KR100654930B1 - Heating medium composition - Google Patents

Heating medium composition Download PDF

Info

Publication number
KR100654930B1
KR100654930B1 KR1020060008510A KR20060008510A KR100654930B1 KR 100654930 B1 KR100654930 B1 KR 100654930B1 KR 1020060008510 A KR1020060008510 A KR 1020060008510A KR 20060008510 A KR20060008510 A KR 20060008510A KR 100654930 B1 KR100654930 B1 KR 100654930B1
Authority
KR
South Korea
Prior art keywords
heat medium
heat
medium composition
weight
heat transfer
Prior art date
Application number
KR1020060008510A
Other languages
Korean (ko)
Inventor
우상봉
노수경
Original Assignee
우상봉
노수경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우상봉, 노수경 filed Critical 우상봉
Priority to KR1020060008510A priority Critical patent/KR100654930B1/en
Application granted granted Critical
Publication of KR100654930B1 publication Critical patent/KR100654930B1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F21/00Mobile visual advertising
    • G09F21/04Mobile visual advertising by land vehicles
    • G09F21/048Advertisement panels on sides, front or back of vehicles
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Lubricants (AREA)

Abstract

Provided is a heat medium composition which has a rapid heat transfer velocity, is high in heat efficiency, is environmentally friendly and is applied to a heat pipe for a heat exchanger, a drier or a heat radiator. The heat medium composition comprises 43-47 wt% of dimethyl ether; 43-47 wt% of chloroform; and 6-14 wt% of ethanol. Optionally the composition comprises further 2-3 wt% of a silicone oil. The heat medium composition has a heat transfer velocity of 22 sec/1,000 mm or less at an operation temperature of 20-400 deg.C.

Description

열매체 조성물{HEATING MEDIUM COMPOSITION}Heat medium composition {HEATING MEDIUM COMPOSITION}

본 발명은 열매체 조성물에 관한 것으로, 더욱 상세하게는 가정용이나 산업용의 열교환기, 온풍기, 보일러 내부장치, 건조기, 발열기 등의 열전달 매체로서 사용하기에 매우 적합한 20~400℃의 작동온도 범위를 가지며 열전달율이 85%이상이고 열전달 속도가 22초/1000㎜로서 열효율이 높아 실용성 및 경제성을 갖춘 열매체 조성물에 관한 것이다.The present invention relates to a heat medium composition, and more particularly, has a temperature range of 20 ~ 400 ℃ suitable for use as a heat transfer medium, such as heat exchangers, hot air fans, boiler internal devices, dryers, heat generators, etc. The heat transfer rate is more than 85% and the heat transfer rate is 22 seconds / 1000 mm, and the heat efficiency is high, and it is related with the heat medium composition which was practical and economical.

지금까지 가정용 또는 산업용의 열교환기, 온풍기, 보일러, 건조기, 발열기 등에 사용하는 열매체로서 알려진 것은, 물, 글리세린, 수산화나트륨 수용액 및 프레온계 등이 있다.Until now, what is known as a heat medium used for a heat exchanger, a hot air blower, a boiler, a dryer, a heat generator, etc. for home or industrial use includes water, glycerin, the sodium hydroxide aqueous solution, and a freon system.

