KR100648407B1 - Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously - Google Patents

Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously Download PDF

Info

Publication number
KR100648407B1
KR100648407B1 KR1020050053561A KR20050053561A KR100648407B1 KR 100648407 B1 KR100648407 B1 KR 100648407B1 KR 1020050053561 A KR1020050053561 A KR 1020050053561A KR 20050053561 A KR20050053561 A KR 20050053561A KR 100648407 B1 KR100648407 B1 KR 100648407B1
Authority
KR
South Korea
Prior art keywords
gas
protons
energy
concentrate
cavity
Prior art date
Application number
KR1020050053561A
Other languages
Korean (ko)
Inventor
김상욱
허민구
이민용
황원택
양승대
채종서
홍봉환
유국현
Original Assignee
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구소 filed Critical 한국원자력연구소
Priority to KR1020050053561A priority Critical patent/KR100648407B1/en
Application granted granted Critical
Publication of KR100648407B1 publication Critical patent/KR100648407B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions

Abstract

A method and a composite target unit for simultaneously producing both C-11 and F-18 are provided to effectively produce the C-11 and F-18 by generating nuclear reaction between protons and N2 gas and an H218O condensation material. A composite target unit for simultaneously producing both C-11 and F-18 includes a receiving portion(21), a gas target unit(20), and a condensation material target unit(40). N2 gas is contained in the receiving portion, which is arranged on an illumination path of protons. The gas target unit includes the inlet/outlet holes formed at both sides of the receiving portion for ingress and discharge of protons to and from the receiving portion. An H218O condensation material is contained in the condensation material target unit, which includes a cavity unit having cavities arranged on the illumination path of the protons. The condensation material target unit is coupled with the gas target unit.

Description

탄소-11 및 불소-18을 동시에 생산하기 위한 복합 표적유니트 및 복합 생산방법{Tandem target unit and multiple production method for producing C-11 and F-18 simultaneously}Tandem target unit and multiple production method for producing C-11 and F-18 simultaneously}

도 1은 종래의 11C 생산용 표적장치의 일례를 개략적으로 나타낸 도면이다. 1 is a view schematically showing an example of a conventional 11 C production target device.

도 2는 종래의 18F 생산용 표적장치의 일례를 개략적으로 나타낸 도면이다. 2 is a view schematically showing an example of a conventional 18 F production target device.

도 3은 본 발명의 일 실시예에 따른 11C 및 18F을 동시에 생산하기 위한 복합 표적유니트를 개략적으로 나타낸 단면도이다. 3 is a cross-sectional view schematically showing a composite target unit for simultaneously producing 11 C and 18 F according to an embodiment of the present invention.

도 4는 도 3에 도시된 복합 표적유니트를 그 길이방향에 수직인 평면으로 절단한 개략적인 분리 사시도이다. 4 is a schematic exploded perspective view of the composite target unit shown in FIG. 3 cut in a plane perpendicular to its longitudinal direction.

도 5는 도 3에 도시된 에너지 감쇄기의 분리 사시도이다. 5 is an exploded perspective view of the energy attenuator shown in FIG. 3.

도 6는 양성자와 N2 기체간의 핵반응의 정도 및 양성자의 에너지와의 상관관계를 개략적으로 나타낸 그래프이다. 6 is a graph schematically showing the relationship between the degree of nuclear reaction between protons and N 2 gas and the energy of protons.

도 7은 양성자와 H2 18O 농축물간의 핵반응의 정도 및 양성자의 에너지와의 상관관계를 개략적으로 나타낸 그래프이다.7 is a graph schematically showing the relationship between the degree of nuclear reaction between the proton and the H 2 18 O concentrate and the energy of the proton.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10...플랜지부재10 ... Flange member

20...가스 표적장치 21...수용부20.Gas targeting device 21 ... Receiving part

22,34...유입구 23,35...배출구22,34 ... Inlet 23,35 ... Outlet

24...공간부 25,82...유입유로24 ... Space 25,82 ... Inflow channel

26,83...배출유로 30...에너지 감쇄기26,83 Exhaust Euro 30 Energy Attenuator

31...전면판 32...후면판31.Front plate 32 ... Front plate

33...공간부 40...농축물 표적장치33 Spatial section 40 Concentration target device

50...캐비티부재 51...캐비티50 ... cavity member 51 ... cavity

60...전면 보강부재 61...전면 박막60 ... front reinforcing member 61 ... front thin film

62,72...관통공 63...전면 격자부분62,72 through-hole 63 ... front grating

70...후면 보강부재 71...후면 박막70.Rear reinforcement 71Rear thin film

73...후면 격자부분 80...냉각부재73. Rear lattice section 80 Cooling element

81...공간부 100...복합 표적유니트81 Space unit 100 Target unit

본 발명은 11C 및 18F을 동시에 생산하기 위한 복합 표적유니트 및 복합 생산방법에 관한 것이다.The present invention relates to a complex target unit and a complex production method for producing 11 C and 18 F simultaneously.

양전자 방출 단층촬영장치(Positron Emission Tomography)는 종양 및 다양한 질병의 조기 진단에 광범위하게 활용되고 있다. Positron emission tomography is widely used for early diagnosis of tumors and various diseases.

최근 들어서는 양전자 방출 단층촬영(Positron Emission Tomography)을 이용한 진단의 범위가 확대되고 있으며 이에 따라 다양한 양전자 방출 동위원소가 표지된 양전자 방출 방사성 의약품이 개발되고 있다. 이러한 방사성 의약품중에서 가장 대표적인 것으로는 암 진단에 사용되는 FDG (2-[18F]Fluoro-2-deoxy-D-glucose) 및 암 종류 중 뇌종양의 진단에 유용한 L-[11C-methyl]methionine 등이 있다. Recently, the scope of diagnosis using Positron Emission Tomography has been expanded, and accordingly, positron emitting radiopharmaceuticals labeled with various positron emitting isotopes have been developed. The most representative of these radiopharmaceuticals include FDG (2- [ 18 F] Fluoro-2-deoxy-D-glucose), which is used to diagnose cancer, and L- [ 11 C-methyl] methionine, which is useful for the diagnosis of brain tumor among cancer types. There is this.

한편, 양전자 방출 단층촬영용 동위원소로는 18F, 11C, 15O 및 13N 등이 있다. 이러한 동위원소들 중 15O 및 13N는 반감기가 10분 정도로 짧아서 활용에 제약이 있으나, 18F 및 11C는 그 반감기가 각각 20.4분, 109.7분으로 15O 및 13N 보다 길어서 다양한 화합물을 구성하는 데에 사용되고 있다. Isotopes for positron emission tomography, on the other hand, include 18 F, 11 C, 15 O and 13 N. Of these isotopes, 15 O and 13 N have a short half-life of 10 minutes, which limits their use. However, 18 F and 11 C have a half-life of 20.4 minutes and 109.7 minutes, respectively, which are longer than 15 O and 13 N to form various compounds. It is used to.

상술한 바와 같이 활용범위가 넓은 18F 및 11C를 생산하기 위해서는 18F 및 11C를 생산하기 위한 표적장치가 각각 별개로 구비되어야 하는데, 도 1 및 도 2에는 종래의 표적장치의 일례가 도시되어 있다. As described above, in order to produce a wide range of 18 F and 11 C, a target device for producing 18 F and 11 C should be separately provided. FIGS. 1 and 2 show an example of a conventional target device. It is.

도 1에 도시되어 있는 11C를 생산하기 위한 표적장치(200)는 N2 기체가 수용되는 수용부(210)와, 상기 N2 기체와 양전자간의 핵반응시 발생되는 열을 냉각시키기 위해 냉각수가 유동하는 공간부(220)와, 상기 냉각수가 유입 및 배출되는 유입구(221) 및 배출구(222)를 가진다. The target device 200 for producing 11 C shown in FIG. 1 includes a receiving portion 210 in which N 2 gas is accommodated, and a coolant flows to cool heat generated during nuclear reaction between the N 2 gas and a positron. And a space portion 220 and an inlet 221 and an outlet 222 through which the coolant is introduced and discharged.

이 표적장치(200)에 있어서는, 상기 수용부(210)에 N2 기체를 충전하고, 별도의 펌핑장치(미도시)를 구동하여 상기 냉각수가 상기 유입구(221)로 유입되고 상기 배출구(222)로 배출되도록 함으로써 상기 공간부(220)를 순환하도록 하게 한다. 그 후에, 사이클로트론 등과 같은 입자가속장비로부터 양전자 빔을 발생시켜 상기 수용부(210)에 수용되어 있는 N2 기체와 상기 양전자간의 핵반응을 유발시키고, 그 결과로서 11C가 생산되게 된다. In the target device 200, the receiving portion 210 is filled with N 2 gas, and driven by a separate pumping device (not shown), the cooling water flows into the inlet 221 and the outlet 222 By circulating the space 220 by being discharged to. Thereafter, a positron beam is generated from a particle acceleration device such as cyclotron to cause a nuclear reaction between the N 2 gas contained in the accommodating portion 210 and the positron, and as a result, 11 C is produced.

한편, 도 2에 도시되어 있는 18F를 생산하기 위한 표적장치(300)는 H2 18O이 95%이상 농축되어 있는 H2O인 H2 18O 농축물이 수용되며 일측이 개방되어 있는 캐비티(311) 및 냉각수가 유동하는 공간부(312)를 가지는 캐비티부재(310)와, 상기 캐비티부재(310)의 개방된 부분을 덮도록 배치되는 박막(320)과, 상기 박막(320)으로부터 전방으로 이격되게 배치되며 상기 박막(320)과 함께 헬륨이 유동하는 공간부(325)를 형성하는 다른 박막(330)을 구비한다. On the other hand, the target device 300 for producing 18 F shown in FIG. 2 is a H 2 18 O concentrate containing H 2 O in which H 2 18 O is concentrated at least 95%, and the cavity is open at one side. 311 and a cavity member 310 having a space portion 312 through which cooling water flows, a thin film 320 disposed to cover an open portion of the cavity member 310, and a front side from the thin film 320. The other thin film 330 is spaced apart from each other to form a space 325 in which helium flows together with the thin film 320.

이 표적장치(300)에 있어서는, 상기 캐비티(311)에 H2 18O 농축물을 채우고, 별도의 펌핑장치를 구동하여 헬륨이 도 2에 화살표로 도시된 방향으로 유입 및 배출됨으로써 상기 공간부(325)를 유동하도록 할 뿐만 아니라 냉각수가 상기 공간부(312)를 유동하도록 하여, 상기 H2 18O 농축물과 양전자간의 핵반응시 발생되는 열을 냉각시킬 수 있는 상태로 만든다. 그 후에, 사이클로트론 등과 같은 입자가속장비에서 발생된 양성자를 캐비티(311)에 수용되어 있는 H2 18O 농축물을 향해 조사시키면, 양성자가 박막들(320,330)을 통과하여 H2 18O 농축물과 핵반응하게 되고, 이러한 핵반응에 의해 18F이 생산되게 된다. In the targeting apparatus 300, the cavity 311 is filled with H 2 18 O concentrate, and a separate pumping device is driven to induce and discharge helium in the direction indicated by the arrow in FIG. In addition to allowing 325 to flow, cooling water flows into the space 312, thereby making it possible to cool the heat generated during the nuclear reaction between the H 2 18 O concentrate and the positron. Thereafter, when the protons generated in the particle acceleration device such as cyclotron are irradiated toward the H 2 18 O concentrate contained in the cavity 311, the protons pass through the thin films 320 and 330 to concentrate the H 2 18 O concentrate. Nuclear reactions result in the production of 18 F.

그런데, 상술한 바와 같이 종래에는 11C을 생산하기 위한 표적장치(200)와 18F을 생산하기 위한 표적장치(300)를 별개로 제작하고 각 표적장치(200,300)마다 양성자 빔을 조사하여 11C 및 18F을 각각 생산하거나, 양성자 빔을 각 표적장치(200,300)마다 설치하는 것이 가능하지 않은 경우에는 예컨대 18F을 생산하기 위한 표적장치(300)에 양성자 빔을 조사하여 18F을 생산한 후에 18F을 생산하기 위한 표적장치(300)를 11C을 생산하기 위한 표적장치(200)로 교체하여 11C을 생산하였다. 따라서, 종래에는 11C 및 18F을 생산하는데 있어서 각 표적장치(200,300)를 구성해야 했으며, 11C 및 18F을 생산하는데 많은 시간이 소요되었을 뿐만 아니라 표적장치를 교체하는 과정에서 상당량의 방사능 피폭을 피할 수 없다는 문제점이 있었다. However, as described above, the target device 200 for producing 11 C and the target device 300 for producing 18 F are separately manufactured, and the proton beam is irradiated for each target device 200, 300 to produce 11 C. and after producing 18 F, respectively, or, if it is not possible to provide a proton beam for each target device (200 300) includes, for example by examining the proton beam to the target device (300) for producing 18 F produces 18 F 11 C was produced by replacing the target device 300 for producing 18 F with the target device 200 for producing 11 C. Therefore, conventionally, 11 C and according to the production of 18 F had to configure each of the target devices (200,300), 11 C and 18 F to produce in time as this is required as a significant amount of radiation exposure in the process of replacing the target device There was a problem that can not be avoided.

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목 적은, 11C 및 18F을 동시에 생산하기 위한 복합 표적유니트를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a composite target unit for simultaneously producing 11 C and 18 F.

또한, 본 발명의 다른 목적은 11C 및 18F을 동시에 생산하기 위한 복합 생산방법을 제공하는 것이다. Another object of the present invention is to provide a complex production method for producing 11 C and 18 F simultaneously.

상기 목적을 달성하기 위해, 본 발명에 따른 복합 표적유니트는 일방향으로 조사되는 양성자와 N2 기체간의 핵반응에 의해 11C을 생산함과 동시에 상기 양성자와 H2 18O 농축물간의 핵반응에 의해 18F을 생산하기 위한 복합 표적유니트에 있어서, 상기 N2 기체가 수용되며 상기 양성자의 조사 경로상에 배치되는 수용부와, 상기 수용부로의 상기 양성자의 유입 및 상기 수용부내의 양성자의 배출을 위해 상기 수용부의 양측에 각각 형성되어 있는 유입구 및 배출구를 가지는 가스 표적장치; 및 상기 H2 18O 농축물이 수용되며 상기 가스 표적장치의 배출구를 통과한 양성자의 조사 경로상에 배치되는 캐비티를 가지는 캐비티부재를 포함하며, 상기 가스 표적장치에 결합되는 농축물 표적장치;를 구비하는 것을 특징으로 한다. In order to achieve the above object, the complex target unit according to the present invention produces 11 C by nuclear reaction between protons and N 2 gases irradiated in one direction and 18 F by nuclear reaction between the protons and H 2 18 O concentrate. In a composite target unit for producing a, the N 2 gas is contained in the receiving portion disposed on the irradiation path of the proton, and the receiving for the inlet of the proton into the receiving portion and the discharge of the proton in the receiving portion A gas target device having inlets and outlets respectively formed on both sides of the unit; And a cavity member having a cavity containing the H 2 18 O concentrate and having a cavity disposed on an irradiation path of protons passing through an outlet of the gas targeting device, the concentrate targeting device being coupled to the gas targeting device. It is characterized by including.

또한, 상기 다른 목적을 달성하기 위해, 본 발명에 따른 복합 생산방법은 일방향으로 조사되는 양성자와 N2 기체간의 핵반응에 의해 11C을 생산함과 동시에 상 기 양성자와 H2 18O 농축물간의 핵반응에 의해 18F을 생산하기 위한 복합 생산 방법에 있어서, 상기 N2 기체가 수용되는 수용부를 가지는 가스 표적장치와, 상기 H2 18O 농축물이 수용되는 캐비티를 가지는 농축물 표적장치를 상기 양성자의 조사 경로상에 순차적으로 배열하는 배열단계; 상기 가스 표적장치의 수용부에 상기 N2 기체를 충전하며, 상기 농축물 표적장치의 캐비티에 상기 H2 18O 농축물을 충전하는 충전단계; 11C 및 18F를 동시에 생산할 수 있는 양성자의 에너지를 계산하는 에너지 계산단계; 및 상기 에너지 계산단계에서 계산된 에너지를 가지는 양성자를 상기 가스 표적장치와 농축물 표적장치로 조사하여, 상기 양성자가 순차적으로 상기 N2 기체 및 H2 18O 농축물과 핵반응하여 11C 및 18F를 동시에 생산하는 생산단계;를 구비하는 것을 특징으로 한다. In addition, in order to achieve the above another object, the composite production method according to the present invention produces 11 C by the nuclear reaction between the protons and N 2 gas irradiated in one direction and at the same time the nuclear reaction between the protons and H 2 18 O concentrate In the composite production method for producing 18 F by the gas target apparatus having a receiving portion for receiving the N 2 gas, and a concentrate targeting apparatus having a cavity in which the H 2 18 O concentrate is accommodated. An arrangement step of sequentially arranging the irradiation path; Filling the N 2 gas into a receiving portion of the gas targeting device and filling the H 2 18 O concentrate into a cavity of the concentrate targeting device; An energy calculation step of calculating energy of protons capable of producing 11 C and 18 F simultaneously; And irradiating protons having the energy calculated in the energy calculation step with the gas targeting device and the concentrate targeting device, wherein the protons are sequentially nuclear reacted with the N 2 gas and the H 2 18 O concentrate to produce 11 C and 18 F. It characterized in that it comprises a production step to produce at the same time.

이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 일 실시예에 따른 11C 및 18F을 동시에 생산하기 위한 복합 표적유니트를 개략적으로 나타낸 단면도이고, 도 4는 도 3에 도시된 복합 표적유니트를 그 길이방향에 수직인 평면으로 절단한 개략적인 분리 사시도이며, 도 5는 도 3에 도시된 에너지 감쇄기의 분리 사시도이며, 도 6은 양성자와 N2 기체간의 핵반응의 정도 및 양성자의 에너지와의 상관관계를 개략적으로 나타낸 그래프이며, 도 7은 양성자와 H2 18O 농축물간의 핵반응의 정도 및 양성자의 에너지와의 상관관계를 개략적으로 나타낸 그래프이다.3 is a cross-sectional view schematically showing a composite target unit for simultaneously producing 11 C and 18 F according to an embodiment of the present invention, Figure 4 is a plane perpendicular to the longitudinal direction of the composite target unit shown in FIG. FIG. 5 is an exploded perspective view of the energy attenuator shown in FIG. 3, and FIG. 6 is a graph schematically showing the degree of nuclear reaction between protons and N 2 gas and the correlation between proton energies. 7 is a graph schematically showing the relationship between the degree of nuclear reaction between the proton and the H 2 18 O concentrate and the energy of the proton.

