KR100645391B1 - A isolation method triterpenoid from rumex japonicus and a triterpenoid - Google Patents

A isolation method triterpenoid from rumex japonicus and a triterpenoid Download PDF

Info

Publication number
KR100645391B1
KR100645391B1 KR1020050099734A KR20050099734A KR100645391B1 KR 100645391 B1 KR100645391 B1 KR 100645391B1 KR 1020050099734 A KR1020050099734 A KR 1020050099734A KR 20050099734 A KR20050099734 A KR 20050099734A KR 100645391 B1 KR100645391 B1 KR 100645391B1
Authority
KR
South Korea
Prior art keywords
alpha
normal hexane
trihydroxy
diene
fractions
Prior art date
Application number
KR1020050099734A
Other languages
Korean (ko)
Inventor
김진숙
장대식
이윤미
김종민
Original Assignee
한국 한의학 연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국 한의학 연구원 filed Critical 한국 한의학 연구원
Priority to KR1020050099734A priority Critical patent/KR100645391B1/en
Application granted granted Critical
Publication of KR100645391B1 publication Critical patent/KR100645391B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J3/00Normal steroids containing carbon, hydrogen, halogen or oxygen, substituted in position 17 beta by one carbon atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A method of isolating a triterpenoid compound from Rumex japonicus Houtt. and a triterpenoid compound are provided to restrain the production of the advanced glycation end products(AGEs) and be used for treating and preventing diabetes complications. The triterpenoid compound separated from Rumex japonicus Houtt. is characterized by 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norurc-4(23),12-dien-28-oicacid. The method of isolating a triterpenoid compound comprises the steps of: (a) obtaining crude extract of Rumex japonicus Houtt. by reduced pressure concentration, after extracting the Rumex japonicus Houtt. using 20-80% alcohol; (b) suspending the crude extract in distilled water, and obtaining normal hexane soluble fraction by adding normal hexane and separating normal hexane layer; (c) obtaining ethylacetate soluble fraction by adding ethylacetate in layer remaining after separating normal hexane layer and separating the ethylacetate layer; (d) obtaining 12 number of fractions by performing silica gel chromatography using concentration gradient of chloroform:methanol mixing solvent; (e) obtaining 10 number of fractions by subjecting no.5 fraction among 12 number of fractions to silica gel chromatography using concentration gradient of normal hexane:ethylacetate:methanol mixing solvent; (f) obtaining 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norurc-4(23),12-dien-28-oicacid by subjecting no.3 fraction among fractions of the step(e) to reverse silica gel chromatography using methanol:water mixing solvent.

Description

참소리쟁이에서 분리되는 트리테르페노이드 화합물 분리방법 및 그 트리테르페노이드 화합물{A isolation method triterpenoid from Rumex japonicus and A triterpenoid}Isolation method of triterpenoid compounds isolated from Chamsori and A triterpenoid compound thereof {A isolation method triterpenoid from Rumex japonicus and A triterpenoid}

도 1은 본 발명에 따라 참소리쟁이에서 분리된 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 구조식이고,1 is a structural formula of 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid, isolated from Chamsori, according to the present invention,

도 2는 본 발명에 따라 참소리쟁이에서 분리된 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 cosy 및 HMBC이며,2 is 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid cosy and HMBC isolated from Chamsori, according to the present invention.

도 3은 본 발명에 따라 참소리쟁이에서 분리된 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 NOE이고,Figure 3 is the NOE of 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid, isolated from Charsoridae according to the present invention,

도 4는 본 발명에 따라 참소리쟁이에서 분리된 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 최종당화산물 생성 억제율을 나타내는 그래프이며,Figure 4 shows the inhibition rate of the final glycation product production of 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid isolated from the sangryukja according to the present invention Is a graph representing

도 5는 아미노구아니딘의 최종당화산물 생성 억제율을 나타내는 그래프이다.5 is a graph showing the inhibition rate of the final glycation product production of aminoguanidine.

본 발명은 참소리쟁이에서 분리되는 트리테르페노이드 화합물 및 그 분리방법에 관한 것으로서, 보다 상세하게는 참소리쟁이로부터 분리된 새로운 트리테르페노이드(triterpenoid) 화합물인 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드를 이용하여 당뇨합병증 발병의 주요한 인자인 AGEs 형성을 억제하여 당뇨합병증의 예방 또는 치료 및 노화방지 또는 지연에 효과적인 참소리쟁이에서 분리되는 트리테르페노이드 화합물 및 그 분리방법에 관한 것이다.The present invention relates to a triterpenoid compound that is isolated from Chamsori, and more particularly, 2 alpha, 3 alpha, 19 alpha-tree, which are new triterpenoid compounds isolated from Chamsori. Hydroxy-24-Norrus-4 (23), 12-diene-28-oic acid is used to inhibit the formation of AGEs, a major factor in the development of diabetic complications, and is effective in preventing or treating diabetic complications and preventing or delaying aging. The present invention relates to a triterpenoid compound which is isolated from Chamsori, and a method for separating the same.

당뇨병은 전 세계적으로 중요한 성인병 중의 하나로서, 최근 우리나라에서도 급속한 경제 성장과 더불어 당뇨병 유병률이 7 ~ 8%에 달하며, 특히 합병증이 유발되기까지 전반적으로 수명이 길어짐에 따라 당뇨병 환자들은 합병증의 고통을 피할 수 없게 되었다. 일반적으로 당뇨병에 걸린 후 10 ~ 20년이 지나면 체내 거의 모든 기관이 손상을 받아 당뇨성 망막병증(diabetic retinopathy), 당뇨성 백내장(diabetic cataract), 당뇨성 신증(diabetic nephropathy), 당뇨성 신경병증(diabetic neuropathy) 등으로 나타난다. 만성 당뇨성 신증은 혈액 투석 치료 및 말기 신부전의 가장 중요한 원인이 되고 있으며, 당뇨성 백내장은 실명을 초래하고 결국엔 죽음에 이른다.Diabetes is one of the most important adult diseases all over the world. In recent years, the prevalence of diabetes mellitus and the prevalence of diabetes have reached 7-8% in Korea, especially since the overall lifespan until complications is prolonged. It became impossible. In general, almost 10 to 20 years after diabetes, almost all organs in the body are damaged, resulting in diabetic retinopathy, diabetic cataract, diabetic nephropathy, and diabetic neuropathy. diabetic neuropathy). Chronic diabetic nephropathy is the most important cause of hemodialysis treatment and end stage renal failure, and diabetic cataracts cause blindness and eventually death.

이러한 당뇨합병증을 유발하는 기전으로는 크게 단백질의 비효소적 당화반응(nonenzymatic glycation of proein), 폴리올 경로(polyol pathway) 및 산화적 스트레스(oxidative stress) 등으로 설명되고 있다.Mechanisms that induce diabetic complications are largely explained by nonenzymatic glycation of proein, polyol pathway and oxidative stress.

단백질의 비효소적 당화반응(nonenzymatic glycation of protein)이란, 단백 질의 리신 잔기 등의 아미노산 그룹과 환원당이 효소 작용 없이 축합반응 즉 밀리아드 반응에 의한 것으로, 이 반응의 결과로 최종당화산물(advanced glycation endproducts, AGEs)이 생성된다. 단백질의 비효소적 당화반응은 (1)단백질의 리신 잔기 등의 아미노산 그룹과 환원당의 알데히드 또는 케톤이 효소 작용 없이 친핵성 첨가 반응을 하여 초기 단계 산물인 쉬프염기(schiff base)를 형성하고, 상기 쉬프염기와 인접한 케토아민 어닥트(ketoamine adduct)가 서로 축합하여 가역적인 아마도리형의 조기당화산물이 생성되는 단계와 (2) 고혈당 상태가 지속되어 가역적인 아마도리(Amadori)형의 조기당화산물이 분해되지 않고 재배열(rearrangement)되어 단백질과 교차결합(cross-linking)하여 비가역적인 최종당화산물이 생성되는 단계로 나눌 수 있다.Nonenzymatic glycation of protein refers to the condensation reaction of a group of amino acids such as protein lysine residues and reducing sugars by enzymatic reaction, that is, milliard reaction, without enzymatic action. As a result of this reaction, advanced glycation endproducts, AGEs). Non-enzymatic glycosylation of protein (1) an amino acid group such as a lysine residue of a protein and an aldehyde or ketone of a reducing sugar undergo a nucleophilic addition reaction without enzymatic action to form a Schiff base, an early product. When the Schiffbase and the adjacent ketoamine adduct condensate with each other to produce a reversible Amadori type of early glycosylated product, and (2) the hyperglycemic state is continued, and a reversible Amadori type of early glycated product is produced. It can be divided into steps that are rearranged without degradation and cross-linked with the protein to produce an irreversible final glycation product.