이러한 열매체중, 물은 30~200℃의 비교적 넓은 작동온도 범위에서 사용되고 비용이 저렴한 장점은 있으나, 장기간 사용하는 경우 이 열매체가 사용되는 금속제 파이프를 부식시키고, 끓는점이 높아 열전달속도가 다른 열매체들에 비하여 비교적 느리기 때문에, 열효율이 낮다고 하는 단점이 있으며, 또한, 글리세린이나 수산화나트륨 수용액 등은 냉동작동으로 사용 범위가 넓지 못한 단점이 있고, 가장 널리 사용되었던 프레온계의 열매체는 작동온도가 -10~140℃로서 비교적 저온의 열 전달매체에 적합하고 고온의 사용범위에는 적용 온도범위가 낮은 단점이 있으며, 인체에도 유해할 뿐만아니라 오존층 파괴 및 지구온난화에 영향을 주는 환경문제 때문에 최근에는 그 사용을 금지 또는 엄격히 제한하고 있다.In this heat medium, water is used at a relatively wide operating temperature range of 30 to 200 ° C. and it is inexpensive. However, when used for a long time, water is used to corrode metal pipes in which the heat medium is used. It is relatively slow compared with the disadvantages of low thermal efficiency, and also has a disadvantage in that the use range of glycerin or sodium hydroxide aqueous solution is not wide range by the freezing operation, the operating temperature of the most widely used freon system is -10 ~ 140 It is suitable for heat transfer medium of relatively low temperature, and the use of high temperature range has the disadvantage of low applied temperature range.It is not only harmful to human body but also recently banned due to environmental problems affecting ozone layer destruction and global warming. It is strictly limited.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 그 목적은 작동온도범위가 20~400℃로서 사용 폭이 넓어 가정용 또는 산업용의 열교환기, 온풍기, 보일러 내부장치, 건조기, 발열기 등의 열전달용으로 매우 적합하며, 상기 작동온도 범위내에서의 열전달속도가 빨라 열효율이 높은 것에 의해 실용성 및 경제성이 있고, 무독성이고 자연친화적이며 장기간 안정적으로 사용할 수 있는 열매체 조성물을 제공하는데 있다.The present invention is to solve the above problems of the prior art, the purpose is that the operating temperature range of 20 ~ 400 ℃ wide use range heat transfer of home or industrial heat exchanger, hot air heater, boiler internal device, dryer, heat generator, etc. The present invention is very suitable for use, and the heat transfer rate within the above operating temperature range is high, so that the thermal efficiency is high, thereby providing practical and economical, non-toxic, nature-friendly, and long-term stable composition.

상기의 목적을 달성하기 위한 본 발명은, 히트파이프에 사용되는 열매체 조성물로서, 디메틸에테르(dimethylether) 43~47중량%, 클로로포름(chloroform) 43~47중량% 및 에탄올(ethanol) 6~14중량%로 조성된 열매체 조성물에 특징이 있다.The present invention for achieving the above object, as a heat medium composition used in the heat pipe, 43 to 47% by weight of dimethylether, 43 to 47% by weight of chloroform and 6 to 14% by weight of ethanol It is characterized by the heat medium composition.

또한 본 발명은 상기 디메틸에테르 45중량%, 클로로포름 45중량% 및 에탄올 10중량%로 조성된 열매체 조성물에 특징이 있다.In addition, the present invention is characterized by a heat medium composition composed of 45% by weight of dimethyl ether, 45% by weight of chloroform and 10% by weight of ethanol.

또한 본 발명은 히트파이프에 사용되는 열매체 조성물로서, 디메틸에테르, 클로로포름 및 에탄올을 혼합하여 조성되고, 20~400℃의 작동온도 범위내에서 22초/1000㎜ 이내의 열전달속도를 가지는 열매체 조성물에 특징이 있다.In addition, the present invention is a heat medium composition used in the heat pipe, it is formed by mixing dimethyl ether, chloroform and ethanol, characterized in that the heat medium composition having a heat transfer rate of 22 seconds / 1000 mm within the operating temperature range of 20 ~ 400 ℃ There is this.

또한 본 발명은 상기 열매체 조성물에 실리콘오일(silicon oil)을 첨가하는 열매체 조성물에 특징이 있다.In addition, the present invention is characterized in the heat medium composition for adding silicone oil to the heat medium composition.

상기와 같은 본 발명의 열매체 조성물은, 진공상태의 금속제 파이프내에 액상으로 일정량 주입하여 사용되고, 파이프를 20℃이상으로 가열하게 되면, 파이프내에서 열을 흡수하여 기화되면서 폭발가스로 변환하고, 이로써 진공상태의 기압을 고압으로 변환하여 빠른 속도로 파이프 전체에 퍼지게 함으로써 열을 전도하게 된다.The heat medium composition of the present invention as described above is used by injecting a certain amount of liquid into a metal pipe in a vacuum state, and when the pipe is heated to 20 ° C. or more, it converts into an explosion gas while absorbing heat in the pipe and vaporizing it, thereby vacuuming. By converting the atmospheric pressure of the state into high pressure and spreading through the pipe at a high speed, it conducts heat.

주성분으로 사용된 디메틸에테르와 클로로포름은 끊는점이 낮고 휘발성이 높은 물질로서, 디메틸에테르는 끓는점이 -24.9℃이고, 수소원자 2개를 모두 메틸기 -CH3 로 치환한 구조를 가지며, 메탄올과 황산을 가열하면 생기는 것으로, 공업적으로는 촉매로 인산알루미늄을 사용하고 메탄올을 탈수하여 제조되고, 물, 에테르, 에탄올에 잘 녹는 특성이 있으며, 클로로포름은 끓는점이 61.2℃로서 디메틸에테르보다는 비교적 높고, 무색 투명한 액체이며, 에탄올이나 벤젠에는 녹지만, 물에는 잘 녹지 않는 특성이 있다.Dimethyl ether and chloroform used as main constituents have low breaking point and high volatility, and dimethyl ether has a boiling point of -24.9 ℃ and has two structures in which two hydrogen atoms are substituted by methyl group -CH 3 , and methanol and sulfuric acid are heated. This product is produced by industrially using aluminum phosphate as a catalyst and dehydrated with methanol. It is well soluble in water, ether and ethanol. It has a boiling point of 61.2 ° C, which is relatively higher than dimethyl ether, and is a colorless transparent liquid. It is soluble in ethanol and benzene, but insoluble in water.

상기 에탄올은 끓는점이 78.4℃이고, 상기 디메틸에테르와 클로로포름을 용해하여 혼합시키게 되며, 이물질에 의한 특성 변화를 방지하고, 클로로포름이 산화되어 맹독을 가지는 것을 저지하는 기능을 한다.The ethanol has a boiling point of 78.4 ° C., dissolves and mixes the dimethyl ether and chloroform, prevents changes in properties caused by foreign substances, and prevents chloroform from being oxidized and having poison.

이와 같은 디메틸에테르, 클로로포름 및 에탄올은 무독성이고 자연친화적인 물질로서, 특성이 쉽게 변화하지 않기 때문에, 장기간 성능을 유지하여 안정적 으로 사용할 수 있다. Such dimethyl ether, chloroform and ethanol are non-toxic and nature friendly materials, and since their properties do not change easily, they can be used stably for a long time.

한편, 실리콘 오일은 파이프의 내벽과의 윤활작용을 하기 위해 첨가되는 것으로, 열매체의 기화시 신속하게 파이프 내에 확산되게 하고, 액화시 파이프 내면에 표면장력에 의해 방울형태로 분산되는 것을 방지하여 회수율을 높이는 기능을 수행한다.On the other hand, silicone oil is added to lubricate the inner wall of the pipe, it is quickly diffused in the pipe during the vaporization of the heat medium, and during the liquefaction to prevent the dispersion in the form of droplets on the inner surface of the pipe by the surface tension when the recovery rate Height performs the function.

이하, 본 발명의 실시예를 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described.

<실시예1>Example 1

반응믹서기 내부를 증류수로 세정하고, 통상의 건조장치로 건조한 다음, 상기 반응 믹서기에 디메틸에테르 43중량%, 클로로포름 43중량%, 에탄올 14중량%를 각각 액상으로 투입하여 균일하게 혼합함으로써 열매체를 조성하였다.The inside of the reaction mixer was washed with distilled water, dried with a conventional drying device, and 43% by weight of dimethyl ether, 43% by weight of chloroform, and 14% by weight of ethanol were respectively added to the reaction mixture in a liquid phase to form a heat medium. .

열전달 변화의 실험은 스텐레스스틸 재질의 직경 24㎜, 길이 1,000㎜ 관에 열매체를 파이프 내의 전체 체적에 대하여 7체적% 넣고 양끝단을 밀봉하여 진공상태로 유지한 후, 열매체가 한쪽 끝단에 모이도록 파이프를 약간 경사지게 설치하고, 열매체가 있는 파이프의 한쪽 끝단을 30~400℃ 온도범위로 순차 가열하여 다른쪽 끝단에서의 열전달온도, 열전달율 및 도달시간을 측정하였고, 그 결과를 다음의 표1에 나타내었다.The experiment of heat transfer change was carried out in a stainless steel tube with a diameter of 24 mm and a length of 1,000 mm by placing the heat medium in 7% by volume of the total volume in the pipe, sealing both ends in a vacuum state, and then collecting the heat medium at one end. Was installed slightly inclined, and one end of the heat medium pipe was sequentially heated to a temperature range of 30 to 400 ° C., and the heat transfer temperature, heat transfer rate, and arrival time at the other end thereof were measured, and the results are shown in Table 1 below. .

표1에서와 같이 실시예1에 의해 조성된 열매체 조성물은, 끓는점이 20℃로서 난방용으로 사용하기에 적합하였으며, 가열온도에 따른 반대쪽에서의 열전달율이 85%이고, 도달시간은 18~22초로서 비교적 짧아 열효율이 양호한 것으로 나타났다. As shown in Table 1, the heat medium composition prepared in Example 1 had a boiling point of 20 ° C., which was suitable for use for heating. The heat transfer rate on the opposite side according to the heating temperature was 85%, and the reaching time was 18 to 22 seconds. It is relatively short, which shows good thermal efficiency.

<실시예2>Example 2

반응믹서기 내부를 증류수로 세정하고, 통상의 건조장치로 건조한 다음, 상기 반응 믹서기에 디메틸에테르 47중량%, 클로로포름 47중량%, 에탄올 6중량%을 각각 액상으로 투입하여 균일하게 혼합함으로써 열매체를 조성하였다.The inside of the reaction mixer was washed with distilled water, dried with a conventional drying apparatus, and 47% by weight of dimethyl ether, 47% by weight of chloroform, and 6% by weight of ethanol were respectively added to the reaction mixture in a liquid phase, thereby forming a heat medium. .

열전달 변화의 실험은 스텐레스스틸 재질의 직경 24㎜, 길이 1,000㎜ 관에 열매체를 파이프 내의 전체 체적에 대하여 7체적% 넣고 양끝단을 밀봉하여 진공상태로 유지한 후, 열매체가 한쪽 끝단에 모이도록 파이프를 약간 경사지게 설치하고, 열매체가 있는 파이프의 한쪽 끝단을 30~400℃ 온도범위로 순차 가열하여 다른쪽 끝단에서의 열전달온도, 열전달율 및 도달시간을 측정하였고, 그 결과를 다음의 표1에 나타내었다.The experiment of heat transfer change was carried out in a stainless steel tube with a diameter of 24 mm and a length of 1,000 mm by placing the heat medium in 7% by volume of the total volume in the pipe, sealing both ends in a vacuum state, and then collecting the heat medium at one end. Was installed slightly inclined, and one end of the heat medium pipe was sequentially heated to a temperature range of 30 to 400 ° C., and the heat transfer temperature, heat transfer rate, and arrival time at the other end thereof were measured, and the results are shown in Table 1 below. .

표1에서와 같이 실시예2에 의해 조성된 열매체 조성물은 끓는점이 25℃로서 난방용으로 사용하기에 적합하였으며, 가열온도에 따른 반대쪽에서의 열전달율이 85%이고, 도달시간이 18~22초로서 비교적 짧아 열효율이 양호한 것으로 나타났다. As shown in Table 1, the heat medium composition prepared in Example 2 had a boiling point of 25 ° C., which was suitable for use for heating. The heat transfer rate on the opposite side according to the heating temperature was 85%, and the reaching time was 18 to 22 seconds. Shorter thermal efficiency was shown.

<실시예3>Example 3

반응믹서기 내부를 증류수로 세정하고, 통상의 건조장치로 건조한 다음, 상기 반응 믹서기에 디메틸에테르 45중량%, 클로로포름 45중량%, 에탄올 10중량%을 각각 액상으로 투입하여 균일하게 혼합함으로써 열매체를 조성하였다.The inside of the reaction mixer was washed with distilled water, dried with a conventional drying apparatus, and 45% by weight of dimethyl ether, 45% by weight of chloroform, and 10% by weight of ethanol were respectively added to the reaction mixture in a liquid phase to form a heat medium. .

열전달 변화의 실험은 스텐레스스틸 재질의 직경 24㎜, 길이 1,000㎜ 관에 열매체를 파이프 내의 전체 체적에 대하여 7체적% 넣고 양끝단을 밀봉하여 진공상태로 유지한 후, 열매체가 한쪽 끝단에 모이도록 파이프를 약간 경사지게 설치하고, 열매체가 있는 파이프의 한쪽 끝단을 30~400℃ 온도범위로 순차 가열하여 다른쪽 끝단에서의 열전달온도, 열전달율 및 도달시간을 측정하였고, 그 결과를 다음의 표1에 나타내었다.The experiment of heat transfer change was carried out in a stainless steel tube with a diameter of 24 mm and a length of 1,000 mm by placing the heat medium in 7% by volume of the total volume in the pipe, sealing both ends in a vacuum state, and then collecting the heat medium at one end. Was installed slightly inclined, and one end of the heat medium pipe was sequentially heated to a temperature range of 30 to 400 ° C., and the heat transfer temperature, heat transfer rate, and arrival time at the other end thereof were measured, and the results are shown in Table 1 below. .

표1에서와 같이 실시예3에 의해 조성된 열매체 조성물은 끓는점이 22℃로서 난방용으로 사용하기에 가장 적합하였으며, 가열온도에 대한 반대쪽에서의 열전달율이 95%이고, 도달시간이 15~19초로서 짧아 열효율이 가장 양호한 것으로 나타났다.As shown in Table 1, the heat medium composition prepared in Example 3 had a boiling point of 22 ° C., which was most suitable for use for heating. The heat transfer rate on the opposite side to the heating temperature was 95%, and the arrival time was 15 to 19 seconds. Shorter thermal efficiency was found to be the best.

<비교예1>Comparative Example 1

반응믹서기 내부를 증류수로 세정하고, 통상의 건조장치로 건조한 다음, 상기 반응 믹서기에 디메틸에테르 42중량%, 클로로포름 42중량%, 에탄올 16중량%을 각각 액상으로 투입하여 균일하게 혼합함으로써 열매체를 조성하였다.The inside of the reaction mixer was washed with distilled water, dried with a conventional drying apparatus, and 42% by weight of dimethyl ether, 42% by weight of chloroform, and 16% by weight of ethanol were respectively added to the reaction mixture in a liquid phase to form a heat medium. .

열전달 변화의 실험은 스텐레스스틸 재질의 직경 24㎜, 길이 1,000㎜ 관에 열매체를 파이프 내의 전체 체적에 대하여 7체적% 넣고 양끝단을 밀봉하여 진공상태로 유지한 후, 열매체가 한쪽 끝단에 모이도록 파이프를 약간 경사지게 설치하고, 열매체가 있는 파이프의 한쪽 끝단을 30~400℃ 온도범위로 순차 가열하여 다른쪽 끝단에서의 열전달온도, 열전달율 및 도달시간을 측정하였고, 그 결과를 다음의 표1에 나타내었다.The experiment of heat transfer change was carried out in a stainless steel tube with a diameter of 24 mm and a length of 1,000 mm by placing the heat medium in 7% by volume of the total volume in the pipe, sealing both ends in a vacuum state, and then collecting the heat medium at one end. Was installed slightly inclined, and one end of the heat medium pipe was sequentially heated to a temperature range of 30 to 400 ° C., and the heat transfer temperature, heat transfer rate, and arrival time at the other end thereof were measured, and the results are shown in Table 1 below. .

표1에서와 같이 비교예1에 의해 조성된 열매체 조성물은 끓는점이 27℃로서 난방용으로 사용하기에는 비교적 높았으며, 가열온도에 따른 반대쪽에서의 열전달율이 75%이고, 도달시간이 20~24초로서 열효율이 낮아 실용성 및 경제성이 떨어지는 것으로 나타났다.As shown in Table 1, the heat medium composition prepared by Comparative Example 1 had a boiling point of 27 ° C., which was relatively high for use for heating. The heat transfer rate on the opposite side according to the heating temperature was 75%, and the reaching time was 20 to 24 seconds. This lowered the practicality and economic feasibility.

<비교예2>Comparative Example 2

반응믹서기 내부를 증류수로 세정하고, 통상의 건조장치로 건조한 다음, 상기 반응 믹서기에 디메틸에테르 48중량%, 클로로포름 48중량%, 에탄올 4중량%을 각각 액상으로 투입하여 균일하게 혼합함으로써 열매체를 조성하였다.The inside of the reaction mixer was washed with distilled water, dried with a conventional drying apparatus, and then, 48% by weight of dimethyl ether, 48% by weight of chloroform, and 4% by weight of ethanol were introduced into the liquid phase, and the mixture was uniformly mixed to form a heat medium. .

열전달 변화의 실험은 스텐레스스틸 재질의 직경 24㎜, 길이 1,000㎜ 관에 열매체를 파이프 내의 전체 체적에 대하여 7체적% 넣고 양끝단을 밀봉하여 진공상태로 유지한 후, 열매체가 한쪽 끝단에 모이도록 파이프를 약간 경사지게 설치하고, 열매체가 있는 파이프의 한쪽 끝단을 30~400℃ 온도범위로 순차 가열하여 다른쪽 끝단에서의 열전달온도, 열전달율 및 도달시간을 측정하였고, 그 결과를 다음의 표1에 나타내었다.The experiment of heat transfer change was carried out in a stainless steel tube with a diameter of 24 mm and a length of 1,000 mm by placing the heat medium in 7% by volume of the total volume in the pipe, sealing both ends in a vacuum state, and then collecting the heat medium at one end. Was installed slightly inclined, and one end of the heat medium pipe was sequentially heated to a temperature range of 30 to 400 ° C., and the heat transfer temperature, heat transfer rate, and arrival time at the other end thereof were measured, and the results are shown in Table 1 below. .

표1에서와 같이 비교예2에 의해 조성된 열매체 조성물은 끓는점이 18℃로서 난방용으로 사용하기에는 비교적 낮아 부적합하였으며, 가열온도에 따른 반대쪽에서의 열전달율이 75%이고, 도달시간이 20~24초로서 열효율이 낮아 실용성 및 경제성이 떨어지는 것으로 나타났다.As shown in Table 1, the heat medium composition prepared by Comparative Example 2 was relatively inadequate to be used for heating, having a boiling point of 18 ° C., and the heat transfer rate at the opposite side according to the heating temperature was 75%, and the reaching time was 20 to 24 seconds. Due to the low thermal efficiency, the practicality and economical efficiency were inferior.

<표1><Table 1>

구분division 끓는점(℃)Boiling Point (℃) 가열온도(℃)Heating temperature (℃) 열전달온도(℃)Heat transfer temperature (℃) 열전달율(%)Heat transfer rate (%) 도달시간(초)Reach time (seconds) 실시예1Example 1 2020 3030 25.525.5 8585 1818 100100 8585 8585 1919 200200 170170 8585 2020 300300 255255 8585 2121 400400 340340 8585 2222 실시예2Example 2 2525 3030 25.525.5 8585 1818 100100 8585 8585 1919 200200 170170 8585 2020 300300 255255 8585 2121 400400 340340 8585 2222 실시예3Example 3 2222 3030 28.528.5 9595 1515 100100 9595 9595 1616 200200 190190 9595 1717 300300 285285 9595 1818 400400 380380 9595 1919 비교예1Comparative Example 1 2727 3030 22.522.5 7575 2020 100100 7575 7575 2121 200200 150150 7575 2222 300300 225225 7575 2323 400400 300300 7575 2424 비교예2Comparative Example 2 1818 3030 22.522.5 7575 2020 100100 7575 7575 2121 200200 150150 7575 2222 300300 225225 7575 2323 400400 300300 7575 2424

또한, 표2는 실시예1 내지 실시예3에 의한 열매체 조성물에 대하여 실리콘 오일을 2∼3중량% 첨가한 경우의 열전달시간 및 액상회수율을 나타낸 것으로, 실리콘 오일은 열매체와 파이프 사이에 윤활작용을 하여, 가열에 의해 열매체가 기화할 때, 파이프 내면과의 윤활작용으로 확산을 더욱 빠르게 하고, 또한 온도하강에 의한 액화시에도 파이프 내면과의 윤활작용으로 방울짐이 방지되어 액상 회수율이 높게 되며, 이로써 2차가열시 열매체의 손실을 최소화할 수 있다. 따라서 표2에 나타낸 바와 같이 실시예1 내지 실시예3 모두 실리콘 오일을 첨가하지 않았을 때보 다 도달시간이 가열온도에 따라 4.54~7.14%단축되고 액상회수율도 80%에서 90%로 높아져 열효율이 더욱 향상되는 것으로 나타났다. In addition, Table 2 shows the heat transfer time and the liquid recovery rate when 2 to 3% by weight of the silicone oil is added to the heat medium composition according to Examples 1 to 3, and the silicone oil has a lubricating action between the heat medium and the pipe. Therefore, when the heat medium vaporizes by heating, the diffusion is made faster by lubrication with the inner surface of the pipe, and during the liquefaction due to temperature drop, lubrication with the inner surface of the pipe is prevented from dropping, so that the liquid recovery rate is high. This can minimize the loss of the heat medium during the secondary heating. Therefore, as shown in Table 2, in all of the Examples 1 to 3, the arrival time was shortened by 4.54 ~ 7.14% according to the heating temperature and the liquid recovery rate was increased from 80% to 90%, compared to when no silicone oil was added. Appeared to be.

<표2><Table 2>

구분division 가열온도(℃)Heating temperature (℃) 실리콘오일첨가시 도달시간(초)Reach time (seconds) when silicone oil is added 실리콘첨가시 액상회수율(%)Liquid recovery rate when adding silicon (%) 실리콘미첨가시 회수율Recovery rate without silicon 실시예1Example 1 3030 1717 9090 8080 100100 1818 9090 8080 200200 1919 9090 8080 300300 2020 9090 8080 400400 2121 9090 8080 실시예2Example 2 3030 1717 9090 8080 100100 1818 9090 8080 200200 1919 9090 8080 300300 2020 9090 8080 400400 2121 9090 8080 실시예3Example 3 3030 1414 9090 8080 100100 1515 9090 8080 200200 1616 9090 8080 300300 1717 9090 8080 400400 1818 9090 8080

본 발명은 지금까지 설명한 상기 실시예에 한정되는 것은 아니고, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The present invention is not limited to the above-described embodiments, and various changes, modifications, or substitutions may be made by those skilled in the art within the technical spirit and claims of the present invention, and such embodiments are the present invention. It should be understood to fall within the scope of.

이상에서 설명한 바와 같이, 본 발명에 따른 열매체 조성물에 의하면, 끓는점이 낮고 휘발성이 높은 디메틸에테르, 클로로포름 및 에탄올을 주성분으로 하고, 또한 실리콘 오일을 더욱 첨가하여 조성하는 것에 의해 특히 20~400℃ 온도범 위에서 사용되는 가정용 또는 산업용의 열교환기, 온풍기 보일러 내부장치, 건조기 및 발열기 등의 열매체로서 매우 적합하며, 상기 사용온도범위 내에서의 열전달속도가 빨라 열효율이 높게 됨으로서 실용성 및 경제성면에서 우수하다. 또한 무독성이고 자연친화적이며 특성변화가 적어 장기간 성능을 유지하여 안정적으로 사용할 수 있는 유용한 발명인 것이다.As described above, according to the heat medium composition according to the present invention, a low boiling point and high volatility are mainly composed of dimethyl ether, chloroform and ethanol as the main components, and by further adding silicone oil, the temperature range is particularly high. It is very suitable as a heat medium for home or industrial heat exchanger, hot air boiler internal device, dryer and heat generator used in the above. In addition, it is a useful invention that can be used stably by maintaining long-term performance because it is non-toxic, nature-friendly, and there is little property change.

Claims (5)

히트파이프에 사용되는 열매체 조성물로서, 디메틸에테르 43~47중량%, 클로로포름 43~47중량% 및 에탄올 6~14중량%로 조성됨을 특징으로 하는 열매체 조성물.The heat medium composition used for a heat pipe, Comprising: 43-47 weight% of dimethyl ether, 43-47 weight% of chloroform, and 6-14 weight% of ethanol, The heat medium composition characterized by the above-mentioned. 제 1 항에 있어서, 상기 디메틸에테르는 45중량%, 클로로포름은 45중량%, 에탄올은 10중량%인 것을 특징으로 하는 열매체 조성물.The heat medium composition according to claim 1, wherein the dimethyl ether is 45% by weight, chloroform is 45% by weight, and ethanol is 10% by weight. 제 1 항에 있어서, 상기 열매체 조성물에 대하여 실리콘오일 2∼3중량%를 첨가하는 것을 특징으로 하는 열매체 조성물.The heat medium composition according to claim 1, wherein 2-3% by weight of silicone oil is added to the heat medium composition. 히트파이프에 사용되는 열매체 조성물로서, 디메틸에테르, 클로로포름 및 에탄올을 혼합하여 조성되고, 20~400℃의 작동온도 범위내에서 22초/1000㎜ 이내의 열전달속도를 가지는 것을 특징으로 하는 열매체 조성물.A heat medium composition for use in heat pipes, which is formed by mixing dimethyl ether, chloroform and ethanol, and has a heat transfer rate within 22 seconds / 1000 mm within an operating temperature range of 20 to 400 ° C. 제 4 항에 있어서, 상기 열매체 조성물에 실리콘오일을 첨가하는 것을 특징으로 하는 열매체 조성물.The heat medium composition according to claim 4, wherein silicone oil is added to the heat medium composition.
KR1020060008510A 2006-01-26 2006-01-26 Heating medium composition KR100654930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060008510A KR100654930B1 (en) 2006-01-26 2006-01-26 Heating medium composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060008510A KR100654930B1 (en) 2006-01-26 2006-01-26 Heating medium composition

Publications (1)

Publication Number Publication Date
KR100654930B1 true KR100654930B1 (en) 2006-12-06

Family

ID=37732418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060008510A KR100654930B1 (en) 2006-01-26 2006-01-26 Heating medium composition

Country Status (1)

Country Link
KR (1) KR100654930B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048341A (en) * 2013-10-28 2015-05-07 케이솔 주식회사 Polymer catalyst for boiler heating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048341A (en) * 2013-10-28 2015-05-07 케이솔 주식회사 Polymer catalyst for boiler heating unit
KR101632475B1 (en) * 2013-10-28 2016-06-21 케이솔 주식회사 Polymer catalyst for boiler heating unit

Similar Documents

Publication Publication Date Title
US10704428B2 (en) Heat transfer process
ES2676434T3 (en) Heat transfer compositions that have improved miscibility with the lubricating oil
JP2009508978A (en) Working fluid, ORC process and ORC apparatus for ORC process
KR890000861A (en) Ejecta Type Steam Compression Refrigeration System
KR100654930B1 (en) Heating medium composition
CN102965081B (en) Refrigerant and preparation method thereof
WO2007114497A1 (en) Working liquid for latent heat transport apparatus and method of operating latent heat transport apparatus
KR20100128488A (en) Heating medium composition
Wang et al. Vapor-liquid equilibrium for dimethyl ether and three imidazolium ionic liquids as working pairs in absorption-refrigeration cycle
BR0213142A (en) Method and apparatus for the efficient generation of mechanical energy, power or torque, and steam engine.
JPH0192286A (en) Working medium mixture
JPH054596B2 (en)
KR102527818B1 (en) Heating medium including latent heat properties
KR100868675B1 (en) Heat pipe and its manufacturing method
CN114196382B (en) Composition containing 1, 3-hexafluoroisopropyl methyl ether and application thereof
JPS59107149A (en) Solar energy collector
CN1082536C (en) High temperature high effect thermal conductive high polymer medium
JP2005009752A (en) Heat pipe
RU2450229C2 (en) Heat pipe
JPH08503461A (en) Azeotropic composition comprising difluoromethane, pentafluoroethane and 1,1,1-trifluoroethane
Guluzade et al. IONIC LIQUIDS AND ALCOHOL SOLUTIONS AS WORKING FLUIDS IN ENERGY SYSTEMS
KR20040003449A (en) Composition for transmitting heat
KR20070046232A (en) Composition for transmitting heat
Sun et al. Numerical simulation study on heat pipe cooling system of proton exchange membrane fuel cell
Tomassetti et al. Thermal Properties of Alternative Phase Change Materials for Solar Thermal Applications.

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101129

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee