Collecting the blasting vibration waveforms through the test blasting of the individual steps of the electron primers; 초시별 합성을 통한 발파진동파형을 분석하는 단계; Analyzing the blasting vibration waveform through super time synthesis; 발파진동이 최소가 되는 최적 지연초시를 결정하는 단계; Determining an optimum delay time at which the blasting vibration is minimized; 결정된 지연초시를 적용하여 발파패턴을 설계하는 단계를 포함하되, Designing a blasting pattern by applying the determined delay time, 상기 발파진동파형을 수집하는 단계에서의 공당 개별단차 시험발파는 200ms ~ 10000ms의 지연시차를 두고 시행하는 것을 특징으로 하는 전자뇌관의 최적 지연초시 결정을 통한 저진동저소음 발파패턴 설계방법The method for designing low vibration and low noise blasting pattern through the determination of the optimum delay time of the electromagnetic primer, characterized in that the individual step test blasting in the step of collecting the blasting vibration waveform is performed with a delay time of 200 ms to 10000 ms. 제1항에 있어서, The method of claim 1, 상기 발파진동파형 분석 단계는 발파진동 계측기로 측정된 각 발파공당 T(Transverse), V(Vertical), L(Longitudial) 진동파형값을 소정의 프로그램으로 전송받고, 그 진동파형을 아스키 코드로 변환시켜 텍스트 파일로 저장하는 단계;The blasting vibration waveform analysis step transmits T (Transverse), V (Vertical), and L (Longitudial) vibration waveform values for each blast hole measured by the blasting vibration measuring instrument to a predetermined program, and converts the vibration waveform into an ASCII code. Saving as a text file; 텍스트 파일상의 변환된 각 발파공당 진동파형을 1ms 단위로 중첩하여 합성하는 단계; 및 Synthesizing the converted vibration waveform per blast hole on the text file in units of 1 ms; And 합성된 파형의 PVS(Peak Vector Sum)가 최소가 되는 지점의 값과 ms를 산출하는 단계를 포함하는 것을 특징으로 하는 전자뇌관의 최적 지연초시 결정을 통한 저진동저소음 발파패턴 설계방법A method of designing a low vibration low noise blasting pattern through determination of an optimum delay time of an electron primer, comprising calculating a value of a point at which a peak vector sum (PVS) of the synthesized waveform becomes minimum and ms 삭제delete
KR1020050101575A 2005-10-27 2005-10-27 Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise KR100665878B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050101575A KR100665878B1 (en) 2005-10-27 2005-10-27 Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050101575A KR100665878B1 (en) 2005-10-27 2005-10-27 Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise

Publications (1)

Publication Number Publication Date
KR100665878B1 true KR100665878B1 (en) 2007-01-09

Family

ID=37867214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050101575A KR100665878B1 (en) 2005-10-27 2005-10-27 Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise

Country Status (1)

Country Link
KR (1) KR100665878B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883832B1 (en) 2007-01-30 2009-02-16 조선대학교산학협력단 The method of prediction of blasting vibration by superposition on modeling data of single hole waveform
CN108645299A (en) * 2018-05-03 2018-10-12 中国葛洲坝集团易普力股份有限公司 Rock Blasting Fragmentation analysis method based on Particle Vibration Velocity
CN113124724A (en) * 2021-04-23 2021-07-16 中国人民解放军海军航空大学岸防兵学院 Initiating explosive device test explosion-proof equipment
CN115096153A (en) * 2022-07-08 2022-09-23 长江水利委员会长江科学院 Active blasting vibration control method based on Fourier series decomposition
US11635283B2 (en) 2019-01-24 2023-04-25 Hanwha Corporation Blasting system and operating method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976199A (en) 1988-09-01 1990-12-11 Expert Explosives (Proprietary) Limited Blasting system and its method of control
JPH06323799A (en) * 1993-05-12 1994-11-25 Asahi Chem Ind Co Ltd Blasting method
JPH11181753A (en) * 1997-12-24 1999-07-06 Sato Kogyo Co Ltd Method for anticipating ground vibration using blasting and blasting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976199A (en) 1988-09-01 1990-12-11 Expert Explosives (Proprietary) Limited Blasting system and its method of control
JPH06323799A (en) * 1993-05-12 1994-11-25 Asahi Chem Ind Co Ltd Blasting method
JPH11181753A (en) * 1997-12-24 1999-07-06 Sato Kogyo Co Ltd Method for anticipating ground vibration using blasting and blasting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문(2004년6월)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883832B1 (en) 2007-01-30 2009-02-16 조선대학교산학협력단 The method of prediction of blasting vibration by superposition on modeling data of single hole waveform
CN108645299A (en) * 2018-05-03 2018-10-12 中国葛洲坝集团易普力股份有限公司 Rock Blasting Fragmentation analysis method based on Particle Vibration Velocity
US11635283B2 (en) 2019-01-24 2023-04-25 Hanwha Corporation Blasting system and operating method thereof
CN113124724A (en) * 2021-04-23 2021-07-16 中国人民解放军海军航空大学岸防兵学院 Initiating explosive device test explosion-proof equipment
CN115096153A (en) * 2022-07-08 2022-09-23 长江水利委员会长江科学院 Active blasting vibration control method based on Fourier series decomposition

Similar Documents

Publication Publication Date Title
KR100665878B1 (en) Blasting pattern design method designed by most suitable delayed time of electronic detonator for reducing vibration and noise
Agrawal et al. Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting
Bewick et al. Strength of massive to moderately jointed hard rock masses
WO2005109020A3 (en) System and method for characterizing a signal path using a sub-chip sampler
KR100733346B1 (en) Blasting pattern design method designed by segmenting region applied multi-step delayed time of electronic detonator for reducing vibration and noise
KR100665880B1 (en) Blasting system and method of using electronic detonator and non-electric detonator
Ram Chandar et al. A critical comparison of regression models and artificial neural networks to predict ground vibrations
CN110737023B (en) Processing method of mining micro-seismic monitoring signal
CN109632459A (en) A kind of shale compressibility evaluation method
CN102707143A (en) Method for extracting harmonic components from electromagnetic spectrum by using gray multi-cycle model
CN102454400A (en) Method for recognizing carbonate rock crevice cave-shaped reservoir
CN106842345A (en) A kind of method for recognizing URANIUM DEPOSITS IN THE DEPTH information
Rai et al. Prediction of maximum safe charge per delay in surface mining
CN107063018A (en) A kind of Initiative defence method of hard rock tunnel rock burst
CN107367758B (en) A kind of relevant method of controlled source weighting improving signal-to-noise ratio
DE60120662D1 (en) METHOD FOR DETERMINING THE POSITION OF A DRILLING TOOL
Restner et al. Rock mechanical aspects of roadheader excavation
Das et al. Comparison of stress azimuth data derived by geogenic electromagnetic radiation technique and from the analysis of exhumation joints
TW200642726A (en) Golf club for estimating striking position on club-face
KR102117865B1 (en) Gpr geological exploration system
CN112360447B (en) Method for evaluating reservoir perforation effect
CN106680124B (en) A kind of device and method measuring the drillability of rock
ATE374990T1 (en) METHOD FOR SYNTHESIZING LANGUAGE
Bourgeon et al. Avian Taphonomy at Bluefish Caves, Yukon, Canada
Ghadernejad et al. A New Index For Evaluation Of Rock Brittleness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 14