가역적인 아마도리형의 조기당화산물과 달리 최종당화산물은 비가역적인 반응 산물이므로, 일단 생성되면 혈당이 정상으로 회복되어도 분해되지 않고 단백질 생존기간 동안 조직에 축적되어 조직의 구조와 기능을 비정상적으로 변화시켜 조직 곳곳에서 합병증을 유발시킨다(Vinson, J. A. et al., 1996, J. Nutritinal Biochemistry 7: 559-663; Smith, P. R. et al., 1992, Eur . J. Biochem., 210: 729-739).Unlike the reversible Amadori type of early glycosylated products, the final glycosylated product is an irreversible reaction product. Once produced, blood sugar does not decompose even when it returns to normal, but accumulates in the tissues during protein survival, causing abnormal changes in tissue structure and function. Causes complications throughout tissues (Vinson, JA et al., 1996, J. Nutritinal Biochemistry 7: 559-663; Smith, PR et al., 1992, Eur . J. Biochem ., 210: 729-739).

예를 들면, 포도당과 여러 종류의 단백질이 반응하여 생성된 최종당화산물 중 하나인 당화 알부민은 만성 당뇨성 신증을 일으키는 중요한 요인으로 작용한다. 당화 알부민은 당화가 진행되지 않은 정상 알부민에 비해 더 용이하게 신사구체 세포 내로 유입되고, 고농도의 포도당은 메산지움 세포를 자극하여 세포외 기질 (extracellular matrix)합성을 증가시킨다. 과도하게 유입된 당화 알부민과 증가된 세포외 기질로 인하여 신사구체의 섬유화가 야기된다. 이와 같은 기전으로 신사구체가 계속 손상 받게 되어 혈액투석 또는 장기이식 등의 극단적인 치료방법을 쓸 수밖에 없는 단계에 이르게 되는 것이다. 또한, 만성 당뇨로 인하여 동맥벽에서는 콜라겐이, 신사구체에서는 기저막성 단백질이 최종당화산물과 결합되어 조직에 축적됨이 보고된바 있다(Brownlee, M., et al., 1986, Sciences, 232, 1629-1632).For example, glycated albumin, one of the final glycation products produced by the reaction of glucose and various proteins, is an important factor in causing chronic diabetic nephropathy. Glycosylated albumin enters renal glomeruli more easily than normal albumin without glycosylation, and high concentrations of glucose stimulate mesangium cells to increase extracellular matrix synthesis. Excessly introduced glycated albumin and increased extracellular matrix result in fibrosis of the glomeruli. These mechanisms continue to damage the glomerulus, leading to the stage of extreme treatment methods such as hemodialysis or organ transplantation. In addition, chronic diabetes has been reported to accumulate collagen in the arterial wall and basal membrane protein in the renal glomeruli and to accumulate in tissues (Brownlee, M., et al., 1986, Sciences , 232, 1629-). 1632).

이처럼 비효소적 단백질 당화반응에 의하여 기저막, 혈장 알부민, 수정체 단백질, 피브린, 콜라겐 등의 단백질에서 당화가 일어나며, 생성된 최종당화산물이 조직의 구조와 기능을 비정상적으로 변화시켜 당뇨성 망막병증(diabetic retinopathy), 당뇨성 백내장(diabetic cataract), 당뇨성 신증(diabetic nephropathy), 당뇨성 신경병증(diabetic neuropathy) 등의 만성 당뇨합병증을 유발시킨다. As described above, glycosylation occurs in proteins such as basement membrane, plasma albumin, lens protein, fibrin, and collagen by non-enzymatic protein glycosylation, and the resulting glycosylated product abnormally changes the structure and function of the diabetic diabetic retinopathy. chronic diabetes complications such as retinopathy, diabetic cataract, diabetic nephropathy, and diabetic neuropathy.

또한, 고혈당 상태에서 최종당화산물이 생성되는 과정에서 지질대사 이상이 일어나고 동시에 생성되는 유해한 산소 자유라디칼에 대한 방어시스템 기능이 저하되어 산화적 스트레스가 유발된다고 보고된바 있다(Yokozawa, T., et al, 2001, J. of Trad . Med., 18: 107-112). 이처럼 비효소적 당화반응과 산화적 스트레스(oxidative stress) 작용 기전이 서로 연관되어 있다.In addition, it has been reported that lipid metabolism abnormalities occur in the process of producing the final glycated product in hyperglycemic state and oxidative stress is caused by deterioration of defense system function against harmful oxygen free radicals (Yokozawa, T., et. al, 2001, J. of Trad . Med ., 18: 107-112). As such, the mechanism of action of non-enzymatic glycosylation and oxidative stress is related.

폴리올 경로란 (1)알도스나 케토스로부터 알도스 환원효소(AR)작용에 의해 환원되어 솔비톨을 형성하는 단계 및 (2) 솔비톨이 솔비톨 탈수소효소에 의해 산화되어 과당을 생성하는 단계로 이루어지는 과정이다. 고혈당에 의하여 폴리올 경로 가 활성화되고, 이로 인해 솔비톨과 과당이 과도하게 생성되고 조직에 축적되어 삼투압이 증가된다. 증가된 삼투압으로 인하여 수분이 인입되어 당뇨성 망막병증(diabetic retinopathy), 당뇨성 백내장diabetic (cataract), 당뇨성 신경병증(diabetic neuropathy) 등으로 진행된다(당뇨병학, 김응진 외, 대한 당뇨병학회, 고려의학, 483쪽; Soulis-Liparota, T., et al., 1995, Diabetologia, 38: 357-394).The polyol pathway is a process consisting of (1) reduction from aldose or ketose by aldose reductase (AR) to form sorbitol, and (2) sorbitol is oxidized by sorbitol dehydrogenase to produce fructose. . Hyperglycemia activates the polyol pathway, resulting in excessive production of sorbitol and fructose and accumulation in tissues resulting in increased osmotic pressure. Increased osmotic pressure causes water to enter, leading to diabetic retinopathy, diabetic cataract, and diabetic neuropathy (Diabetes, Kim Eung-jin, et al. Medicine, p. 483; Soulis-Liparota, T., et al., 1995, Diabetologia , 38: 357-394).

최종당화산물이 사람의 미세혈관 내피세포에서 폴리올 경로의 주효소인 알도스 환원효소(AR)를 활성화시키는 것이 보고된바 있다(Nakamura, N., et al., 2000, Free Radic Biol . Med., 29: 17-25). 정상상태에서는 알도스 환원효소가 포도당에 대하여 친화력이 매우 낮지만, 고농도의 포도당에서는 알도스 환원효소가 활성화되어 과도하게 포도당을 솔비톨로 환원시키고, 이 솔비톨이 솔비톨 탈수소효소에 의해 과당으로 전환된다. 이 과당은 포도당에 비하여 단백질의 비효소적 당화반응의 속도가 약 10배 정도 빠르다. 따라서 고농도의 과당이 단백질과 결합하여 결국은 최종당화산물의 형성을 가속화시킨다. Final glycation end products have been reported to activate aldose reductase (AR), the main enzyme of the polyol pathway, in human microvascular endothelial cells (Nakamura, N., et al., 2000, Free Radic) Biol . Med ., 29: 17-25). In a steady state, aldose reductase has a very low affinity for glucose, but at high concentrations of glucose, aldose reductase is activated to excessively reduce glucose to sorbitol, and this sorbitol is converted to fructose by sorbitol dehydrogenase. This fructose is about 10 times faster than non-enzymatic glycosylation of protein. Thus, high concentrations of fructose bind to the protein and eventually accelerate the formation of the final glycated product.