도 3 내지 도 7을 참조하면, 본 실시예의 복합 표적유니트(100)는 일방향으로 조사되는 양성자와 N2 기체간의 핵반응(14N(p,α)11C)에 의해 11C을 생산함과 동시에 상기 양성자와 H2 18O 농축물간의 핵반응 (18O(p,n)18F)에 의해 18F을 생산하기 위한 것이다. 상기 복합 표적유니트(100)는 플랜지부재(10)와, 가스 표적장치(20)와, 에너지 감쇄기(30)와, 농축물 표적장치(40)를 구비한다. 3 to 7, the composite target unit 100 of the present embodiment produces 11 C by nuclear reaction ( 14 N (p, α) 11 C) between protons and N 2 gases irradiated in one direction. To produce 18 F by nuclear reaction ( 18 O (p, n) 18 F) between the proton and the H 2 18 O concentrate. The composite target unit 100 includes a flange member 10, a gas target device 20, an energy attenuator 30, and a concentrate target device 40.

상기 플랜지부재(10)는 사이클로트론 등과 같은 입자가속장비의 양성자 빔 라인과 연결되어 있다. The flange member 10 is connected to the proton beam line of the particle acceleration device, such as cyclotron.

상기 가스 표적장치(20)는 상기 양성자와 N2 기체간의 핵반응에 의해 11C을 생산하기 위한 것이다. 상기 가스 표적장치(20)는 알루미늄 등과 같은 금속으로 이루어져 있다. 상기 가스 표적장치(20)는 수용부(21)와, 유입구(22)와, 배출구(23)와, 공간부(24)와, 유입유로(25)와, 배출유로(26)를 구비한다. The gas targeting device 20 is for producing 11 C by nuclear reaction between the protons and the N 2 gas. The gas targeting device 20 is made of a metal such as aluminum. The gas targeting apparatus 20 includes a receiving portion 21, an inlet 22, an outlet 23, a space 24, an inlet 25, and an outlet 26.

상기 수용부(21)에는 상기 N2 기체가 수용되어 있으며, 그 수용부(21)는 상기 양성자의 조사 경로상에 배치되어 있다. 상기 수용부(21)는 상기 양성자의 조 사 방향으로 길게 형성되어 있다. 상기 수용부(21)의 단면, 즉 상기 양성자의 조사 방향에 대해 수직인 평면에 대한 단면은 원형으로 이루어져 있다. 상기 수용부(21)의 단면적은 상기 유입구(22)로부터 상기 배출구(23)쪽으로 갈수록 커지도록 형성되어 있다. 이와 같이 상기 수용부(21)의 단면적의 크기가 변화하도록 형성되어 있으므로, 비록 상기 양성자가 일방향으로 진행함에 따라 그 일방향에 수직인 평면에 대한 단면적이 증가하는 특성을 가지고 있더라도 상기 양성자는 에너지 손실을 최소화하면서 상기 핵반응할 수 있게 된다. The N 2 gas is accommodated in the accommodating portion 21, and the accommodating portion 21 is disposed on the irradiation path of the proton. The accommodating part 21 is formed long in the irradiation direction of the said proton. The cross section of the accommodating portion 21, that is, the cross section with respect to the plane perpendicular to the irradiation direction of the protons, is circular. The cross-sectional area of the accommodating portion 21 is formed to increase from the inlet 22 toward the outlet 23. Since the size of the cross-sectional area of the accommodating portion 21 is changed as described above, even if the proton has a characteristic that the cross-sectional area of the plane perpendicular to the one direction increases as the proton proceeds in one direction, the proton loses energy. The nuclear reaction can be minimized.

상기 유입구(22) 및 배출구(23)는 상기 수용부(21)의 양측에 각각 형성되어 있다. 상기 양성자는 상기 유입구(22)를 통해서 상기 수용부(21)로 유입되며, 상기 수용부(21)로 유입된 상기 양성자는 상기 배출구(23)를 통해 배출된다. The inlet 22 and the outlet 23 are formed at both sides of the receiving portion 21, respectively. The protons are introduced into the receiving portion 21 through the inlet 22, and the protons introduced into the receiving portion 21 are discharged through the outlet 23.

상기 공간부(24)는 상기 양성자와 N2 기체간의 핵반응시 발생되는 열을 냉각시키기 위해 냉각수가 순환하는 부분이다. The space 24 is a portion in which cooling water circulates to cool heat generated during nuclear reaction between the protons and the N 2 gas.

상기 유입유로(25)를 통해서, 상기 냉각수가 상기 공간부로 공급되며, 상기 배출유로(26)를 통해서, 상기 공간부로 공급된 냉각수가 배출된다. 즉, 상기 냉각수는 펌핑장치(미도시)에 의해 상기 유입유로(25)를 통해 유입되어 후술하는 에너지 감쇄기의 공간부(33)를 지나 상기 공간부(24)로 공급되어 순환한 후에 상기 배출유로(26)를 통해 흘러 나가게 되며, 이에 따라 상기 핵반응시 가열된 N2 기체가 냉각되게 된다. The cooling water is supplied to the space portion through the inflow passage 25, and the cooling water supplied to the space portion is discharged through the discharge passage 26. That is, the cooling water flows through the inflow passage 25 by a pumping device (not shown), passes through the space portion 33 of the energy attenuator to be described later, and is supplied to the space portion 24 for circulation. It flows out through (26), so that the heated N 2 gas is cooled during the nuclear reaction.

상기 에너지 감쇄기(30)는 상기 가스 표적장치의 유입구(22)와 플랜지부재 (10) 사이에 설치되어 있다. 상기 플랜지부재(10) 및 가스 표적장치의 유입구(22)에는 각각 공지의 오링(O-ring)(미도시)이 설치되어 있으므로, 상기 에너지 감쇄기(30)는 상기 가스 표적장치의 유입구(22) 및 플랜지부재(10)와 밀폐된 상태로 결합된다. 상기 양성자는 사이클로트론 등과 같은 입자가속장비로부터 발생되며, 그 발생된 양성자는 일반적으로 고에너지를 가지고 있어서, N2 기체와 핵반응을 잘 하지 못하게 된다. 따라서 상기 에너지 감쇄기(30)는 상기 양성자가 N2 기체와 효율적으로 핵반응할 수 있을 정도로 그 양성자의 에너지를 감쇄시키는 역할을 한다. The energy attenuator 30 is provided between the inlet port 22 of the gas target device and the flange member 10. Since a known O-ring (not shown) is installed at each of the flange member 10 and the inlet port 22 of the gas target device, the energy attenuator 30 is the inlet port 22 of the gas target device. And the flange member 10 in a hermetically sealed state. The protons are generated from a particle acceleration device such as cyclotron, and the generated protons generally have high energy, and thus do not react well with N 2 gas. Therefore, the energy attenuator 30 serves to attenuate the proton energy to such an extent that the proton can efficiently nuclearly react with the N 2 gas.

상기 에너지 감쇄기(30)는 전면판(31) 및 후면판(32)과, 공간부(33)와, 유입구(34) 및 배출구(35)를 구비한다. 상기 전면판(31) 및 후면판(32)은 상호 대향되게 배치되어 있으며, 각각 알루미늄 등과 같은 금속으로 이루어져 있다. 상기 공간부(33)는 상기 전면판(31)과 후면판(32) 사이에 형성되어 있으며, 그 공간부(33)에서는 냉각수가 유동 가능하며, 그 냉각수는 상기 양성자의 조사시 발생되는 열을 냉각한다. 상기 유입구(34)는 상기 유입유로(25)와 연결되어 있으므로, 상기 유입유로(25)로 유입된 냉각수는 상기 유입구(34)를 통해서 상기 공간부(33)로 유입되며, 그 유입된 냉각수는 상기 배출구(35)를 통해서 배출된다. 또한, 상기 배출구(35)는 상기 공간부(24)로 통하여 있으므로, 상기 배출구(35)를 통해서 배출된 냉각수는 상기 공간부(24)로 공급되게 된다. 상기 전면판(31) 및 후면판(32)의 두께 및 상기 공간부(33)의 폭을 조절함으로써, 상기 양성자의 에너지의 감쇄 정도를 결정할 수 있게 된다. The energy attenuator 30 includes a front plate 31 and a rear plate 32, a space 33, an inlet 34, and an outlet 35. The front plate 31 and the back plate 32 are disposed to face each other, each made of a metal such as aluminum. The space portion 33 is formed between the front plate 31 and the back plate 32, the cooling water flows in the space 33, the cooling water is the heat generated during irradiation of the protons Cool. Since the inlet 34 is connected to the inlet passage 25, the coolant introduced into the inlet passage 25 is introduced into the space 33 through the inlet 34, and the introduced coolant is It is discharged through the outlet 35. In addition, since the outlet 35 is through the space 24, the cooling water discharged through the outlet 35 is supplied to the space 24. By controlling the thickness of the front plate 31 and the back plate 32 and the width of the space 33, it is possible to determine the degree of attenuation of the energy of the proton.

양성자와 N2 기체간의 핵반응에 있어서 그 효율이 가장 좋은 양성자의 에너지 범위는 도 6에 도시되어 있는 바와 같이 대략 7MeV부근이며, 양성자와 H2 18O 농축물간의 핵반응에 있어서 그 효율이 가장 좋은 양성자의 에너지 범위는 도 7에 도시되어 있는 바와 같이 대략 5MeV부근이다. 그런데, 양성자는 N2 기체를 통과하면서 그 에너지가 줄어들게 되므로, 만약 에너지 감쇄기를 통과한 양성자가 7MeV부근의 에너지를 가지게 되면, 그 양성자와 N2 기체간에는 핵반응이 잘 일어나게 되지만, 그 양성자는 N2 기체를 통과하면서 5MeV 이하의 에너지를 가지도록 감쇄되어 H2 18O 농축물과 핵반응을 잘 하지 못하게 된다. 따라서, 11C의 생산성은 높일 수 있는 반면 18F의 생산성은 매우 떨어지게 된다. 이와 같이 11C의 생산성과 18F의 생산성을 동시에 최대로 할 수는 없기 때문에, 11C의 생산성과 18F의 생산성을 적절히 보장할 수 있도록 조사되는 양전자의 에너지 준위를 최적화해야 한다. The energy range of the proton with the best efficiency in the nuclear reaction between the proton and the N 2 gas is around 7 MeV as shown in FIG. 6, and the most efficient proton in the nuclear reaction between the proton and the H 2 18 O concentrate. The energy range of is around 5 MeV as shown in FIG. However, since the protons pass through the N 2 gas, their energy is reduced, so if the protons passing through the energy attenuator have energy around 7 MeV, the nuclear reaction between the protons and the N 2 gas occurs well, but the protons are N 2. As it passes through the gas, it is attenuated to have an energy of 5 MeV or less, making it difficult to react well with the H 2 18 O concentrate. Thus, productivity of 11 C can be increased while productivity of 18 F is very low. Since the productivity of 11 C and the productivity of 18 F cannot be maximized at the same time, the energy level of the positron to be investigated must be optimized to adequately guarantee the productivity of 11 C and the productivity of 18 F.

이러한 관점에서 N2 기체와 핵반응하는 양성자의 에너지 대역을 13MeV 부근으로 설정하고 H2 18O 농축물과 핵반응하는 양성자의 에너지 대역을 7MeV 부근으로 설정하여, 이러한 에너지 대역을 활용하게 되면 11C의 생산성과 18F의 생산성을 최적화할 수 있게 된다. 그리고, 상기 에너지 대역을 활용하여 11C 및 18F을 생산하기 위해서는 상기 가스 표적장치(20)가 상기 농축물 표적장치(40)보다 양성자의 조사경로상에서 더 먼저 배치되어야 한다. Set In view of the N 2 gas and the energy band of the nuclear protons to 13MeV vicinity and setting the energy band of the proton nuclear reaction with H 2 18 O enriched water with 7MeV vicinity, when the use of these energy bands of 11 C Productivity And 18 F productivity. In addition, in order to produce 11 C and 18 F using the energy band, the gas targeting device 20 should be disposed earlier on the irradiation path of the proton than the concentrate targeting device 40.

상기 농축물 표적장치(40)는 상기 가스 표적장치(20)에 결합되어 있다. 상기 농축물 표적장치(40)는, 상기 가스 표적장치(20)의 N2 기체를 통과한 양성자가 상기 농축물 표적장치(40)에 수용된 H2 18O 농축물과 핵반응하여 18F을 생산하기 위해 마련되어 있다. The concentrate targeting device 40 is coupled to the gas targeting device 20. The concentrate targeting device 40 is such that the protons that have passed through the N 2 gas of the gas targeting device 20 nuclearly react with the H 2 18 O concentrate contained in the concentrate targeting device 40 to produce 18 F. It is prepared for.

상기 농축물 표적장치(40)는 캐비티부재(50)와, 전면 박막(61) 및 후면 박막(71)과, 전면 보강부재(60) 및 후면 보강부재(70)와, 냉각부재(80)를 구비한다. The concentrate target device 40 includes a cavity member 50, a front thin film 61 and a rear thin film 71, a front reinforcement member 60 and a rear reinforcement member 70, and a cooling member 80. Equipped.

상기 캐비티부재(50)는 티타늄(Ti) 등과 같은 금속으로 이루어져 있다. 상기 캐비티부재(50)에는 상기 H2 18O 농축물이 수용되는 캐비티(51)가 형성되어 있으며, 그 캐비티(51)의 전방 및 후방은 개방되어 있다. 상기 H2 18O 농축물은 H2 18O이 95%이상 농축되어 있는 H2O을 말한다. The cavity member 50 is made of a metal such as titanium (Ti). The cavity member 50 is formed with a cavity 51 in which the H 2 18 O concentrate is accommodated, and the front and rear of the cavity 51 are open. The H 2 18 O enriched water refers to H 2 O in H 2 18 O is concentrated to above 95%.

상기 가스 표적장치(20)를 통과한 양성자는 상기 캐비티(51)쪽으로 조사되며, 조사된 상기 양성자는 그 에너지가 상기 캐비티(51)에 수용된 H2 18O 농축물에 모두 흡수되도록 되어 있다. The protons that have passed through the gas targeting device 20 are directed toward the cavity 51, and the protons that are irradiated are such that all of their energy is absorbed by the H 2 18 O concentrate contained in the cavity 51.

상기 전면 박막(61) 및 후면 박막(71)은 상기 캐비티(51)의 전방 및 후방을 각각 막도록 배치되어 있다. 상기 전면 박막(61) 및 후면 박막(71)에 의해 상기 캐비티(51)에 충전되는 H2 18O 농축물은 외부로 흘러내리지 않고 상기 캐비티(51)에 수용된 상태를 유지하게 된다. 상기 전면 박막(61) 및 후면 박막(71)은 티타늄(Ti) 등과 같은 금속으로 이루어져 있으며, 그 두께는 일반적으로 수십㎛이다. The front thin film 61 and the rear thin film 71 are disposed to block the front and the rear of the cavity 51, respectively. The H 2 18 O concentrate filled in the cavity 51 by the front thin film 61 and the rear thin film 71 is kept in the cavity 51 without flowing out. The front thin film 61 and the rear thin film 71 are made of a metal such as titanium (Ti), and the thickness thereof is generally several tens of micrometers.

상기 전면 보강부재(60) 및 후면 보강부재(70)는 상기 전면 박막(61) 및 후면 박막(71)을 각각 지지하도록 상기 캐비티부재(50)에 결합되어 있으며, 이에 따라 도 3에 도시되어 있는 바와 같이 상기 전면 보강부재(60)와 캐비티부재(70) 사이에는 전면 박막(61)이 배치되어 있으며, 상기 후면 보강부재(70)와 캐비티부재(50) 사이에는 후면 박막(71)이 배치되어 있다. 그리고, 상기 전면 박막(61) 및 후면 박막(71)은 폴리에틸렌 등과 같은 실링부재(미도시)에 의해 밀폐된 상태로 결합된다. 상기 전면 보강부재(60) 및 후면 보강부재(70)는 상기 양성자의 조사 경로 상에 배치되어 있다. 상기 전면 보강부재(60) 및 후면 보강부재(70)는 알루미늄(Al) 등과 같은 금속으로 이루어져 있다. The front reinforcement member 60 and the rear reinforcement member 70 are coupled to the cavity member 50 so as to support the front thin film 61 and the rear thin film 71, respectively, and thus are shown in FIG. As described above, a front thin film 61 is disposed between the front reinforcement member 60 and the cavity member 70, and a rear thin film 71 is disposed between the rear reinforcement member 70 and the cavity member 50. have. In addition, the front thin film 61 and the rear thin film 71 are coupled in a sealed state by a sealing member (not shown) such as polyethylene. The front reinforcement member 60 and the rear reinforcement member 70 are disposed on the irradiation path of the protons. The front reinforcement member 60 and the rear reinforcement member 70 are made of metal such as aluminum (Al).

상기 전면 보강부재(60) 및 후면 보강부재(70)는, 상기 양성자와 H2 18O 농축물간의 핵반응시 상기 캐비티(51) 내에서의 압력 상승으로 인해 상기 전면 박막(61) 및 후면 박막(71)이 각각 부풀어 오르는 것을 방지한다. 즉, 상기 핵반응시발생되는 열에 의해 상기 H2 18O 농축물은 상변화하게 되어 그 일부가 H2 18O 수증기로 변하게 되고, 그 H2 18O 수증기에 의한 압력 상승에 의하여 상기 전면 박막(61) 및 후면 박막(71)이 각각 서로 반대방향으로 부풀어 오르는 것이 방지된다. The front reinforcement member 60 and the back reinforcement member 70 may be formed of the front thin film 61 and the rear thin film due to the pressure increase in the cavity 51 during the nuclear reaction between the protons and the H 2 18 O concentrate. 71) to prevent each swelling. That is, the H 2 18 O concentrate phase changes due to heat generated during the nuclear reaction, and part of the H 2 18 O concentrate changes into H 2 18 O water vapor, and the front thin film 61 by the pressure increase caused by the H 2 18 O water vapor. ) And the rear film 71 are prevented from bulging in opposite directions, respectively.

상기 전면 보강부재(60)에는 상기 양성자의 조사방향으로 그 전면 보강부재(60)를 관통하는 관통공(62)이 복수 형성되어 있다. 그리고, 상기 전면 보강부재(60) 중 상기 캐비티(51)의 전방 개구부에 대응되는 부분에 형성된 관통공들의 총면적은, 상기 캐비티(51)의 전방 개구부의 총면적의 80% 이상이 되도록 되어 있다. 상기 양성자는 전면 격자부분(63), 즉 상기 전면 보강부재(60) 중 상기 관통공(62)들이 형성되어 있지 않으며 상기 관통공(62)들 사이에 있는 부분을 통과하지 못하므로, 상기 전면 격자부분(63)을 통과하지 못하는 양성자는 에너지 손실로 나타나게 된다. 따라서, 상기 관통공(62)들의 총면적이 상기 캐비티(51)의 전방 개구부의 총면적의 80% 미만이 되도록 하는 것은, 상기 양성자의 에너지 손실을 과다하게 발생시켜 상기 18F의 생산 효율을 떨어뜨리기 때문에 바람직하지 않다. The front reinforcement member 60 is provided with a plurality of through-holes 62 penetrating the front reinforcement member 60 in the irradiation direction of the proton. The total area of the through holes formed in the front reinforcing member 60 corresponding to the front opening of the cavity 51 is 80% or more of the total area of the front opening of the cavity 51. The proton is the front grating portion 63, that is, the through holes 62 are not formed in the front reinforcing member 60 and do not pass through the portion between the through holes 62. Protons that do not pass through portion 63 will appear to lose energy. Therefore, the total area of the through holes 62 to be less than 80% of the total area of the front opening of the cavity 51 generates excessive energy loss of the protons, thereby lowering the production efficiency of the 18 F. Not desirable

상기 후면 보강부재(70)에는 상기 양성자의 조사방향으로 그 후면 보강부재(70)를 관통하는 관통공(72)이 복수 형성되어 있다. 후면 격자부분(73), 즉 상기 후면 보강부재(70) 중 상기 관통공(72)들이 형성되어 있지 않으며 상기 관통공(72)들 사이에 있는 부분은, 방열면적을 증대시킬 뿐만 아니라 후술하는 냉각부재(80)의 공간부(81)에서 강제 순환하는 냉각수에 와류를 형성시켜 상기 핵반응시 발생되는 열을 더 효율적으로 방출시키기 위해 형성되어 있다. The rear reinforcement member 70 is provided with a plurality of through holes 72 penetrating the rear reinforcement member 70 in the proton irradiation direction. The rear grating portion 73, ie, the portion of the rear reinforcing member 70 in which the through holes 72 are not formed and between the through holes 72, not only increases the heat dissipation area but also cooling described later It is formed to form a vortex in the cooling water forcedly circulated in the space portion 81 of the member 80 to more efficiently release the heat generated during the nuclear reaction.

상기 냉각부재(80)는 상기 후면 보강부재(70)에 결합된다. 상기 냉각부재(80)에는, 상기 핵반응시 발생되는 열을 냉각시키기 위해서, 충돌제트에 의하여 냉 각수가 강제 대류되는 공간부(81)가 형성되어 있다. 상기 냉각수는 별도의 펌핑장치(미도시)에 의해 도 3에 화살표로 지시된 바와 같이 유입유로를(82) 통해 상기 공간부(81)로 유입되며 유입된 냉각수는 배출유로(83)를 통해 상기 공간부(81)로부터 배출된다. The cooling member 80 is coupled to the rear reinforcement member 70. In the cooling member 80, in order to cool the heat generated during the nuclear reaction, a space portion 81 in which cooling water is forced to convection by a collision jet is formed. The cooling water is introduced into the space portion 81 through an inflow passage 82 as indicated by an arrow in FIG. 3 by a separate pumping device (not shown), and the introduced cooling water is discharged through the discharge passage 83. It is discharged from the space portion 81.

이하, 상술한 바와 같이 구성된 본 실시예의 복합 표적유니트(100)를 사용하여 11C 및 18F을 동시에 생산하는 과정의 일례를 설명하기로 한다. Hereinafter, an example of a process of simultaneously producing 11 C and 18 F using the composite target unit 100 of the present embodiment configured as described above will be described.

먼저, 농축물 표적장치(40)의 캐비티(51)에 H2 18O 농축물을 충전시키고, 가스 표적장치(20)의 수용부(21)에는 N2 기체를 충전시킨다. First, the H 2 18 O concentrate is filled into the cavity 51 of the concentrate targeting device 40, and the N 2 gas is filled into the receiving portion 21 of the gas targeting device 20.

다음으로, 농축물 표적장치(40)의 냉각부재(80)의 공간부(81)에 냉각수를 순환시키고, 가스 표적장치(20)의 공간부(24)에도 냉각수를 순환시킨다. 이와 같이 냉각수를 순환시키는 것은 양성자와 N2 기체간의 핵반응 및 양성자와 H2 18O 농축물간의 핵반응시 발생되는 열을 냉각시키기 위함이다. Next, the cooling water is circulated to the space 81 of the cooling member 80 of the concentrate target device 40, and the cooling water is circulated to the space 24 of the gas target device 20. The circulation of the cooling water is to cool the heat generated during the nuclear reaction between the protons and the N 2 gas and between the protons and the H 2 18 O concentrate.

그 후에, 에너지 손실 프로그램으로서 일반적으로 사용되는 SRIM 2003을 활용하여, N2 기체와는 13MeV 부근의 에너지를 가진 상태로 핵반응하고 H2 18O 농축물과는 7MeV 부근의 에너지를 가진 상태로 핵반응하여 11C 및 18F를 최적화하여 생산할 수 있는 양전자의 에너지를 계산한다. Subsequently, using SRIM 2003, which is commonly used as an energy loss program, nuclear reaction with N 2 gas with energy near 13 MeV and nuclear reaction with H 2 18 O concentrate with energy near 7 MeV Optimize the energy of positrons that can be produced by optimizing 11 C and 18 F.

먼저, 상기 에너지 계산단계에서 그 에너지 계산에 영향을 미치는 매개변수 를 아래와 같이 설정한다. First, the parameter that affects the energy calculation in the energy calculation step is set as follows.

에너지 감쇄기(30)를 구성하는 전면판(31) 및 후면판(32)이 밀도가 2.698g/㎤인 알루미늄으로 이루어지고 그 두께가 각각 0.75mm가 되도록 구성하고, 전면판 및 후면판 사이의 공간부(33)의 깊이를 3.5mm로 설정하고 그 공간부(33) 전체에 냉각수가 유동하도록 설정하였다. 또한, 가스 표적장치(20)의 수용부(21)의 길이를 100mm로 구성하고, 농축물 표적장치(40)의 전면 박막(61)이 밀도가 4.519g/㎤인 티타늄으로 이루어지고 그 두께가 0.05mm가 되도록 구성하였다. 그리고, 에너지 감쇄기의 공간부(33)에는 밀도가 1g/㎤ 인 냉각수를 충전하고, 가스 표적장치의 수용부(21)에는 압력이 12bar(0.015g/㎤)인 N2 기체를 충전한다. The front plate 31 and the back plate 32 constituting the energy attenuator 30 are made of aluminum having a density of 2.698 g / cm 3 and have a thickness of 0.75 mm, respectively, and the space between the front plate and the back plate The depth of the portion 33 was set to 3.5 mm, and the cooling water flowed through the entire space portion 33. In addition, the length of the receiving portion 21 of the gas targeting device 20 is 100 mm, and the front thin film 61 of the concentrate targeting device 40 is made of titanium having a density of 4.519 g / cm 3 and the thickness thereof is It was configured to be 0.05mm. The space portion 33 of the energy attenuator is filled with cooling water having a density of 1 g / cm 3, and the receiving portion 21 of the gas target device is filled with N 2 gas having a pressure of 12 bar (0.015 g / cm 3).

다음으로, 사이클로트론으로부터 28MeV, 30MeV, 32MeV 및 35MeV의 에너지를 가지는 양성자를 각각 상술한 매개변수를 가지는 복합 표적유니트(100)에 조사하는 경우를 가정한다. 그리고, 상기 에너지를 가지는 양성자가 가스 표적장치(20)와 농축물 표적장치(40)를 순차적으로 통과하여 N2 기체 및 H2 18O 농축물에 조사되는 시점에서 있어서의 에너지 수치를 SRIM 2003 프로그램을 활용하여 계산하였고, 그 결과는 다음과 같다. Next, it is assumed that a proton having an energy of 28 MeV, 30MeV, 32MeV, and 35MeV from the cyclotron is irradiated to the composite target unit 100 having the above-described parameters, respectively. In addition, the energy value at the time when the proton having energy passes through the gas target device 20 and the concentrate target device 40 sequentially and irradiates the N 2 gas and the H 2 18 O concentrate is SRIM 2003 program. Was calculated using the following results.

(1) 28MeV의 에너지를 가지는 양성자를 조사한 경우(1) When proton having energy of 28MeV is investigated

부재 명칭 Part Name 치수(mm) Dimension (mm) 밀도(g/㎤) Density (g / cm 3) 입사에너지(MeV) Incident energy (MeV) 통과후 에너지(MeV)  Post Pass Energy (MeV) 전면판  Front panel 0.75 두께 0.75 thickness 2.698 2.698 28 28 24.785 24.785 공간부  Space 3.5 깊이 3.5 depth 1 One 24.785 24.785 15.528 15.528 후면판  Backplane 0.75 두께 0.75 thickness 2.698 2.698 15.528 15.528 9.779 9.779 수용부  Receptacle 100 길이 100 length 0.015(압력 : 15bar) 0.015 (pressure: 15 bar) 9.779 9.779 0 0 전면 박막  Front thin film 0.05 두께 0.05 thickness 4.519 4.519 - - - -

상기 표에 나타나 있는 바와 같이, 28MeV의 양성자를 조사하게 되면, 그 양성자는 에너지 감쇄기의 전면판(31), 공간부(33) 및 후면판(32)을 순차적으로 통과하면서 각각 24.785MeV, 15.528MeV, 9.779MeV의 에너지를 가지도록 감쇄된다. 따라서, 가스 표적장치의 수용부(21)에는 9.779MeV의 에너지를 가지는 양성자가 입사되게 되며, 이에 따라 양성자와 N2 기체간의 핵반응에 의해 11C가 생산되게 된다. As shown in the table, when protons of 28 MeV are irradiated, the protons sequentially pass through the front plate 31, the space 33 and the back plate 32 of the energy attenuator, respectively, and are 24.785 MeV and 15.528MeV, respectively. , Attenuated to have an energy of 9.779MeV. Accordingly, protons having an energy of 9.779 MeV enter the receiving portion 21 of the gas target device, thereby producing 11 C by nuclear reaction between the protons and the N 2 gas.

한편, 상기 표에 나타나 있는 바와 같이 양성자는 N2 기체에 모두 흡수되어 농축물 표적장치로 조사될 수 없게 되므로, 결국 18F를 생산할 수 없게 된다. On the other hand, as shown in the above table, the protons are all absorbed by the N 2 gas and thus cannot be irradiated with the concentrate target device, thus failing to produce 18 F.

(2) 30MeV의 에너지를 가지는 양성자를 조사한 경우(2) When proton having energy of 30MeV is investigated

부재 명칭 Part Name 치수(mm) Dimension (mm) 밀도(g/㎤) Density (g / cm 3) 입사에너지(MeV) Incident energy (MeV) 통과후 에너지(MeV)  Post Pass Energy (MeV) 전면판  Front panel 0.75 두께 0.75 thickness 2.698 2.698 30 30 26.962 26.962 공간부  Space 3.5 깊이 3.5 depth 1 One 26.962 26.962 18.593 18.593 후면판  Backplane 0.75 두께 0.75 thickness 2.698 2.698 18.593 18.593 13.877 13.877 수용부  Receptacle 100 길이 100 length 0.015(압력 : 15bar) 0.015 (pressure: 15 bar) 13.877 13.877 8.328 8.328 전면 박막  Front thin film 0.05 두께 0.05 thickness 4.519 4.519 8.328 8.328 7.535 7.535

상기 표에 나타나 있는 바와 같이, 30MeV의 양성자를 조사하게 되면, 그 양성자의 에너지는 13.877MeV의 에너지로 감쇄되어 가스 표적장치의 수용부(21)에 입사되며, 이에 따라 양성자와 N2 기체간의 핵반응에 의해 11C가 생산되게 된다. As shown in the table above, when protons of 30 MeV are irradiated, the energy of the protons is attenuated by energy of 13.877MeV and is incident on the receiving portion 21 of the gas target device, and thus the nuclear reaction between the protons and the N 2 gas. Will produce 11 C.

게다가, 28MeV의 에너지를 조사한 경우와는 달리, N2 기체를 통과한 양성자는 8.328MeV의 에너지를 가지게 되며, 이 양성자는 농축물 표적장치(40)의 전면 박막(61)을 통과하여 7.535MeV의 에너지를 가진 상태로 캐비티(51)에 수용되어 있는 H2 18O 농축물로 조사되게 된다. 따라서, 양성자와 H2 18O 농축물간의 핵반응이 발생되게 되며, 이에 따라 18F를 생산할 수 있게 된다. In addition, unlike the case of irradiating 28 MeV energy, the protons having passed through the N 2 gas have an energy of 8.328 MeV, which passes through the front membrane 61 of the concentrate target device 40 to be 7.535 MeV. The energy is irradiated with the H 2 18 O concentrate contained in the cavity 51. Thus, a nuclear reaction between the proton and the H 2 18 O concentrate occurs, thus producing 18 F.

(3) 32MeV의 에너지를 가지는 양성자를 조사한 경우(3) When proton having energy of 32MeV is investigated

부재 명칭 Part Name 치수(mm) Dimension (mm) 밀도(g/㎤) Density (g / cm 3) 입사에너지(MeV) Incident energy (MeV) 통과후 에너지(MeV)  Post Pass Energy (MeV) 전면판  Front panel 0.75 두께 0.75 thickness 2.698 2.698 32 32 29.130 29.130 공간부  Space 3.5 깊이 3.5 depth 1 One 29.130 29.130 21.450 21.450 후면판  Backplane 0.75 두께 0.75 thickness 2.698 2.698 21.450 21.450 17.343 17.343 수용부  Receptacle 100 길이 100 length 0.015(압력 : 15bar) 0.015 (pressure: 15 bar) 17.343 17.343 13.042 13.042 전면 박막  Front thin film 0.05 두께 0.05 thickness 4.519 4.519 13.042 13.042 12.488 12.488

상기 표에 나타나 있는 바와 같이, 32MeV의 양성자를 조사하게 되면, 그 양성자는 순차적으로 감쇄되어, 가스 표적장치(20)에 수용된 N2 기체에는 17.343MeV로, 농축물 표적장치(40)에 수용된 H2 18O 농축물에는 12.488MeV로 조사되게 된다. 그런데, N2 기체 및 H2 18O 농축물에 각각 조사되는 양성자의 에너지는 각각 17.343MeV 및 12.488MeV으로서, 이는 앞서 도 6 및 도 7을 참조하면서 설명한 바와 같이 11C 및 18F를 최적화해서 가장 효율적으로 생산할 수 있는 에너지 범위를 벗어나는 것으로서 바람직하지 않다. As shown in the table, when protons of 32MeV are irradiated, the protons are sequentially attenuated, and the H 2 contained in the concentrate targeting device 40 is 17.343MeV in the N 2 gas contained in the gas targeting device 20. 2 18 O concentrate was irradiated with 12.488MeV. However, the proton energies irradiated to the N 2 gas and the H 2 18 O concentrate, respectively, were 17.343MeV and 12.488MeV, respectively, which were optimized by optimizing 11 C and 18 F as described above with reference to FIGS. 6 and 7. It is not desirable as it is beyond the range of energy that can be produced efficiently.

(4) 35MeV의 에너지를 가지는 양성자를 조사한 경우(4) When proton having energy of 35MeV is investigated

부재 명칭 Part Name 치수(mm) Dimension (mm) 밀도(g/㎤) Density (g / cm 3) 입사에너지(MeV) Incident energy (MeV) 통과후 에너지(MeV)  Post Pass Energy (MeV) 전면판  Front panel 0.75 두께 0.75 thickness 2.698 2.698 35 35 32.345 32.345 공간부  Space 3.5 깊이 3.5 depth 1 One 32.345 32.345 25.454 25.454 후면판  Backplane 0.75 두께 0.75 thickness 2.698 2.698 25.454 25.454 21.946 21.946 수용부  Receptacle 100 길이 100 length 0.015(압력 : 15bar) 0.015 (pressure: 15 bar) 21.946 21.946 18.522 18.522 전면 박막  Front thin film 0.05 두께 0.05 thickness 4.519 4.519 18.522 18.522 18.101 18.101

상기 표에 나타나 있는 바와 같이, 35MeV의 양성자를 조사하게 되면, 그 양성자는 순차적으로 감쇄되어, 가스 표적장치(20)에 수용된 N2 기체에는 21.946MeV로, 농축물 표적장치(40)에 수용된 H2 18O 농축물에는 18.101MeV로 조사되게 된다. 그런데, N2 기체 및 H2 18O 농축물에 각각 조사되는 양성자의 에너지는 각각 21.946MeV 및 18.101MeV으로서, 이는 앞서 도 6 및 도 7을 참조하면서 설명한 바와 같이 11C 및 18F를 최적화해서 가장 효율적으로 생산할 수 있는 에너지 범위를 벗어나는 것으로서 바람직하지 않다. As shown in the table above, when protons of 35MeV are irradiated, the protons are sequentially attenuated, so that the N 2 gas contained in the gas targeting device 20 is 21.946MeV, and the H contained in the concentrate targeting device 40. 2 18 O concentrate is irradiated with 18.101MeV. However, the proton energies irradiated to the N 2 gas and the H 2 18 O concentrate, respectively, are 21.946MeV and 18.101MeV, respectively, which were optimized by optimizing 11 C and 18 F as described above with reference to FIGS. 6 and 7. It is not desirable as it is beyond the range of energy that can be produced efficiently.

상술한 결과를 종합해 보면, 30MeV의 에너지를 가지는 양성자를 조사한 경우에 있어서만, N2 기체에 조사되는 양전자를 13MeV 부근의 에너지를 가지도록 설정할 수 있게 되며 H2 18O 농축물에 조사되는 양전자를 7MeV 부근의 에너지를 가지도록 설정할 수 있게 되며, 그에 따라 11C 및 18F를 가장 효율적으로 생산할 수 있게 된다. 그리고, 30MeV 부근에서 11C 및 18F를 최적으로 생산할 수 있는 양성자의 에너지 범위를 동일한 방식으로 계산해보면, 29.5MeV 내지 30.5MeV임을 알 수 있다. In summary, the positron irradiated to the N 2 gas can be set to have an energy around 13 MeV only when protons having an energy of 30 MeV are irradiated, and the positron irradiated to the H 2 18 O concentrate. Can be set to have an energy around 7 MeV, thus producing 11 C and 18 F most efficiently. In addition, the energy range of protons capable of optimally producing 11 C and 18 F in the vicinity of 30 MeV is calculated in the same manner, and it can be seen that they are 29.5 MeV to 30.5 MeV.

따라서, 양성자는 29.5MeV 내지 30.5MeV의 에너지를 가지도록 설정되어야 한다. 만약 사이클로트론 등과 같은 입자가속장비로부터 조사되는 양성자가 29.5MeV 미만의 에너지를 가지게 되면, 그 양성자는 에너지 감쇄기(30)를 통과한 후에 가스 표적장치(20)에 수용된 N2 기체에 모두 흡수될 뿐 농축물 표적장치에 수용된 H2 18O 농축물에까지 조사되지 못하게 되며, 이에 따라 11C 및 18F를 동시에 생산할 수 없게 된다. 한편, 만약 사이클로트론 등과 같은 입자가속장비로부터 조사되는 양성자가 30.5MeV 보다 큰 에너지를 가지게 되면, N2기체 및 H2 18O 농축물에 조사되는 양전자의 에너지가 과도하게 높아지게 되어 11C 및 18F를 최적으로 생산할 수 없게 되어 바람직하지 않다. Therefore, the protons should be set to have an energy of 29.5 MeV to 30.5 MeV. If the protons irradiated from the particle acceleration device such as cyclotron have an energy of less than 29.5 MeV, the protons are only absorbed by the N 2 gas contained in the gas target device 20 after passing through the energy attenuator 30 and concentrated. It will not be possible to irradiate the H 2 18 O concentrate contained in the water targeting device, and thus will not be able to produce 11 C and 18 F simultaneously. On the other hand, if the protons irradiated from the particle acceleration device such as cyclotron have an energy greater than 30.5 MeV, the energy of the positron irradiated to the N 2 gas and the H 2 18 O concentrate becomes excessively high, resulting in 11 C and 18 F. It is not desirable to produce optimally.

상술한 바와 같이 에너지 계산단계에서 얻어진 결과를 토대로, 29.5MeV 내지 30.5MeV의 에너지를 가지는 양성자를 복합 표적유니트(100)로 조사시키면, 그 양성자는 순차적으로 상기 N2 기체 및 H2 18O 농축물과 핵반응하여, 결국 11C 및 18F를 동 시에 생산되게 된다. Based on the results obtained in the energy calculation step as described above, if the proton having an energy of 29.5MeV to 30.5MeV is irradiated with the composite target unit 100, the protons are sequentially concentrated in the N 2 gas and H 2 18 O concentrate. Nuclear reaction results in the production of 11 C and 18 F simultaneously.

한편, 상술한 바와 같이 11C 및 18F를 동시에 생산 가능한 점을 확인하기 위해서 다음과 같은 실험을 수행하였다. On the other hand, as described above, in order to confirm that 11 C and 18 F can be produced simultaneously, the following experiment was performed.

에너지 감쇄기를 구성하는 전면판(31) 및 후면판(32)을 밀도가 2.698g/㎤인 알루미늄으로 제조하고 그 두께가 각각 0.75mm가 되도록 구성하고, 전면판 및 후면판 사이의 공간부(33)의 깊이를 3.5mm로 설정하고 그 공간부(33) 전체에 냉각수가 유동하도록 설정하였다. 또한, 가스 표적장치(20)의 수용부(21)의 길이를 100mm로 구성하고, 농축물 표적장치(40)의 전면 박막(61)을 밀도가 4.519g/㎤인 티타늄으로 제조하고 그 두께가 0.05mm가 되도록 구성하였다. 그리고, 에너지 감쇄기의 공간부(33)에는 밀도가 1g/㎤ 인 냉각수를 충전하고, 가스 표적장치의 수용부(21)에는 압력이 12.8bar인 N2 기체를 충전하며, 농축물 표적장치의 캐비티(51)에는 H2 18O 농축물을 충전하였다.The front plate 31 and the back plate 32 constituting the energy attenuator are made of aluminum having a density of 2.698 g / cm 3 and have a thickness of 0.75 mm, respectively, and a space portion 33 between the front plate and the back plate. ) Was set to 3.5 mm and set such that the coolant flows through the entire space 33. In addition, the length of the receiving portion 21 of the gas targeting device 20 is 100 mm, and the front thin film 61 of the concentrate targeting device 40 is made of titanium having a density of 4.519 g / cm 3 and the thickness thereof is It was configured to be 0.05mm. Then, the space portion 33 of the energy attenuator is filled with cooling water having a density of 1 g / cm 3, and the receiving portion 21 of the gas target device is filled with N 2 gas having a pressure of 12.8 bar, and the cavity of the concentrate target device. (51) was charged with H 2 18 O concentrate.

그리고, 양성자 빔의 에너지를 30MeV로 설정하고, 그 양성자 빔의 전류를 5μA로부터 20μA까지 상승시켜 20μA를 유지한 상태에서 양성자 빔을 1시간동안 조사하였다. 이와 같이 양성자 빔을 조사하게 되면, 11C 및 18F을 각각 300 mCi 및 585 mCi만큼 생산할 수 있게 된다. Then, the energy of the proton beam was set to 30 MeV, and the proton beam was irradiated for 1 hour while the current of the proton beam was raised from 5 μA to 20 μA and maintained at 20 μA. This proton beam irradiation produces 11 C and 18 F by 300 mCi and 585 mCi, respectively.

이상, 본 발명을 바람직한 실시예들을 들어 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함은 명백하다.As mentioned above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the technical idea of the present invention. It is obvious.

상기한 구성의 본 발명에 따르면, 11C 및 18F를 동시에 생산할 수 있는 양성자를 조사하여, 그 양성자가 순차적으로 상기 N2 기체 및 H2 18O 농축물과 핵반응하게 함으로써 11C 및 18F를 동시에 생산할 수 있게 된다.According to the present invention of the above-described configuration, by investigating protons capable of producing 11 C and 18 F at the same time, by making the protons nuclear reaction with the N 2 gas and H 2 18 O concentrate sequentially 11 C and 18 F Can be produced at the same time.

Claims (8)

일방향으로 조사되는 양성자와 N2 기체간의 핵반응에 의해 11C을 생산함과 동시에 상기 양성자와 H2 18O 농축물간의 핵반응에 의해 18F을 생산하기 위한 복합 표적유니트에 있어서, In the 11 C by the nuclear reaction between the proton and the N 2 gas is irradiated in one direction, and at the same time producing a composite target unit for the production of 18 F by the nuclear reaction between the protons and H 2 18 O enriched water, 상기 N2 기체가 수용되며 상기 양성자의 조사 경로상에 배치되는 수용부와,A receiving part which receives the N 2 gas and is disposed on an irradiation path of the proton, 상기 수용부로의 상기 양성자의 유입 및 상기 수용부내의 양성자의 배출을 위해 상기 수용부의 양측에 각각 형성되어 있는 유입구 및 배출구를 가지는 가스 표적장치; 및 A gas target device having inlets and outlets respectively formed at both sides of the accommodating unit for inflow of the protons into the accommodating unit and discharge of the protons in the accommodating unit; And 상기 H2 18O 농축물이 수용되며 상기 가스 표적장치의 배출구를 통과한 양성자의 조사 경로상에 배치되는 캐비티를 가지는 캐비티부재를 포함하며, 상기 가스 표적장치에 결합되는 농축물 표적장치;를 구비하는 것을 특징으로 하는 복합 표적유니트. And a cavity member having a cavity containing the H 2 18 O concentrate and having a cavity disposed on an irradiation path of the protons passing through the outlet of the gas targeting device, the concentrate targeting device being coupled to the gas targeting device. Complex target unit, characterized in that. 제 1항에 있어서, The method of claim 1, 상기 가스 표적장치의 수용부는 상기 양성자의 조사 방향으로 길게 형성되어 있으며, The receiving portion of the gas target device is formed long in the irradiation direction of the proton, 상기 수용부의 상기 양성자의 조사 방향에 대해 수직인 평면에 대한 단면은, 그 단면적이 상기 유입구로부터 상기 배출구쪽으로 갈수록 커지도록 형성되어 있는 것을 특징으로 하는 복합 표적유니트. The cross section with respect to the plane perpendicular | vertical to the irradiation direction of the said proton of the said accommodating part is formed so that the cross-sectional area may become large from the said inlet toward the said outlet. 제 1항에 있어서, The method of claim 1, 상기 가스 표적장치의 유입구에는 그 유입구로 유입되는 양성자의 에너지를 감쇄시키기 위한 에너지 감쇄기가 배치되어 있는 것을 특징으로 하는 복합 표적유니트.And an energy attenuator for attenuating the energy of the protons flowing into the inlet of the gas target device. 제 3항에 있어서, The method of claim 3, wherein 상기 에너지 감쇄기는, 상호 대향되게 배치되어 있으며 그 사이에 냉각수가 유동하는 공간부를 형성하는 전면판 및 후면판을 구비하는 것을 특징으로 하는 복합 표적유니트. The energy attenuator is a composite target unit, characterized in that it is disposed opposite to each other and having a front plate and a back plate forming a space portion for the cooling water flow therebetween. 제 1항에 있어서, The method of claim 1, 상기 캐비티부재의 캐비티는 전방 및 후방으로 개방되어 있으며,The cavity of the cavity member is opened forward and rearward, 상기 농축물 표적장치는, The concentrate target device, 상기 캐비티의 전방 및 후방을 막도록 배치되어 있는 전면 박막 및 후면 박막과, A front thin film and a rear thin film arranged to block the front and the rear of the cavity; 상기 핵반응시 상기 캐비티 내에서의 압력 상승으로 인해 상기 박막들이 부 풀어 오르는 것을 방지하기 위해 상기 전면 박막 및 후면 박막을 각각 지지하도록 상기 캐비티부재에 결합되며, 상기 양성자의 조사 경로 상에 배치되는 전면 보강부재 및 후면 보강부재를 구비하며, A front reinforcement coupled to the cavity member to support the front thin film and the rear thin film, respectively, to prevent the thin films from swelling due to a rise in pressure in the cavity during the nuclear reaction. Member and rear reinforcement member, 상기 전면 보강부재에는 상기 양성자의 조사방향으로 그 전면 보강부재를 관통하는 관통공이 복수 형성되어 있는 것을 특징으로 하는 복합 표적유니트.And the plurality of through holes penetrating the front reinforcing member in the irradiation direction of the protons. 일방향으로 조사되는 양성자와 N2 기체간의 핵반응에 의해 11C을 생산함과 동시에 상기 양성자와 H2 18O 농축물간의 핵반응에 의해 18F을 생산하기 위한 복합 생산 방법에 있어서, In the composite production method for producing 18 F by the nuclear reaction between the proton and the H 2 18 O concentrate while producing 11 C by nuclear reaction between the proton and N 2 gas irradiated in one direction, 상기 N2 기체가 수용되는 수용부를 가지는 가스 표적장치와, 상기 H2 18O 농축물이 수용되는 캐비티를 가지는 농축물 표적장치를 상기 양성자의 조사 경로상에 순차적으로 배열하는 배열단계;Arranging a gas target device having a receiving portion for accommodating the N 2 gas and a concentrate targeting device having a cavity for accommodating the H 2 18 O concentrate on the irradiation path of the protons; 상기 가스 표적장치의 수용부에 상기 N2 기체를 충전하며, 상기 농축물 표적장치의 캐비티에 상기 H2 18O 농축물을 충전하는 충전단계; Filling the N 2 gas into a receiving portion of the gas targeting device and filling the H 2 18 O concentrate into a cavity of the concentrate targeting device; 11C 및 18F를 동시에 생산할 수 있는 양성자의 에너지를 계산하는 에너지 계산단계; 및 An energy calculation step of calculating energy of protons capable of producing 11 C and 18 F simultaneously; And 상기 에너지 계산단계에서 계산된 에너지를 가지는 양성자를 상기 가스 표적장치와 농축물 표적장치로 조사하여, 상기 양성자가 순차적으로 상기 N2 기체 및 H2 18O 농축물과 핵반응하여 11C 및 18F를 동시에 생산하는 생산단계;를 구비하는 것을 특징으로 하는 복합 생산방법.The protons having the energy calculated in the energy calculation step are irradiated with the gas targeting device and the concentrate targeting device, and the protons are sequentially nuclear reacted with the N 2 gas and the H 2 18 O concentrate to obtain 11 C and 18 F. Composite production method characterized in that it comprises a production step to produce at the same time. 제 6항에 있어서, The method of claim 6, 상기 가스 표적장치에는 상기 N2 기체로 유입되는 양성자의 에너지를 감쇄하기 위한 에너지 감쇄기가 배치되어 있는 것을 특징으로 하는 복합 생산방법. The gas target device is a composite production method characterized in that the energy attenuator for attenuating the energy of the protons flowing into the N 2 gas. 제 6항 또는 제7항에 있어서, The method according to claim 6 or 7, 상기 에너지 계산단계에서 계산된 양성자의 에너지는 29.5MeV 내지 30.5MeV인 것을 특징으로 하는 복합 생산방법. The energy of the protons calculated in the energy calculation step is 29.5MeV to 30.5MeV, characterized in that the composite production method.
KR1020050053561A 2005-06-21 2005-06-21 Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously KR100648407B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050053561A KR100648407B1 (en) 2005-06-21 2005-06-21 Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050053561A KR100648407B1 (en) 2005-06-21 2005-06-21 Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously

Publications (1)

Publication Number Publication Date
KR100648407B1 true KR100648407B1 (en) 2006-11-24

Family

ID=37713130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050053561A KR100648407B1 (en) 2005-06-21 2005-06-21 Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously

Country Status (1)

Country Link
KR (1) KR100648407B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030792A1 (en) * 2012-08-20 2014-02-27 한국원자력의학원 Radioactive isotope liquid targeting apparatus having functional thermosiphon internal flow channel
KR20200059528A (en) 2018-11-21 2020-05-29 가천대학교 산학협력단 Rapid synthesis method by solid-phase extraction of carbon-11 labeled compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000013152A (en) * 1998-08-05 2000-03-06 김성년 Transfer and irradiate apparatus for manufacturing high specific radioactive coordinate element in atomic furnace
JP2004294300A (en) 2003-03-27 2004-10-21 Sumitomo Heavy Ind Ltd Target device
KR20060062750A (en) * 2004-12-06 2006-06-12 재단법인서울대학교산학협력재단 A neutron generator and a radio-isotope production system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000013152A (en) * 1998-08-05 2000-03-06 김성년 Transfer and irradiate apparatus for manufacturing high specific radioactive coordinate element in atomic furnace
JP2004294300A (en) 2003-03-27 2004-10-21 Sumitomo Heavy Ind Ltd Target device
KR20060062750A (en) * 2004-12-06 2006-06-12 재단법인서울대학교산학협력재단 A neutron generator and a radio-isotope production system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030792A1 (en) * 2012-08-20 2014-02-27 한국원자력의학원 Radioactive isotope liquid targeting apparatus having functional thermosiphon internal flow channel
KR20200059528A (en) 2018-11-21 2020-05-29 가천대학교 산학협력단 Rapid synthesis method by solid-phase extraction of carbon-11 labeled compounds

Similar Documents

Publication Publication Date Title
US7940881B2 (en) Device and method for producing radioisotopes
JP4958564B2 (en) Irradiation cell for radioisotope production, insert used in irradiation cell, and method and use of irradiation cell
US5917874A (en) Accelerator target
EP1509925B1 (en) Batch target and method for producing radionuclide
JP6752590B2 (en) Target equipment and radionuclide production equipment
US20060062342A1 (en) Method and apparatus for the production of radioisotopes
EP3473063B1 (en) Target assembly and isotope production system having a grid section
JP2006047115A (en) Neutron generating apparatus, target and neutron irradiation system
US6586747B1 (en) Particle accelerator assembly with liquid-target holder
KR100648407B1 (en) Tandem target unit and multiple production method for producing c-11 and f-18 simultaneously
KR100967359B1 (en) Radioisotope production gas target with fin structure at the cavity
US20040100214A1 (en) Particle accelerator assembly with high power gas target
KR100648408B1 (en) Target apparatus
US8670513B2 (en) Particle beam target with improved heat transfer and related apparatus and methods
KR101366689B1 (en) F-18 radio isotopes water target apparatus for improving cooling performance??with internal flow channel using thermosiphon
US20100294655A1 (en) Radioisotope production o-18 water target having improved cooling performance
JP6968163B2 (en) Target assembly and isotope manufacturing system
KR101130997B1 (en) Device and method for producing radioisotopes
Lee et al. 11 C Gas Target Yield Increase of KOTRON-13 Cyclotron

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130808

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 19