이와 같이 비효소적 당화반응, 폴리올 경로 및 산화적 스트레스(oxidative stress) 작용 기전들이 서로 연관되어 당뇨합병증을 유발시킨다. 따라서, 당뇨합병증의 발병을 지연하거나 예방 또는 치료하기 위해서는 최종당화산물의 형성을 억제하는 것이 매우 중요함이 밝혀졌다(Brownlee, M., et al., 1988, N. Engl. Med ., 318, 1315-1321).As such, non-enzymatic glycosylation, polyol pathways and oxidative stress mechanisms of action are linked to each other to cause diabetic complications. Therefore, it has been found that it is very important to inhibit the formation of final glycation end products in order to delay, prevent or treat the development of diabetic complications (Brownlee, M., et al., 1988, N. Engl. Med . , 318, 1315-1321).

현재, 단백질 당화 억제제로 합성제제인 아미노구아니딘(aminoguanidine)은 친핵성 히드라진(hydrazine)으로 아마도리 산물과 결합하여 단백질과의 교차결합을 방지함으로써 최종당화산물의 생성을 억제하여 합병증으로 진전되는 것을 지연 또는 방지한다(Brownlee, M., et al., 1986, Sciences, 232, 1629-1632; Edelstein, D. et al., 1992, Diabetes, 41, 26-29). 아미노구아니딘은 당뇨합병증의 예방 및 치료에 가장 유망한 합성 의약품으로 제 3상 임상실험까지 진행되었으나, 장기간 투여 시 독성이 유발되는 문제점이 나타나 중단되었다.또한, 알도즈 리덕테이즈 효소 작용을 억제하여 소르비톨 축적을 방지하여 당뇨병성 망막증을 예방 치료효능이 우수한 일본의 에팔레스타트(epalrestat)도 시판 후 독성이 증명되어 시장에서 철수되었다. Currently, aminoguanidine, a synthetic glycosylation inhibitor, is a nucleophilic hydrazine, which binds with the amadori product to prevent cross-linking with proteins, thereby inhibiting the formation of the final glycation product and delaying its development into complications. Or prevented (Brownlee, M., et al., 1986, Sciences , 232, 1629-1632; Edelstein, D. et al., 1992, Diabetes , 41, 26-29). Aminoguanidine is the most promising synthetic drug for the prevention and treatment of diabetic complications, but until the phase 3 clinical trial, it was stopped due to the problem of causing toxicity during prolonged administration.In addition, sorbitol was inhibited by inhibiting the action of aldose reductase enzyme. Preventing accumulation and preventing diabetic retinopathy Japan's epilestat, which has excellent therapeutic efficacy, has also been withdrawn from the market due to its post-market toxicity.

그래서, 안전하고 효능이 우수한 천연약제의 개발이 요망되고 있는 실정이다. Therefore, the development of natural drugs with excellent safety and efficacy is desired.

이에 본 발명자들은 참소리쟁이 알코올 추출물의 에틸 아세테이트층에서 분리한 새로운 트리테르페노이드(triterpenoid) 화합물인 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드가 최종당화산물의 생성을 억제하여 당뇨합병증의 치료 및 예방에 사용될 수 있음을 발견하여 본 발명을 완성하였다. Therefore, the present inventors have identified a novel triterpenoid compound, 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12, which was isolated from the ethyl acetate layer of the alcoholic extract of Chamsori. The present invention has been completed by discovering that -diene-28-oic acid can be used for the treatment and prevention of diabetic complications by inhibiting the production of the final glycation end products.

이에 본 출원인은 상기와 같은 문제점을 해결하기 위하여 당뇨합병증의 원인, 처방 및 치료법 등에 대한 계속적인 연구를 하였으며, 본 발명은 당뇨합병증 유발 원인 중의 하나인 최종당화산물의 생성을 억제하는 효과를 갖는 트리테르페노이드(triterpenoid) 화합물인 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드를 참소리쟁이 추출물에서 계통분리하여 얻은 에틸아세테이트층에서 분리하여 제공하는데 그 목적이 있다.In order to solve the above problems, the present applicant has continuously studied the causes, prescriptions, and treatment methods of diabetic complications. Ethyl obtained by systemic separation of triterpenoid compounds, 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruz-4 (23), 12-diene-28-oic acid from Chassori extract The purpose is to provide it separately from the acetate layer.

본 발명의 다른 목적은 상기 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 함유하는 당뇨합병증의 예방 및 치료용 또는 노화방지 및 지연용 약학적 조성물을 제공하는 것이다.Another object of the present invention is the prevention of diabetic complications containing 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid as an active ingredient and It provides a therapeutic or anti-aging and delayed pharmaceutical composition.

본 발명의 또 다른 목적은 상기 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 함유하는 당뇨합병증의 예방 및 치료용 또는 노화방지 및 지연용 기능성 식품을 제공하는 것이다.Another object of the present invention is the prevention of diabetic complications containing 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid as an active ingredient. And to provide a functional or anti-aging and delayed functional food.

상기 본 발명의 목적을 달성하기 위한 본 발명에 따른 참소리쟁이에서 분리되는 트리테르페노이드 화합물은 참소리쟁이를 20 ~ 80%의 알콜을 이용하여 추출한 다음, 감압 농축하여 참소리쟁이 조추출물을 얻는 제1단계와; 상기 참소리쟁이 조추출물을 증류수에 현탁한 다음, 노르말헥산을 첨가하여 노르말헥산층에 용해되는 성분을 분리하고 진공건조하여 노르말헥산 가용분획물을 얻는 제2단계와; 상기 제2단계에서 노르말헥산층을 분리하고 남은 수층에 에틸아세테이트를 첨가하여 에틸아세테이트에 용해되는 성분을 분리하고 진공건조하여 에틸아세테이트 가용분획물을 얻는 제3단계와; 상기 에틸아세테이트 가용분획물을 클로포름:메탄올 혼합용매 농 도구배(1:0→0:1)로 실리카 겔 칼럼크로마토그라피를 실시하여 12개의 분획을 얻는 제4단계와; 상기 제4단계의 12개의 분획 중 5번째 분획을 노르말헥산:에틸아세테이트:메탄올 혼합용매 농도구배(6:3.5:0.5→2:2:1)로 실리카 겔 칼럼크로마토그라피를 실시하여 10개의 분획을 얻는 제5단계와; 상기 제5단계의 10개의 분획 중 3번째 분획을 메탄올:물이 3:1로 혼합된 용출액으로 역상실리카 겔 칼럼크로마토그라피를 실시하여 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 얻는 제6단계로 이루어지는 것을 특징으로 한다.The triterpenoid compound to be separated from the chassam in accordance with the present invention for achieving the object of the present invention is extracted by using the alcohol of 20 ~ 80%, then concentrated under reduced pressure to obtain a crude extract of Chamsori Steps; A second step of suspending the crude extract from Chamsori, and then adding normal hexane to separate components dissolved in the normal hexane layer and vacuum drying to obtain a normal hexane soluble fraction; A third step of separating the normal hexane layer in the second step, adding ethyl acetate to the remaining aqueous layer, separating the component dissolved in ethyl acetate, and vacuum drying to obtain an ethyl acetate soluble fraction; A fourth step of subjecting the ethyl acetate soluble fraction to silica gel column chromatography using chloroform: methanol mixed solvent concentration tool (1: 0 → 0: 1) to obtain 12 fractions; The fifth fraction of the 12 fractions of the fourth step was subjected to silica gel column chromatography with a normal hexane: ethyl acetate: methanol mixed solvent concentration gradient (6: 3.5: 0.5 → 2: 2: 1) to obtain 10 fractions. A fifth step of obtaining; The third fraction of the ten fractions of the fifth step was subjected to reverse phase silica gel column chromatography with an eluate of methanol: water 3: 1, followed by 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-nor Urus-4 (23), 12-diene-28- Oye seed is characterized in that the sixth step to obtain.

또한, 본 발명에 따른 당뇨합병증 예방 및 치료를 위한 약학조성물 및 기능성 식품은 상기 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 함유하는 것을 특징으로 한다.In addition, the pharmaceutical composition and functional food for preventing and treating diabetic complications according to the present invention are the 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28- It is characterized in that it contains OIC acid as an active ingredient.

또한, 본 발명에 따른 노화방지 또는 지연용 약학조성물 및 기능성 식품은 상기 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 함유하는 것을 특징으로 한다.In addition, the anti-aging or delayed pharmaceutical composition and functional food according to the present invention is the 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid It is characterized by containing as an active ingredient.

본 발명에 사용되는 참소리쟁이는 한국에 널리 분포되어있는 마디풀과(Polygonaceae)의 다년생 초본이며, 이 식물의 뿌리는 양제근 또는 우의대황이라 하여 담, 황달, 변비, 개선, 자궁출혈 등을 치료하는 전통약재로 사용되어왔다 (Bae K., "Medicinal Plants of Korea," Kyo-Hak Publishing Co., Seoul, 2000; p 92). 또한 생리·약리학적 활성에 관한 연구로는 항산화활성(Li et al., J. Dermatology, 27, 761-768, 2000), 세포독성(Kim et al., Yakhak Hoeji, 42, 233- 237, 1998), 항균활성(Nishina et al., J. Agric . Food Chem., 41, 1772-1775, 1993; Odani et al., Shoyakugaku Zasshi, 31, 151-154, 1977)을 비롯한 다양한 활성이 보고되었으며, 성분에 관한 연구로는 플라보노이드(flavonoids) (Aritomi et al., Chem . Pharm . Bull., 13, 1470-1471, 1965), 안트라퀴논(anthraquinone) 유도체(Kim et al., Yakhak Hoeji, 42, 233-237, 1998; Hwang et al., J. Korean Soc . Appl . Biol . Chem., 47, 274-278, 2004) 및 나프탈렌(naphthalene) 유도체(Kim et al., Yakhak Hoeji, 42, 233-237, 1998; Nishina et al., J. Agric . Food Chem., 41, 1772-1775, 1993; Aritomi et al., Chem . Pharm . Bull., 13, 1470-1471, 1965; Zee et al., Arch. Pharm . Res., 21, 485-486, 1998)들이 보고되었다. Chamsori used in the present invention is a perennial herb of Polygonaceae which is widely distributed in Korea, and the root of this plant is called Yangje Geun or Rhubarb Rhubarb, which is a tradition of treating phlegm, jaundice, constipation, improvement, and uterine bleeding. It has been used as a medicinal herb (Bae K., "Medicinal Plants of Korea," Kyo-Hak Publishing Co., Seoul, 2000; p 92). In addition, studies on physiological and pharmacological activities include antioxidant activity (Li et al., J. Dermatology , 27 , 761-768, 2000), cytotoxicity (Kim et al., Yakhak) . Hoeji , 42 , 233- 237, 1998), antimicrobial activity (Nishina et al., J. Agric . Food Chem ., 41 , 1772-1775, 1993; Odani et al., Shoyakugaku Zasshi , 31 , 151-154, 1977 A variety of activities have been reported, including studies on flavonoids (Aritomi et al., Chem . Pharm . Bull. , 13 , 1470-1471, 1965), anthraquinone derivatives (Kim et al., Yakhak Hoeji , 42 , 233-237, 1998; Hwang et al., J. Korean Soc . Appl . Biol . Chem., 47 , 274-278, 2004) and naphthalene derivatives (Kim et al. , Yakhak Hoeji, 42, 233-237, 1998; Nishina et al, J. Agric Food Chem, 41, 1772-1775, 1993;....... Aritomi et al, Chem Pharm Bull, 13, 1470-1471 , 1965; Zee et al., Arch. Pharm . Res ., 21 , 485-486, 1998).

그러나 참소리쟁이에 대한 지속적인 연구에도 불구하고, 참소리쟁이의 당뇨 합병증 예방 또는 치료제로서의 용도와 이와 관련된 화학적 성분에 대한 어떠한 교시도 시사된 바 없다.However, despite the ongoing study of Chassam, no teachings have been made on the use of Chamsoris as a prophylactic or therapeutic agent for diabetes complications and related chemical components.

이하, 본 발명을 실시예를 들어 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

I. I. 트리테르페노이드Triterpenoids 제조 Produce

1. 제1단계 : 1. The first step: 참소리쟁이A bullshit (( RumexRumex japonicusjaponicus HouttHoutt .. ) ) 조추출물의Crude extract 제조 Produce

대전시 유성구 전민동 인근 지역에서 참소리쟁이(Rumex japonicus Houtt.)를 채집하고 세척·세절한 줄기(생체중, 7.7kg)를 80% 알콜(본 실시예에서는 에탄올을 사용함.) 20 ℓ에 넣고, 추출용기에서 상온에서 3일씩 3회 추출하였으며, 추출액을 감압 농축하여 참소리쟁이 조추출물 185 g을 수득하였다. Rumex japonicus Houtt. Was collected in the vicinity of Jeonmin-dong, Yuseong-gu, Daejeon. Extraction was performed three times at room temperature three times, and the extract was concentrated under reduced pressure to obtain 185 g of the extract of Chamsori.

2. 제2단계 : 참소리쟁이 노르말헥산 2. The second stage: normal hexane 가용분획물의Soluble fraction 제거 remove

상기 제1단계에서 얻은 참소리쟁이 조추출물 180 g을 증류수 1.5 ℓ에 현탁시킨 후, 노르말헥산 1.5 ℓ를 첨가하여 용해한 다음 이를 분획여두에서 노르말헥산층에 용해되는 성분만 분리하여 진공 건조하였다. 이 과정을 3회 반복 수행하여 노르말헥산 가용분획물 7.6 g을 수득하였다. 180 g of the crude extract obtained from the first step was suspended in 1.5 L of distilled water, and then dissolved by adding 1.5 L of normal hexane, which was then dried in vacuo by separating only the components dissolved in the normal hexane layer. This process was repeated three times to obtain 7.6 g of normal hexane soluble fraction.

3. 제3단계 : 3. Third step: 참소리쟁이A bullshit 에틸아세테이트  Ethyl acetate 가용분획물의Soluble fraction 제조 Produce

상기 제2단계에서 노르말헥산 가용분획물을 분리하고 남은 수층에 에틸아세테이트 1.5 ℓ를 첨가하여 분획여두에서 에틸아세테이트에 용해되는 성분만 분리하여 진공 건조하였다. 이 과정을 3회 반복 수행하여 에틸아세테이트 가용 분획물 24.0 g을 수득하였다. In the second step, the soluble fraction of normal hexane was separated, and 1.5 L of ethyl acetate was added to the remaining aqueous layer, and only the components dissolved in ethyl acetate in the fractional filter were separated and dried in vacuo. This process was repeated three times to obtain 24.0 g of an ethyl acetate soluble fraction.

4. 제4단계 ~ 제6단계 : 4. Step 4 ~ Step 6: 2알파2 alpha , , 3알파3 alpha , 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 제조, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid

가. 제4단계end. 4th step

에틸아세테이트 가용 분획물 21 g을 클로로포름:메탄올 혼합용매 농도구배 (1:0 → 0:1)로 실리카 겔 칼럼크로마토그라피 (실리카 겔 60, 70 내지 230 메쉬, Merch사)를 실시하여 12개의 분획으로 나누었다.21 g of the ethyl acetate soluble fraction was divided into 12 fractions by silica gel column chromatography (silica gel 60, 70-230 mesh, Merch) using a chloroform: methanol mixed solvent concentration gradient (1: 0 → 0: 1). .

나. 제5단계I. 5th step

상기 제4단계의 첫 번째 칼럼으로부터 분리된 5번째 분획(1.98 g)을 취하여 노르말헥산:에틸아세테이트:메탄올 혼합용매구배 (6:3.5:0.5 →2:2:1)로 실리카 겔 칼럼크로마토그라피 (실리카 겔 60, 230 내지 400 메쉬, Merch사)를 실시하여 10개의 분획으로 나누었다.The fifth fraction (1.98 g) separated from the first column of the fourth step was taken and subjected to silica gel column chromatography (Normal hexane: ethyl acetate: methanol mixed solvent gradient (6: 3.5: 0.5 → 2: 2: 1). Silica gel 60, 230-400 mesh, Merch) was carried out and divided into 10 fractions.

다. 제6단계All. 6th step

상기 제5단계의 두 번째 칼럼으로부터 분리된 3번 분획을 메탄올:물 3:1을 용출액으로 한 역상실리카 겔 칼럼크로마토그라피 (ODS 12 nm S-150 ㎛, YMC)를 실시하여 하기 물리화학적 성질을 갖는 2알파, 3알파, 19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드 12 mg을 분리하였다.The third fraction separated from the second column of the fifth step was subjected to reverse phase silica gel column chromatography (ODS 12 nm S-150 μm, YMC) using methanol: water 3: 1 as an eluent to obtain the following physical and chemical properties. 12 mg of 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid having a separation were isolated.

※ 제1단계 내지 제6단계에 의해 분리된 2알파, 3알파, 19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드의 물리화학적 성질※ Physical and chemical properties of 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid separated by the first to sixth steps

-. 상태 : 흰색분말-. Condition: White Powder

-. 융점(mp) : 234 ~ 236 ℃-. Melting Point (mp): 234 ~ 236 ℃

-. [α]D25 +73.0 (c = 0.05, MeOH); IR (KBr) cm-1: 3570, 3412, 3075, 2930, 2863, 1689, 1459, 1380, 1238, 1047, 905-. [a] D25 +73.0 ( c = 0.05, MeOH); IR (KBr) cm-1: 3570, 3412, 3075, 2930, 2863, 1689, 1459, 1380, 1238, 1047, 905

-. 1H- (pyridine-d5, 300 MHz) and 13C- NMR (pyridine-d5, 75 MHz) data, 표 1 참조-. 1 H- (pyridine- d 5, 300 MHz) and 13 C- NMR (pyridine- d 5, 75 MHz) data, see Table 1

-. EIMS m/z (rel. int.): 472 [M]+ (7), 439 (17), 426 (61), 354 (14), 264 (9), 246 (26), 201 (25), 146 (100)-. EIMS m / z (rel. Int.): 472 [M] + (7), 439 (17), 426 (61), 354 (14), 264 (9), 246 (26), 201 (25), 146 (100)

-. HRESIMS m/z: 495.3081 ([M+Na]+, Calcd for C29H44O5Na: 495.3098).-. HRESIMS m / z : 495.3081 ([M + Na] < + >, Calcd for C29H44O5Na: 495.3098).

화합물 1의 1H- 와 13C NMR 자료(δ ppm) 1 H- and 13 C NMR data for Compound 1 (δ ppm) 위 치location CC H(J, Hz)H (J, Hz) 위 치location CC H(J,Hz)H (J, Hz) 1  One 44.5  44.5 1.87t(12.0) 2.08(overlap)1.87 t (12.0) 2.08 (overlap) 16  16 26.9  26.9 2.05(overlap) 3.12dt(12.8,3.0)2.05 (overlap) 3.12dt (12.8,3.0) 22 69.969.9 4.12brdt(11.4,4.2)4.12 brdt (11.4,4.2) 1717 48.848.8 33 77.077.0 4.66d(2.4)4.66d (2.4) 1818 55.255.2 3.06s3.06 s 44 153.7153.7 1919 73.173.1 55 45.845.8 2.69d(2.4)2.69d (2.4) 2020 42.942.9 1.52(overlap)1.52 (overlap) 66 21.421.4 2121 27.427.4 77 32.732.7 2222 38.738.7 88 41.041.0 2323 109.9109.9 4.77s,5.14s4.77s, 5.14s 99 45.745.7 2.17(overlap)2.17 (overlap) 2424 -- -- 1010 38.938.9 2525 14.814.8 0.84s0.84 s 11 11 25.4 25.4 2.11brd(13.2) 2.28brd(13.2)2.11 brd (13.2) 2.28 brd (13.2) 26 26 17.8  17.8 1.16s  1.16 s 1212 128.6128.6 5.62brs5.62brs 2727 25.125.1 1.66s1.66 s 1313 140.7140.7 2828 181.2181.2 1414 42.842.8 2929 27.627.6 1.44s1.44 s 15  15 29.6  29.6 1.26brd(13.2) 2.34dt(13.2,2.4)1.26 brd (13.2) 2.34dt (13.2,2.4) 30  30 17.3  17.3 1.13d(6.6)  1.13d (6.6)

II. 분리된 II. Separated 2알파2 alpha , , 3알파3 alpha , 19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드의 구조규명, 19 Alpha-Trihydrock-24-Norrus-4 (23), 12-Diene-28-Oemic Acid

분리된 화합물은 백색분말이며, HRESIMS실험에서 얻은 분자이온([M]+) m/z 495.3080(C29H44O5Na)으로부터 분자식이 C29H44O5임을 알 수 있었다(구조식은 도1참조). 화합물의 IR 스펙트럼은 카르복실기(carboxyl, 1689 cm-1), 수산기(hydroxyl, 3432 cm-1) 및 엑소사이클릭 메틸렌기(exocyclic methylene, 3075, 1652 cm-1)의 흡수를 보여주었다.The separated compound is a white powder, and from the molecular ion ([M] +) m / z 495.3080 (C 29 H 44 O 5 Na) obtained in the HRESIMS experiment, it was found that the molecular formula is C 29 H 44 O 5 . 1). IR spectra of the compounds showed absorption of carboxyl (1689 cm −1 ), hydroxyl (hydroxyl, 3432 cm −1 ) and exocyclic methylene (3075, 1652 cm −1 ).

화합물의 1H- NMR자료(표 1)와 COSY 스펙트럼 분석결과 4개의 메틸기(δ 1.66, 1.44, 1.16 및 0.84, s, 3H), 2차 메틸기 (δ 1.13, J = 6.6 Hz, d, 3H), 삼치환 올레핀 이중결합(δ 5.62, br s), 그리고 엑소사이클릭 메틸렌기(δ 5.14와 4.77, s, 1H)의 존재를 확인할 수 있었다. 1 H- NMR data of the compound (Table 1) and COSY spectrum analysis result of 4 methyl groups (δ 1.66, 1.44, 1.16 and 0.84, s, 3H), secondary methyl group (δ 1.13, J = 6.6 Hz, d, 3H), trisubstituted olefin double bond (δ 5.62, br s), and exocyclic methylene groups (δ 5.14 and 4.77, s, 1H) were confirmed.

또한, δ 4.66 (d, J = 2.4 Hz, 1H)과 4.12 (br dt, J = 11.4와 4.2 Hz, 1H) 위치에서 두 개의 옥시메틴 프로톤(oxymethine protons)을 확인할 수 있었으며, δ 3.06 위치의 단일선 (H-18)과 19-수산기의 아니소트로프 효과(anisotropic effect)에 의해 저자장으로 이동한 δ 3.12 위치의 특징적인 삼중선의 이중선(double of triplet signal, J = 12.8와 3.0 Hz, 1H, H-16)은 화합물이 C-19 위치에 수산기를 가진 우루스-12-엔(urs-12-ene) 유도체의 일종이라는 사실을 입증해준다 (Aquino et al., J. Nat. Prod., 53, 559-564, 1990).In addition, two oxymethine protons were identified at positions δ 4.66 (d, J = 2.4 Hz, 1H) and 4.12 (br dt, J = 11.4 and 4.2 Hz, 1H), and a single δ 3.06 position was observed. Characteristic double of triplet signal at position δ 3.12 shifted to low field by anisotropic effect of line (H-18) and 19-hydroxy group, J = 12.8 and 3.0 Hz, 1H, H-16) demonstrates that the compound is a type of urs-12-ene derivative with a hydroxyl at the C-19 position (Aquino et al., J. Nat. Prod ., 53 , 559-564, 1990).

화합물의 13C- NMR 스펙트럼(표 1) 또한 δ 128.6과 140.7 (C-12와 C-13)에서 올레핀기, δ 109.9와 153.7 (C-4와 C-23)에서 엑소사이클릭 메틸렌기, δ 181.2 (C-28)에서 카르복실기, 그리고 δ 69.9, 73.1 및 77.0 (C-2, C-3 및 C-19)에서 3개의 수산화된 탄소의 존재를 보여주었다. 모든 치환기들의 위치는 COSY와 HMBC NMR 기법(도 2)을 통해 확정하였다. 13 C-NMR spectra of the compounds (Table 1) also show olefin groups at δ 128.6 and 140.7 (C-12 and C-13), exocyclic methylene groups at δ 109.9 and 153.7 (C-4 and C-23), δ The presence of a carboxyl group at 181.2 (C-28) and three hydroxylated carbons at δ 69.9, 73.1 and 77.0 (C-2, C-3 and C-19). The location of all substituents was confirmed via COSY and HMBC NMR techniques (FIG. 2).

EIMS 스펙트럼 또한 17번 위치에 카르복실기와 D나 E 고리에 수산기를 가지는 우루스-12-엔계 화합물들의 전형적인 retro-Diels-Alder cleavage 단편이온[ fragment ions, m/z 264, 246 (264-H2O), 201 (246-COOH)]들을 보여주었다 (Aquino et al., J. Nat. Prod., 53, 559-564, 1990). 화합물 1(J = 2.4 Hz)과 유사화합물인 미리안틱산(myrianthic acid, J = 2.7 Hz) (Jin et al., Arch. Pharm. Res., 27, 376-380, 2004)의 2번과 3번 수소간의 짝지음 상수(coupling constant)가 비슷하며 1, 5, 10, 23, 및 25번 탄소의 화학적 이동 값이 또 다른 유사화합물인 2,3-dihydroxy-24-nor-4(23),12-oleanadien-28-oic acid(Ballesta-Acosta et al., J. Nat. Prod., 65, 1513-1515, 2002)와 거의 동일한 점으로 보아 화합물의 2번과 3번에 위치한 두 수산기들의 입체구조를 둘 다 α로 예상하였다. 이 예상은 2번 수소와 3번과 5번 수소간의 강한 NOE 상관성을 보여준 화합물의 NOESY NMR 스펙트럼 자료(도 3)로 입증되었다.The EIMS spectrum is also typical of the retro- Diels-Alder cleavage fragment ions of the Urus-12-ene compounds having a carboxyl group at position 17 and a hydroxyl group at the D or E ring [fragment ions, m / z 264, 246 (264-H2O), 201 (246-COOH)] (Aquino et al., J. Nat. Prod ., 53 , 559-564, 1990). 2 and 3 of myrianthic acid ( J = 2.7 Hz) (Jin et al., Arch. Pharm. Res ., 27 , 376-380, 2004), which are analogous to compound 1 ( J = 2.4 Hz) 2,3-dihydroxy-24-nor-4 (23), which has a similar coupling constant between hydrogens and another similar chemical compound with carbon shifts of 1, 5, 10, 23, and 25, The conformation of the two hydroxyl groups at positions 2 and 3 of the compound is almost identical to 12-oleanadien-28-oic acid (Ballesta-Acosta et al., J. Nat. Prod. , 65 , 1513-1515, 2002) . Both structures were expected as α. This prediction was evidenced by the NOESY NMR spectral data (FIG. 3) of the compounds showing strong NOE correlations between hydrogen 2 and hydrogen 3 and 5.

따라서 이 새로운 화합물의 구조는 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드이다.Thus the structure of this new compound is 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid.

상기 2알파, 3알파, 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-오익에시드의 물리화학적 성질 및 구조를 규명하기 위하여 실시한 실험에 사용된 시약 및 기기는 다음과 같다.Reagents used in the experiments conducted to investigate the physicochemical properties and structure of the 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid; The device is as follows.

융점(melting point)은 IA9100 융점측정기(Barnstead International, USA), 광학활성도(optical rotation)는 a P-1020 디지털 폴라리메터(Jasco, Japan), IR 스펙트럼은 FTS 165 FT-IR 스펙트로포토메터(Bio-Rad, CA), 그리고 LREI와 HRESIMS는 Autospec (Micromass, UK)과 Mariner 메스 스펙트로메터(Perspective Biosystem, USA)로 각각 측정하였다. NMR 실험은 DRX-300 FT-NMR (Bruker, Germany)로, TLC 분석은 Kieselgel 60 F254 (Merck) plates (silica gel, 0.25 mm layer thickness)로 수행하였다. 발색은 10% 황산용액(Aldrich)을 분무한 후 110℃에서 5-10분간 가열하였다. 칼럼 크로마토그라피용 고정상으로는 실리카겔 (Merck 60A, 70-230 또는 230-400 메쉬), 세파덱스 (Sephadex) LH-20 (Amersham Pharmacia Biotech), 그리고 역상실리카겔 (YMC Co., ODS-A 12 nm S-150 m)등을 사용하였다. Melting point is IA9100 Melting Point Analyzer (Barnstead International, USA), optical rotation is a P-1020 digital polarimeter (Jasco, Japan), IR spectrum is FTS 165 FT-IR spectrophotometer (Bio -Rad, CA), and LREI and HRESIMS were measured by Autospec (Micromass, UK) and Mariner mass spectrometer (Perspective Biosystem, USA), respectively. NMR experiments were performed with DRX-300 FT-NMR (Bruker, Germany) and TLC analysis with Kieselgel 60 F254 (Merck) plates (silica gel, 0.25 mm layer thickness). Color development was heated at 110 ° C. for 5-10 minutes after spraying 10% sulfuric acid solution (Aldrich). Silica gels (Merck 60A, 70-230 or 230-400 mesh), Sephadex LH-20 (Amersham Pharmacia Biotech), and reversed phase silica gel (YMC Co., ODS-A 12 nm S-150 m) were used.

III. III. 2알파2 alpha , , 3알파3 alpha , 19알파-트리히드록시-24-노르우루스-4(23),12-디엔-28-, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28- 오익에시드의Oicked 시험관 내에서   In vitro 최종당화산물Final Glycation Product 생성억제 효능분석 Production Inhibition Effect Analysis

단백질원(原)으로 소혈청알부민(bovine serum albumin, 이하 BSA라고 한다: 미국 시그마 제품)을 택하였다. BSA을 10 ㎎/㎖의 농도가 되도록 50 mM 인산 완충 용액(phosphate buffer; pH 7.4)에 가하여 제조하였다. 당원(原)으로는 0.2 M 과당과 0.2 M 글루코스가 혼합된 액을 사용하였다. 제조된 BSA 용액에 과당과 글루코스 혼합액을 가하였다. 5 ~ 100 ㎍/㎖ 사이 농도의 참소리쟁이추출물과 각 분획층을 시료군으로 하여 15% tween 80에 용해한 후, 이를 상기 BSA 와 당의 혼합액에 첨가하고 37℃에서 7일간 배양하였다.Bovine serum albumin (hereinafter referred to as BSA: Sigma, USA) was selected as a protein source. BSA was prepared by adding 50 mM phosphate buffer (pH 7.4) to a concentration of 10 mg / mL. As a sugar source, a mixture of 0.2 M fructose and 0.2 M glucose was used. A fructose and glucose mixture was added to the prepared BSA solution. After dissolving the sesame extract and each fraction layer of the concentration between 5 ~ 100 ㎍ / ㎖ in 15% tween 80 as a sample group, it was added to the mixture of BSA and sugar and incubated at 37 ℃ for 7 days.

이때 0.02% 소디움아자이드(sodium azide)와 안티마이코틱스(antimycotics)를 항 박테리아제 및 항진균제로서 첨가하였다. 대조군은 BSA와 당 혼합액을 배양한 것이며, 시험군과 대조군의 공시험군(blank)은 각각 조제한 후 배양하지 않은 것이다. 한편, 효능의 우수함을 비교할 수 있는 지표인 양성 대조군으로서 아미노구아니딘을 사용하였다. 모든 배양액은 4 개씩 준비하여 최대한 오차를 피하였다. 7일 후 배양액에서 생성된 최종당화산물의 함량을 분석하여 그 결과를 나타내었다. 최종당화산물은 형광, 갈색을 띠고 있으며 교차결합을 할 수 있는 물리화학적인 특성을 지니고 있을 뿐 아니라 세포막 수용체가 인지할 수 있는 배위자를 지니고 있다. 이러한 특성을 지닌 최종당화산물의 양을 Microplate reader(Excitation: 350nm, Emission: 450nm)로 측정하여 그 생성 억제 정도를 분석하였다(Vinson, J.A. et al., J. Nutr . Biochem ., 7: 659-663, 1996). 그 결과를 표 2과 도 4에 나타내었다. At this time, 0.02% sodium azide and antimycotics were added as antibacterial and antifungal agents. The control group was cultured with a mixture of BSA and sugar, and the blank group of the test group and the control group was prepared and not cultured. On the other hand, aminoguanidine was used as a positive control which is an index that can compare the superiority of efficacy. All cultures were prepared in four pieces to avoid errors. After 7 days the content of the final glycation product produced in the culture was analyzed and the result was shown. The final glycosylated product is fluorescence, brown, not only has a physicochemical property that can cross-link, but also has a ligand that can be recognized by cell membrane receptors. The amount of the final glycated product having these characteristics was measured by a microplate reader (Excitation: 350 nm, Emission: 450 nm) and analyzed for the degree of inhibition of production (Vinson, JA et al., J. Nutr . Biochem . , 7: 659- 663, 1996). The results are shown in Table 2 and FIG.

생성억제율은 하기의 식으로 계산된다. The production inhibition rate is calculated by the following equation.

생성억제율(%)= 100-(시료군의 형광강도-시료 공시험군의 형광강도)/(대조군의 형광강도-대조군 공시험군의 형광강도)×100 Production Inhibition Rate (%) = 100- (Fluorescence Intensity of Sample-Fluorescence Intensity of Sample Blank) / (Fluorescence Intensity of Control-Fluorescent Intensity of Control Blank) x 100

비교예 1. 아미노구아니딘의 최종당화산물 생성억제 효능Comparative Example 1. Efficacy of Inhibiting the Final Glycation Product Production

아미노구아니딘을 증류수에 용해하여 18.5 ㎍/㎖, 37 ㎍/㎖, 55.5 ㎍/㎖ 농도로 조제한 후 상기에 기재한 방법으로 37℃에서 7일 동안 배양하였다. 7일 후 배양액에서 생성된 최종당화산물의 양을 Microplate reader (Excitation: 350nm, Emission: 450nm)로 측정하고 그 결과를 표 2와 도 5에 나타내었다. Aminoguanidine was dissolved in distilled water, and prepared at concentrations of 18.5 μg / ml, 37 μg / ml, and 55.5 μg / ml, followed by incubation at 37 ° C. for 7 days. After 7 days, the amount of the final glycosylated product produced in the culture was measured by a microplate reader (Excitation: 350 nm, Emission: 450 nm), and the results are shown in Table 2 and FIG. 5.

구 분 division 최종당화산물 생성 억제율(%)Final glycation product production inhibition rate (%) IC50 값(㎍/㎖)IC 50 value (μg / ml) 농 도Concentration 억제율Suppression rate 2알파, 3알파, 19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norurus-4 (23), 12-diene-28-oic acid 55 15.27±1.5615.27 ± 1.56 22.81 (50.1㎛) 22.81 (50.1㎛) 1010 33.98±1.8033.98 ± 1.80 2525 52.27±1.6752.27 ± 1.67 아미노구아니딘 Aminoguanidine 18.518.5 25.29±3.2225.29 ± 3.22 37.11 (500㎛) 37.11 (500㎛) 3737 54.63±0.8854.63 ± 0.88 55.555.5 69.69±0.8869.69 ± 0.88

표 2에서 보인대로 본 화합물의 최종당화산물 생성억제 IC50값은 22.81 ㎍/㎖(50.1 ㎛)로 나타났다. 이는 양성대조군인 아미노구아니딘(37.11 ㎍/㎖; (500 ㎛)보다 100배 더 우수하게 나타났다.As shown in Table 2, the final glycation product production inhibitory IC 50 value of the compound was 22.81 μg / ml (50.1 μm). This was 100 times better than the positive control aminoguanidine (37.11 μg / ml; (500 μm).

상기에서 살펴본 바와같이, 본 발명에 따른 참소리쟁이에서 분리되는 트리테르페노이드 화합물은 당뇨합병증 유발 원인 중의 하나인 최종당화산물의 생성을 효과적으로 억제하고, 양성대조군인 아미노구아니딘에 비하여 낮은 저 농도에서 최종당화산물의 생성을 억제하므로 당뇨합병증 예방 및 치료제로 사용할 수 있다. 또한, 최종당화산물의 생성을 억제하는 경우 산화적 스트레스의 유발 비율이 줄어들어, 산화적 스트레스에 의한 노화의 방지 및 지연용 약학적 조성물 및 기능성 식품으로 응용될 수 있다.As described above, the triterpenoid compounds isolated from the Chamsori, according to the present invention effectively inhibit the production of the final glycation product which is one of the causes of diabetic complications, the final at low concentrations compared to the positive control aminoguanidine Since it inhibits the production of glycated products, it can be used as a preventive and therapeutic agent for diabetic complications. In addition, the inhibition rate of oxidative stress is reduced when inhibiting the production of the end glycated product, it can be applied as a pharmaceutical composition and functional food for preventing and delaying aging caused by oxidative stress.

Claims (6)

참소리쟁이를 20 ~ 80%의 알콜을 이용하여 추출한 다음, 감압 농축하여 참소리쟁이 조추출물을 얻는 제1단계와;A first step of extracting Chamsori using 20-80% alcohol and then concentrating under reduced pressure to obtain a crude extract of Chamsori; 상기 참소리쟁이 조추출물을 증류수에 현탁한 다음, 노르말헥산을 첨가하여 노르말헥산층에 용해되는 성분을 분리하고 진공건조하여 노르말헥산 가용분획물을 얻는 제2단계와;A second step of suspending the crude extract from Chamsori, and then adding normal hexane to separate components dissolved in the normal hexane layer and vacuum drying to obtain a normal hexane soluble fraction; 상기 제2단계에서 노르말헥산층을 분리하고 남은 수층에 에틸아세테이트를 첨가하여 에틸아세테이트에 용해되는 성분을 분리하고 진공건조하여 에틸아세테이트 가용분획물을 얻는 제3단계와;A third step of separating the normal hexane layer in the second step, adding ethyl acetate to the remaining aqueous layer, separating the component dissolved in ethyl acetate, and vacuum drying to obtain an ethyl acetate soluble fraction; 상기 에틸아세테이트 가용분획물을 클로포름:메탄올 혼합용매 농도구배(1:0→0:1)로 실리카 겔 칼럼크로마토그라피를 실시하여 12개의 분획을 얻는 제4단계와;A fourth step of subjecting the ethyl acetate soluble fraction to silica gel column chromatography using a chloroform: methanol mixed solvent concentration gradient (1: 0 → 0: 1) to obtain 12 fractions; 상기 제4단계의 12개의 분획 중 5번째 분획을 노르말헥산:에틸아세테이트:메탄올 혼합용매 농도구배(6:3.5:0.5→2:2:1)로 실리카 겔 칼럼크로마토그라피를 실시하여 10개의 분획을 얻는 제5단계와;The fifth fraction of the 12 fractions of the fourth step was subjected to silica gel column chromatography with a normal hexane: ethyl acetate: methanol mixed solvent concentration gradient (6: 3.5: 0.5 → 2: 2: 1) to obtain 10 fractions. A fifth step of obtaining; 상기 제5단계의 10개의 분획 중 3번째 분획을 메탄올:물이 3:1로 혼합된 용출액으로 역상실리카 겔 칼럼크로마토그라피를 실시하여 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 얻는 제6단계로 이루어지는 것을 특징으로 하는 참소리쟁이에서 분리되는 트리테르페노이드 화합물의 분리방 법.The third fraction of the ten fractions of the fifth step was subjected to reverse phase silica gel column chromatography with an eluate of methanol: water 3: 1, followed by 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-nor Separation method of triterpenoid compounds separated from Chamsori, comprising a sixth step of obtaining Urus-4 (23), 12-diene-28-oic acid. 제 1항에 의해 참소리쟁이에서 분리되는 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드을 특징으로 하는 참소리쟁이에서 분리되는 트리테르페노이드 화합물.Isolated from Chamsori, characterized by 2 alpha, 3 alpha, 19 alpha-trihydrox-24-norruth-4 (23), 12-diene-28-oic acid, separated from the chariot by claim 1 Triterpenoid compounds. 제 1항의 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 하는 당뇨합병증 예방 및 치료를 위한 약학조성물.A pharmaceutical composition for the prevention and treatment of diabetic complications of claim 1 comprising 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid. 제 1항의 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 하는 당뇨합병증 예방 및 치료를 위한 기능성 식품.Functional foods for the prevention and treatment of diabetic complications of claim 1, wherein the 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid as an active ingredient. 제 1항의 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 하는 노화방지 또는 지연용 약학조성물.The anti-aging or delaying pharmaceutical composition according to claim 1, wherein the 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid is an active ingredient. 제 1항의 2알파,3알파,19알파-트리히드록-24-노르우루스-4(23),12-디엔-28-오익에시드를 유효성분으로 하는 노화방지 또는 지연용 기능성 식품.The anti-aging or delayed functional food comprising 2 alpha, 3 alpha, 19 alpha-trihydroxy-24-norruth-4 (23), 12-diene-28-oic acid of claim 1 as an active ingredient.
KR1020050099734A 2005-10-21 2005-10-21 A isolation method triterpenoid from rumex japonicus and a triterpenoid KR100645391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050099734A KR100645391B1 (en) 2005-10-21 2005-10-21 A isolation method triterpenoid from rumex japonicus and a triterpenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050099734A KR100645391B1 (en) 2005-10-21 2005-10-21 A isolation method triterpenoid from rumex japonicus and a triterpenoid

Publications (1)

Publication Number Publication Date
KR100645391B1 true KR100645391B1 (en) 2006-11-14

Family

ID=37654467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050099734A KR100645391B1 (en) 2005-10-21 2005-10-21 A isolation method triterpenoid from rumex japonicus and a triterpenoid

Country Status (1)

Country Link
KR (1) KR100645391B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636633A1 (en) * 1993-07-28 1995-02-01 Kowa Chemical Industries Co., Ltd. A triterpenoid saponin, extraction thereof and use to treat or prevent diabetes mellitus
US5691386A (en) * 1996-04-16 1997-11-25 Shaman Pharmaceuticals, Inc. Triterpenoid compound for the treatment of diabetes
KR20040069416A (en) * 2003-01-29 2004-08-06 손달훈 Pharmaceutical composition comprising the applanatic acid derivatives isolated from Ganoderma applanatum for treating or preventing diabetes
KR20040077036A (en) * 2003-02-27 2004-09-04 정규용 Preparation method of Compound for diabetic nephropathy isolated from the Phytolacca americana, and pharmaceutical composition using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636633A1 (en) * 1993-07-28 1995-02-01 Kowa Chemical Industries Co., Ltd. A triterpenoid saponin, extraction thereof and use to treat or prevent diabetes mellitus
US5691386A (en) * 1996-04-16 1997-11-25 Shaman Pharmaceuticals, Inc. Triterpenoid compound for the treatment of diabetes
KR20040069416A (en) * 2003-01-29 2004-08-06 손달훈 Pharmaceutical composition comprising the applanatic acid derivatives isolated from Ganoderma applanatum for treating or preventing diabetes
KR20040077036A (en) * 2003-02-27 2004-09-04 정규용 Preparation method of Compound for diabetic nephropathy isolated from the Phytolacca americana, and pharmaceutical composition using thereof

Similar Documents

Publication Publication Date Title
US20130190261A1 (en) Composition comprising xanthoceras sorbifolia extracts, compounds isolated from same, methods for preparing same and uses thereof
US20080103201A1 (en) Novel alpha-Glucosidase inhibitor from Tabernaemontana dichotoma
KR20120005037A (en) Compounds affecting glycemic index
Lee et al. 2 ″, 4 ″-O-diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum
Ting et al. Biological evaluation of secondary metabolites from the roots of Myrica adenophora
Marchetti et al. In vitro bioactivity evaluation of mulberry leaf extracts as nutraceuticals for the management of diabetes mellitus
Zhang et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang
Sgariglia et al. Anti-inflammatory properties of phenolic lactones isolated from Caesalpinia paraguariensis stem bark
Sharp et al. Inhibitory effects of Cissus quadrangularis L. derived components on lipase, amylase and α-glucosidase activity in vitro
Zhang et al. Triterpene saponins with neuroprotective effects from the leaves of Diospyros kaki Thunb
Ngoupayo et al. α-Glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae)
Ma et al. Polyacetylenes with xanthine oxidase inhibitory activity from the medicinal and edible fruits of Cyclocodon lancifolius (Roxburgh) Kurz
Rakhimov et al. Isolation of new ellagitannins from plants of Euphorbiaceous and its effect on calcium transport in the nerve cell of the rat brain
Simaratanamongkol et al. Angiotensin-converting enzyme (ACE) inhibitory activity of Solanum torvum and isolation of a novel methyl salicylate glycoside
Jung et al. A new pentacyclic triterpenoid glucoside from Prunus serrulata var. spontanea
KR100645391B1 (en) A isolation method triterpenoid from rumex japonicus and a triterpenoid
Lee et al. The effect of curculigoside on the expression of matrix metalloproteinase-1 in cultured human skin fibroblasts
CN112592328B (en) Diaryl heptane-chalcone polymer in alpinia katsumadai, and pharmaceutical composition and application thereof
Van Kiem et al. The anti-glycative potentials of pregnane glycosides from Gymnema sylvestre
EP4349845A1 (en) Novel isoflavone compound
US20240270779A1 (en) Novel phenylpropanoid compound
KR100704168B1 (en) Composition isolated from puerariae radix for prevention or treatment of diabetic complications and a mass separation method thereof
Patel et al. Aldose reductase inhibitory activity of a C-glycosidic flavonoid derived from Enicostemma hyssopifolium
KR101386691B1 (en) Composition for preventing or treating diabetes induced complication containing dicaffeoyl quinic acid derivatives
Seong et al. Phytochemical profiling of Symplocos tanakana Nakai and S. sawafutagi Nagam. leaf and identification of their antioxidant and anti-diabetic potential

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee