KR100644998B1 - Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive - Google Patents

Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive Download PDF

Info

Publication number
KR100644998B1
KR100644998B1 KR1020060077837A KR20060077837A KR100644998B1 KR 100644998 B1 KR100644998 B1 KR 100644998B1 KR 1020060077837 A KR1020060077837 A KR 1020060077837A KR 20060077837 A KR20060077837 A KR 20060077837A KR 100644998 B1 KR100644998 B1 KR 100644998B1
Authority
KR
South Korea
Prior art keywords
polyurethane
complex
weight
composite
degradability
Prior art date
Application number
KR1020060077837A
Other languages
Korean (ko)
Inventor
소재용
Original Assignee
소재용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소재용 filed Critical 소재용
Priority to KR1020060077837A priority Critical patent/KR100644998B1/en
Application granted granted Critical
Publication of KR100644998B1 publication Critical patent/KR100644998B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4261Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups prepared by oxyalkylation of polyesterpolyols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Provided are a method for preparing a composite decomposer for polyurethane, a composite decomposer for polyurethane prepared by the method which decomposes a widely-used polyurethane completely within a short time, a polyurethane composition containing the composite decomposer, and a polyurethane product using the composition. The method comprises the steps of injecting 20-40 wt% of phosphoric acid, 10-30 wt% of phosphorus acid, 5-15 wt% of sodium perchlorate, and the balance of a saturated fatty acid bisamide into a reactor; increasing the temperature to 120-180 deg.C to melt and react them; and cooling it to prepare the composite decomposer for polyurethane. Preferably the saturated fatty acid bisamide is methylene bisstearamide or ethylene bisstearamide. The polyurethane composition comprises 100 parts by weight of polyurethane; and 0.5-3.5 parts by weight of the composite decomposer.

Description

폴리우레탄용 복합분해제의 제조방법 및 그 방법에 의해 제조된 복합분해제를 함유하는 복합분해성 폴리우레탄 조성물{Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive}Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive}

도 1은 본 발명에 따라 제조된 폴리우레탄 필름과 셀룰로오스의 분해도 측정결과를 나타낸 그래프. 1 is a graph showing the results of measuring the decomposition of the polyurethane film and cellulose prepared according to the present invention.

본 발명은 폴리우레탄용 복합분해제에 관한 것으로서, 보다 상세하게는 생분해성과 가수분해성을 갖는 범용의 폴리우레탄에 첨가시 우수한 복합분해성을 발휘하여 단기간 내에 폴리우레탄의 완전 분해가 가능하도록 한 폴리우레탄용 복합분해제의 제조방법과, 그 방법에 의해 제조된 복합분해제를 함유하는 복합분해성 폴리우레탄 조성물에 관한 것이다. The present invention relates to a composite disintegrating agent for polyurethane, and more particularly, for polyurethane, which is capable of fully degrading polyurethane in a short period of time by showing excellent complex degradability when added to a general-purpose polyurethane having biodegradability and hydrolyzability. The present invention relates to a method for producing a complex decomposer and a complex degradable polyurethane composition containing the complex decomposer produced by the method.

일반적으로 폴리우레탄은 주 사슬의 반복 단위속에 우레탄 결합(-NHCOO-)을 가지는 고분자 화합물의 총칭으로서, 주지된 바와 같이 이소시아네이트와 연질부를 구성하는 고분자 폴리올 및 경질부를 구성하는 단상 폴리올등 세성분의 조합에 의해서 구성되는 중합체로 볼 수 있으며, 연질부를 구성하는 고분자 폴리올의 형태에 따라 에스테르계, 에테르계 및 카프로락탐계로 분류할 수 있다. Generally, polyurethane is a generic term for a polymer compound having a urethane bond (-NHCOO-) in a repeating unit of the main chain, and as is well known, a combination of three components such as isocyanate and polymer polyol constituting the soft part and single phase polyol constituting the hard part It can be seen as a polymer composed of, and can be classified into ester, ether and caprolactam based on the form of the polymer polyol constituting the soft part.

이러한 폴리우레탄은 내마모성, 내마모성, 내약품성, 내용제성이 좋을 뿐만 아니라 내노화성과 산소에 대한 안정성이 뛰어나 폴리우레탄 폼, 폴리우레탄 고무, 접착제, 합성섬유, 도료 등으로 많이 쓰이고 있다. 일반 폴리우레탄과는 달리 근래에는 열가소성 폴리우레탄(TPU: Thermoplastic Poly Urethane; 이하 별도의 언급이 없는 한 이하에 사용되는 용어인 폴리우레탄은 열성형이 가능한 열가소성 폴리우레탄을 의미한다)의 사용비중이 점차 확대되고 있는데, 이는 열가소성 폴리우레탄이 무독성이면서도 친환경적이며, 열성형이 가능하기 때문이다. These polyurethanes are not only good in abrasion resistance, abrasion resistance, chemical resistance, solvent resistance, but also excellent in aging resistance and oxygen stability, and are widely used as polyurethane foams, polyurethane rubbers, adhesives, synthetic fibers, paints, and the like. Unlike general polyurethane, the use ratio of Thermoplastic Polyurethane (TPU: Thermoplastic Poly Urethane; This is because thermoplastic polyurethanes are non-toxic, environmentally friendly and thermoformable.

폴리우레탄은 일반적으로 자체적으로 가수분해성과 생분해성 등의 분해특성을 가지고 있는데, 그러나 그 분해특성이 매우 미약하여 폴리우레탄 제품을 사용한 후 폐기시 완전분해되지 않고 부분 분해되어 반영구적으로 존재하거나 분해기간이 장기간 소요되어 환경오염의 원인이 된다는 문제점이 있다. 이로 인하여 폴리우레탄 제품의 재활용 방법이나 소각방법이 활용되고도 있으나, 소각시 유해물질 발생하는 문제점이 있으며, 재활용방법은 수거가 어려울 뿐만 아니라 수거 후에도 별도로 혼입된 불순물을 제거하는 과정을 거쳐야 하는 문제점이 있다. 따라서 폐기시 분해가 빠르면서 폴리우레탄의 특성이 변하지 않는 폴리 우레탄의 요구가 증대되고 있으며, 이러한 요구에 따라 우수한 분해성을 갖는 폴리우레탄을 제조하기 위한 다양한 연구가 진행되어 왔다. Polyurethane generally has its own degradability such as hydrolysis and biodegradability, but its degradability is so weak that it does not completely decompose upon disposal after use of polyurethane products and is partially decomposed to exist semipermanently It takes a long time to cause environmental pollution. Due to this, the recycling method or incineration method of polyurethane products is used, but there is a problem that harmful substances are generated during incineration, and the recycling method is not only difficult to collect but also has to go through the process of removing impurities mixed separately after collection. have. Therefore, there is an increasing demand for polyurethane that does not change the characteristics of the polyurethane while disposing fast, and various studies have been conducted to prepare a polyurethane having excellent degradability according to such a requirement.

분해성을 향상시키기 위한 기술과 관련하여 일본특허공개 평4-189822 및 평4-189823호에서는 지방족 디카르복실산과 글리콜과의 반응에 의해 수평균분자량이 약 1.5만 정도인 지방족 폴리에스테르를 제조하고, 이것을 디이소시아네이트(-NHCOO-)로 가교화시켜 에스테르계 폴리우레탄 즉, 폴리에스테르 우레탄을 제조하는 방법을 제안하고 있다. 그러나, 상기 일본공개 특허에서 제안한 방법에 의하면 저분자량의 지방족 폴리에스테르 중에 마이크로 겔이 생성되어 중합체의 품질이 저하되는 문제점이 있다. 뿐만 아니라 디이소시아네이트는 지방족 폴리에스테르와 순간적으로 반응하기 때문에 반응하지 않고 잔존하는 디이소시아네이트가 존재하게 되는데, 이 잔존하는 디이소시아네이트가 새로운 오염인자로 존재하게 되는 문제점이 있다. In connection with techniques for improving degradability, Japanese Patent Laid-Open Nos. 4-189822 and 4-189823 produce aliphatic polyesters having a number average molecular weight of about 1.50,000 by reaction of aliphatic dicarboxylic acids and glycols, A method for producing ester-based polyurethanes, that is, polyester urethanes by crosslinking them with diisocyanate (-NHCOO-) has been proposed. However, according to the method proposed by the Japanese Laid-Open Patent, there is a problem in that microgels are generated in the low molecular weight aliphatic polyester, thereby degrading the quality of the polymer. In addition, since the diisocyanate reacts with the aliphatic polyester instantaneously, the remaining diisocyanate does not react and there is a problem that the remaining diisocyanate is present as a new contaminant.

이와 같은 이소시아네이트의 잔존 문제를 해결하기 위하여, 국내공개특허 제2001-66970호에서는 생분해성을 갖는 지방족 폴리에스테르와 가수분해성을 갖는 생분해성 수지인 폴리에스테르 우레탄을 혼합함으로서 생분해성과 가수분해성을 가지면서도 분자량이 높고, 물성 및 제품의 성형성이 우수한 수지 조성물을 제공하고 있다. 이 경우 지방족 폴리에스테르 수지에 생분해성과 가수분해성이 부여됨에 따라 지방족 폴리에스테르를 단독으로 사용하는 경우보다 분해속도가 향상되는 이점은 있으나, 여전히 분해속도가 느리다는 단점을 가지고 있다. In order to solve such a problem of remaining isocyanate, Korean Laid-Open Patent Publication No. 2001-66970 mixes biodegradable aliphatic polyester and hydrolyzable polyester urethane which is biodegradable resin to have biodegradability and hydrolyzability while The resin composition which is high in this physical property and excellent in the moldability of a product is provided. In this case, since the biodegradability and hydrolyzability are imparted to the aliphatic polyester resin, there is an advantage in that the decomposition rate is improved compared with the case of using the aliphatic polyester alone, but still has a disadvantage in that the decomposition rate is slow.

이러한 종래의 문제점을 해소하기 위하여 본 발명은 기존의 범용 폴리우레탄, 즉 생분해성과 가수분해성을 갖는 범용의 폴리에스테르 우레탄에 첨가하여 사용할 경우 생분해성이나 가수분해성 이외에도 산화분해성 등의 분해특성이 복합적으로 발휘되는 복합분해성을 가지므로 폴리우레탄의 분해시간을 현저하게 단축시킬 수 있도록 한 폴리우레탄용 복합분해제의 제조방법을 제공하는데 그 목적이 있다. In order to solve such a conventional problem, the present invention, when used in addition to the existing general-purpose polyurethane, that is, a general-purpose polyester urethane having biodegradability and hydrolyzability, exhibits the decomposition properties such as oxidative decomposability in addition to biodegradability and hydrolysis. It is an object of the present invention to provide a method for preparing a composite disintegrating agent for polyurethane, which can significantly shorten the decomposition time of polyurethane because of its complex degradability.

아울러 본 발명은 상기 제조방법에 의해 제조된 폴리우레탄용 복합분해제를 제공하는데 다른 목적이 있다. In addition, the present invention has another object to provide a composite decomposition agent for polyurethane produced by the above production method.

또한 본 발명은 상기 폴리우레탄용 복합분해제를 함유하는 것으로서 폴리우레탄의 분해기간을 현저히 단축시키고, 폴리우레탄의 내마모성, 내약품성, 내용제성 등의 안정성은 그대로 유지하면서 재가공성을 가지는 복합분해성을 갖는 폴리우레탄 조성물을 제공하는데 또 다른 목적이 있다. In addition, the present invention contains a complex decomposition agent for polyurethane, and significantly shortens the decomposition period of the polyurethane, and has a complex degradability having reworkability while maintaining the stability of the wear resistance, chemical resistance, solvent resistance, etc. of the polyurethane as it is. It is another object to provide a polyurethane composition.

또한 본 발명은 상기 폴리우레탄 조성물을 압출 또는 사출성형하여 제조되는 것으로서 복합분해성을 갖는 폴리에스테르 우레탄 제품을 제공하는데 또 다른 목적이 있다. In another aspect, the present invention is to provide a polyester urethane product having a multi-degradability as being prepared by extrusion or injection molding the polyurethane composition.

상기한 목적을 달성하기 위하여 본 발명은 반응용기에 포스포릭 엑시드(phosphoric acid) 20∼40중량%, 포스포러스 엑시드(phosphorous acid) 10∼30중량%, 과염소산 나트륨 5∼15중량% 및 포화지방산 비스아미드를 잔량 투입하여 100 중량%로 조절한 다음 120∼180℃로 승온하여 용융 반응시킨 후 냉각하는 것을 특징으로 하는 폴리우레탄용 복합분해제의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a reaction vessel with 20-40% by weight of phosphoric acid, 10-30% by weight of phosphoric acid, 5-15% by weight of sodium perchlorate and saturated fatty acid bis The present invention provides a method for producing a composite disintegrating agent for polyurethane, which is characterized by cooling the amide by adding a residual amount of amide to 100 wt%, then heating to 120-180 ° C. to melt the reaction.

또한 본 발명은 상기 제조방법에 의해 제조된 것임을 특징으로 하는 폴리우레탄용 복합분해제를 제공한다. In another aspect, the present invention provides a composite decomposer for polyurethane, characterized in that prepared by the above production method.

나아가 본 발명은 상기 폴리우레탄용 복합분해제를 폴리우레탄에 첨가 혼합하여서된 것임을 특징으로 하는 복합분해성을 갖는 폴리우레탄 조성물을 제공한다. Furthermore, the present invention provides a polyurethane composition having a complex degradability, which is obtained by adding and mixing the complex decomposition agent for polyurethane to a polyurethane.

아울러 본 발명은 상기 복합분해성 폴리우레탄 조성물을 압출 또는 사출성형하여 제조된 것임을 특징으로 하는 폴리우레탄 제품을 제공한다. In addition, the present invention provides a polyurethane product, characterized in that prepared by extruding or injection molding the multi-decomposable polyurethane composition.

이하 본 발명을 좀 더 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in more detail.

본 발명에 따른 폴리우레탄용 복합분해제는 반응용기에 포스포릭 엑시드 20∼40중량%, 포스포러스 엑시드 10∼30중량%, 과염소산 나트륨 5∼15중량% 및 포화지방산 비스아미드를 잔량 투입하여 100중량%로 조절한 다음 120∼180℃로 승온하여 용융 반응시킨 후 냉각시켜 제조된다. Polyurethane complex disintegrator according to the present invention 100 to 20% by weight of phosphoric acid, 10 to 30% by weight of phosphorus acid, 5 to 15% by weight of sodium perchlorate and saturated fatty acid bisamide in the reaction vessel It is prepared by adjusting to% and then heating to 120-180 ° C. to melt the reaction.

이러한 방법으로 제조된 폴리우레탄용 복합분해제는 폴리우레탄과 혼합하여 사용하게 되면 생분해성과 가수분해성 뿐만 아니라 산화분해성이 복합적으로 발휘되면서도 기존의 폴리우레탄이 가지는 생분해성과 가수분해성을 증진시켜 폴리우레탄의 분해속도를 현저하게 상승시켜 주게 된다. Polydegradation agent for polyurethane prepared in this way, when used in combination with polyurethane, not only biodegradability and hydrolyzability but also oxidatively decomposable in combination with the existing polyurethane to improve the biodegradability and hydrolyzability of the polyurethane to decompose It will increase the speed considerably.

여기서, 포스포릭 엑시드는 제조된 복합분해제를 폴리우레탄과 혼합사용시 산화를 촉진시켜 분해성을 증진시킴과 아울러 생분해성을 촉진시키기 위하여 첨가 하는 것이다. 이때, 포스포릭 엑시드는 복합분해제 제조에 투입되는 총 성분의 중량 합을 100중량%로 했을 때 그 첨가량이 20중량% 미만일 경우 충분한 분해성 증진효과를 얻을 수 없다는 문제점이 있으며, 그 첨가량이 40중량%를 초과할 경우 상대적으로 다른 성분들이 적게 첨가되어 복합분해 특성의 발휘가 곤란하므로 분해성 증진효과가 반감되는 문제점이 있다. 따라서 포스포릭 엑시드는 20 내지 40중량% 포함되도록 첨가하는 것이 좋다. Here, the phosphoric acid is added to promote the biodegradability as well as to enhance the decomposability by promoting the oxidation of the prepared complex decomposer with polyurethane. At this time, the phosphoric acid has a problem in that when the total weight of the total ingredients added to the composite decomposition agent is 100% by weight, if the amount is less than 20% by weight, sufficient degradability enhancement effect cannot be obtained, and the amount is 40% by weight. If it exceeds%, there is a problem that the decomposability-promoting effect is halved because it is difficult to exhibit the complex decomposition properties because the other components are added relatively less. Therefore, the phosphoric acid is preferably added so that 20 to 40% by weight.

상기 포스포릭 엑시드와 함께 포스포러스 엑시드 10∼30중량%가 첨가되는데, 포스포러스 엑시드는 제조된 복합분해제를 폴리우레탄에 투입시 가수분해성을 증진시키기 위하여 첨가하는 것이다. 여기서 포스포러스 엑시드의 첨가량이 10중량% 미만일 경우 가수분해성 효과가 충분히 증진되지 않는다는 문제점이 있으며, 그 첨가량이 30중량%를 초과할 경우 상대적으로 다른 성분들의 함량이 줄어들어 복합분해성 발휘가 곤란하여 분해성 증진효과가 반감되는 문제점이 있으므로 상기 범위내에서 포스포러스 엑시드를 첨가하는 것이 좋다. 10-30% by weight of phosphorus acid is added together with the phosphoric acid, and the phosphorus acid is added to enhance the hydrolyzability when the prepared complex decomposition agent is added to the polyurethane. Here, when the amount of phosphorus acid added is less than 10% by weight, there is a problem in that the hydrolyzable effect is not sufficiently enhanced. When the amount of the phosphorus acid is added in excess of 30% by weight, the content of other components is relatively reduced, so that it is difficult to exhibit complex degradability, thereby improving degradability. Since there is a problem that the effect is halved, it is preferable to add phosphorus acid within the above range.

과염소산 나트륨은 제조된 복합분해제를 폴리우레탄에 첨가시 산화분해성을 부여하기 위하여 첨가하는 것으로서, 그 첨가량이 5중량% 미만일 경우 산화분해성 증진효과 떨어지는 문제점이 있으며, 그 첨가량이 15중량%를 초과할 경우 상대적으로 다른 성분들의 함량이 줄어들어 복합분해 특성의 발휘가 곤란하므로 분해성이 떨어지는 문제점이 있으므로, 과염소산 나트륨은 5∼15중량% 첨가하는 것이 바람직하다. Sodium perchlorate is added to impart oxidative degradability when the prepared complex decomposer is added to the polyurethane. If the added amount is less than 5% by weight, there is a problem in that the effect of enhancing the oxidative decomposability is lowered. In this case, since the content of other components is relatively reduced, it is difficult to exert complex decomposition properties, so that there is a problem of inferior degradability. Sodium perchlorate is preferably added by 5 to 15% by weight.

포화지방산 비스아미드는 바인더 역할을 수행함과 아울러 폴리우레탄과의 혼 합시 분산특성을 발휘하여 고르게 혼합이 이루어질 수 있도록 하기 위하여 첨가하는 것으로서, 잔량 투입하여 총 반응기에 투입되는 투입량을 100중량%로 조절하면된다. Saturated fatty acid bisamide acts as a binder and is added to make the mixing evenly by mixing with polyurethane. When the remaining amount of bisamide is added to the total reactor, do.

이때 포화지방산 비스아미드로는 다양한 공지의 것을 사용할 수 있으나, 바람직하게는 상기 포화지방산 비스아미드로 메틸렌 비스 스테아르아미드(methylene bis stearamide) 또는 에틸렌 비스 스테아르아미드(ethylene bis stearamide)을 사용하는 것이 좋다. The saturated fatty acid bisamide may be a variety of known ones, but it is preferable to use methylene bis stearamide or ethylene bis stearamide as the saturated fatty acid bisamide.

반응기에 위와 같이 포스포릭 엑시드, 포스포러스 엑시드, 과염소산 나트륨 및 포화지방산 비스아미드를 첨가한 다음 반응기의 온도를 120∼180℃로 승온하여 용융시킨 후 20분간 반응시키고 냉각하면 고형화된 본 발명에 따른 복합분해제를 얻을 수 있다. 필요에 따라서는 용융반응 후 냉각하여 고형화하는 과정에서 제조된 복합분해제의 취급이 용이하도록 소정의 크기로 절단하여 사용하거나 펠릿으로 제조하여 사용할 수 있으며, 이는 필요에 따라 선택적으로 이루어질 수 있는 것이다. After adding the phosphoric acid, phosphorus acid, sodium perchlorate and saturated fatty acid bisamide to the reactor as described above, the temperature of the reactor is increased to 120-180 ° C, melted, and then reacted for 20 minutes and cooled. Degradants can be obtained. If necessary, it may be used by cutting to a predetermined size or preparing a pellet to facilitate the handling of the complex decomposition agent prepared in the cooling and solidification process after the melting reaction, which can be selectively made as needed.

이때, 복합분해제를 제조하는 과정에서 탄산칼슘을 추가로 투입할 수 있는데, 탄산칼슘은 제조된 복합분해제를 폴리우레탄과 혼합 사용시 광분해성 즉, 자외선에 의해 분해성을 부여하기 위하여 첨가하는 것이다. 탄산칼슘은 그 첨가량이 0.1중량% 미만일 경우 자외선 분해성능이 미미하다는 단점이 있으며, 그 첨가량이 2중량%를 초과할 경우 상대적으로 다른 성분의 함량이 줄어들게 되어 복합분해성의 발휘가 곤란하여 분해성이 떨어지는 문제가 있으므로, 탄산칼슘은 복합분해제의 제 조시 0.1∼2중량% 추가로 투입하는 것이 좋다. In this case, calcium carbonate may be additionally added in the process of preparing the complex decomposer, and the calcium carbonate is added to give the decomposability by photodegradation, that is, by ultraviolet rays when the prepared complex decomposer is mixed with polyurethane. Calcium carbonate has the disadvantage that the UV decomposition performance is insignificant when the addition amount is less than 0.1% by weight, and when the addition amount is more than 2% by weight, the content of other components is relatively reduced, which is difficult to show the complex degradability. Since there is a problem, calcium carbonate may be added at an additional 0.1 to 2% by weight during the preparation of the composite decomposition agent.

위와 같이 제조된 복합분해제는 생분해성과 가수분해성 및 산화분해성을 동시에 발휘하는 복합분해성을 가지고 있어 폴리우레탄에 혼합시 폴리우레탄의 분해기간을 현저하게 단축시켜 주게 되며, 탄산칼슘이 추가로 투입될 경우 복합분해제는 생분해성과, 가수분해성 및 산화분해성이외에도 광분해성이 추가로 발휘되어 폴리우레탄의 분해기간을 현저하게 단축시켜 줄 수 있으며, 그에 따라 환경오염방지에 크게 이바지할 수 있게 된다.  The composite decomposer prepared as described above has a complex degradability which simultaneously exhibits biodegradability, hydrolyzability and oxidative degradability, thereby significantly shortening the decomposition period of the polyurethane when mixed with polyurethane, and when calcium carbonate is additionally added. In addition to biodegradability, hydrolyzability and oxidative degradability, the complex decomposer can further exhibit photodegradability, which can significantly shorten the decomposition period of the polyurethane, thereby greatly contributing to the prevention of environmental pollution.

전술한 바와 같이 본 발명에 따른 폴리우레탄용 복합분해제는 범용의 폴리우레탄에 첨가 혼합하여서 사용할 수 있으며, 그에 따라 본 발명에서는 폴리우레탄에 복합분해제를 첨가 혼합하여서 된 것임을 특징으로 하는 복합분해성을 갖는 폴리우레탄 조성물을 제공한다. As described above, the complex decomposer for polyurethane according to the present invention can be used by adding and mixing a general purpose polyurethane, and accordingly, in the present invention, the complex decomposability is characterized by adding and mixing a complex decomposing agent to a polyurethane. It provides a polyurethane composition having.

여기서, 폴리우레탄은 범용적으로 사용되는 것을 적용할 수 있으며, 에스테르계, 에테르계 및 락톤계 폴리우레탄에 모두 적용이 가능하다. 바람직하게는 폴리우레탄 중에서도 생분해성과 가수분해성이 높은 에스테르계 폴리우레탄 즉, 폴리에스테르 우레탄을 사용하는 것이 좋다. 주지된 바와 같이 폴리에스테르 우레탄은 방향족 폴리에스테르와 디이소시아네이트를 반응시켜 제조되는 것으로서, 공지된 기술을 통해 용이하게 제조할 수 있다. 필요에 따라서는 당 업계에서 통상적으로 사용되는 폴리에스테르 우레탄을 구입하여 사용할 수 있으며, 예를 들어 SK 케미칼이나 코오롱, 송원산업, 호성케믹스 등에서 판매하는 것에서 선택하여 사용할 수 있다. Here, the polyurethane may be applied to a general purpose, it is applicable to all ester-based, ether-based and lactone-based polyurethane. Preferably, among the polyurethanes, it is preferable to use an ester polyurethane having high biodegradability and hydrolyzability, that is, polyester urethane. As is well known, polyester urethane is prepared by reacting an aromatic polyester with a diisocyanate, and can be easily prepared through known techniques. If necessary, polyester urethanes commonly used in the art may be purchased and used, and for example, may be selected from those sold in SK Chemicals, Kolon, Songwon Industries, Hosung Chemicals, and the like.

이때, 폴리에스테르 우레탄으로 융점이 120∼220℃이고, 수평균분자량이 1,000∼150,000이며, 중량평균분자량이 1,500∼300,000이고, 표면강도(A타입)가 50∼100인 것을 사용하면 보다 우수한 분해 효과를 얻을 수 있으므로, 이를 고려하여 폴리에스테르 우레탄을 선택하여 사용하는 것이 좋다. At this time, when the polyester urethane has a melting point of 120 to 220 ° C., a number average molecular weight of 1,000 to 150,000, a weight average molecular weight of 1,500 to 300,000, and a surface strength (type A) of 50 to 100, an excellent decomposition effect. Since it can be obtained, it is preferable to select and use a polyester urethane in consideration of this.

이러한 폴리에스테르 우레탄과 혼합되는 복합분해제는 폴리에스테르 우레탄 100중량부에 대하여 0.5 내지 3.5중량부의 비율로 혼합하는 것이 좋은데, 그 혼합비율이 0.5중량부 미만일 경우 분해성능이 떨어지는 문제점이 있으며, 그 혼합비율이 3.5중량부를 초과할 경우 혼합되는 폴리에스테르 우레탄의 물성변화를 초래할 수 있으므로 복합분해제는 상기범위내의 비율로 폴리에스테르 우레탄과 혼합하는 것이 좋다. The complex disintegrating agent mixed with the polyester urethane is preferably mixed at a ratio of 0.5 to 3.5 parts by weight with respect to 100 parts by weight of polyester urethane. However, when the mixing ratio is less than 0.5 parts by weight, there is a problem in that the degradation performance is lowered. If the ratio exceeds 3.5 parts by weight, it may lead to a change in physical properties of the polyester urethane to be mixed, so that the complex decomposition agent is mixed with the polyester urethane in a ratio within the above range.

이렇게 폴리에스테르 우레탄과 복합분해제를 혼합하여서 된 조성물은 공지된 압출 또는 사출성형방법에 따라 다양한 제품에 적용될 수 있으며, 예를 들어 포장재 등 상용 필름류, 원예 및 농업용, 공업용, 섬유용 자재 등의 사출성형 제품, 압출성형 제품에 적용될 수 있다. The composition obtained by mixing the polyester urethane and the composite decomposition agent can be applied to various products according to a known extrusion or injection molding method, for example, injection of commercial films such as packaging materials, horticulture and agricultural, industrial, textile materials, etc. It can be applied to molded products and extruded products.

이러한 제품은 사용 후 폐기시 복합분해성능이 발휘되어 기존의 폴리우레탄 제품에 비하여 우수한 분해성을 가지며, 분해기간이 현저하게 단축되는 효과를 얻을 수 있다. 따라서 환경오염의 방지차원에서 본 발명에 따른 복합분해제는 중요한 의의를 가진다 할 것이다. Such products exhibit superior decomposability compared to conventional polyurethane products because they exhibit complex decomposability upon disposal after use, and can significantly reduce the decomposition period. Therefore, the complex decomposition agent according to the present invention in order to prevent environmental pollution will have an important significance.

이하 본 발명을 하기 실시예를 통하여 보다 상세하게 설명하기로 하나, 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐, 본 발명이 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, which are only presented to aid the understanding of the present invention, but the present invention is not limited thereto.

<실시예 1 내지 4 및 비교예 1과 2 ><Examples 1 to 4 and Comparative Examples 1 and 2>

수평균분자량이 78000이고, 중량평균분자량이 164000이며, 융점이 185℃인 폴리에스테르 우레탄(TPU) 40000g에 복합분해제를 아래 표 1에 나타낸 량만큼 첨가하여 혼합한 다음 호퍼 드라이가 장착된 L/D 30인 압출성형기에 투입하여 통상의 필름성형방법에 따라 필름을 제조하였다. 제조된 필름의 물성을 UTM(Universal Testing Machine)을 이용하여 측정하였으며, 각 항목당 10회 측정한 후 최고 및 최소 값을 제외한 나머지의 평균값을 취하여 하기 표 1에 나타내었다. To the 40000 g of polyester urethane (TPU) having a number average molecular weight of 78000, a weight average molecular weight of 164000, and a melting point of 185 ° C., a composite decomposition agent was added and mixed as shown in Table 1 below, followed by L / with hopper dry. It was put into an extrusion molding machine of D 30 to prepare a film according to a conventional film forming method. The physical properties of the prepared film were measured using a UTM (Universal Testing Machine), and measured 10 times for each item, and the average values of the remaining values except for the maximum and minimum values are shown in Table 1 below.

구분division 복합분해제 첨가량(g)Compound Degradation Amount (g) TPU 100g당 복합분해제 첨가량(g)Addition amount of complex degradant per 100g of TPU (g) 인장강도 (Kgf/㎠)Tensile Strength (Kgf / ㎠) 신장률 (%)Elongation (%) 인열강도 (Kgf/㎠)Tear strength (Kgf / ㎠) 비교예 1Comparative Example 1 00 00 700700 800800 450450 실시예 1Example 1 200200 0.50.5 665665 753753 412412 실시예 2Example 2 600600 1.51.5 654654 723723 354354 실시예 3Example 3 10001000 2.52.5 652652 721721 340340 실시예 4Example 4 14001400 3.53.5 650650 688688 335335 비교예 2Comparative Example 2 18001800 4.54.5 638638 585585 326326

상기 표 1에서 보는 바와 같이 본 발명의 바람직한 범위내에서 폴리우레탄에 복합분해제를 첨가한 경우, 즉 TPU 100g당 복합분해제를 0.5 내지 3.5g의 범위내에서 첨가한 실시예 1 내지 4의 경우 복합분해제를 첨가하지 않은 비교예 1과 비교하여 보았을 때 물성의 변화가 크지 않음을 알 수 있다. 그러나 복합분해제를 TPU 100g당 4.5g의 비율로 첨가한 비교예 2의 경우 물성이 급격하게 떨어짐을 알 수 있다. As shown in Table 1 above, in the case of adding the complex decomposition agent to the polyurethane within the preferred range of the present invention, that is, Examples 1 to 4 in which the complex decomposition agent per 100 g of TPU is added within the range of 0.5 to 3.5 g It can be seen that the change in physical properties is not large when compared with Comparative Example 1 without adding a complex decomposition agent. However, in the case of Comparative Example 2 in which the complex decomposition agent was added at a ratio of 4.5 g per 100 g of TPU, it can be seen that the physical properties dropped sharply.

<실험예 1>Experimental Example 1

실험실의 조절된 퇴비화 조건에서 본 발명의 수지조성물로부터 얻은 수지의 분해성을 평가하였다.The degradability of the resin obtained from the resin composition of the present invention under the controlled composting conditions of the laboratory was evaluated.

①실험재료① Experimental materials

퇴비: 원료로 음식물 찌꺼기 70%, 톱밥 20%, 이전의 음식물 찌꺼기 퇴비 10%를 혼합하여 사용하였다. 퇴비화는 직경 29㎝, 높이 51㎝의 아크릴 반응기에서 진행되었고, 공기의 공급량을 조절하여 퇴비의 온도를 제어하였다. 퇴비제조과정 중 고온 발효과정은 약 17일이었고, 약 2주일의 후숙을 거친 퇴비를 생분해도 측정을 위한 퇴비원으로 사용하였다.Compost: 70% food waste, 20% sawdust, and 10% food waste compost were used as raw materials. Composting was carried out in an acrylic reactor with a diameter of 29 cm and a height of 51 cm, and the temperature of the compost was controlled by adjusting the air supply amount. The high temperature fermentation process was about 17 days during the composting process, and the compost after 2 weeks of ripening was used as a compost source for measuring biodegradability.

시료: 상기 실시예 1에서 제조한 필름 상태의 수지(단위 중량당 탄소함량 62.5%)와 대조군으로 천연 고분자인 셀룰로오스(시그마사)를 퇴비건조중량의 무게비로 5%로 첨가하였다.Sample: Resin in the film state prepared in Example 1 (62.5% carbon content per unit weight) and cellulose (Sigma Co., Ltd.), a natural polymer as a control, was added at a 5% weight ratio of the compost dry weight.

실험장치: 실험장치는 미국 ASTM D5209-92를 바탕으로 구성하였다. 미생물의 배양을 위해 반응기(Testing Bottle, 아크릴 반응기 2.5L)를 55±2℃로 유지하였다. 반응기에는 공기의 공급과 발생하는 이산화탄소의 포집이 가능하도록 두개의 구멍을 뚫었다. 이때 반응기에 공급되는 공기의 이산화탄소를 제거하기 위해 10N 수산화나트륨 수용액과 0.025 수산화바륨 수용액을 1L 삼각 플라스크에 700ml 씩 넣고 연결하였다. 또한 발생되는 이산화탄소를 포집하기 위하여 0.4N 수산화칼륨 수용액과 0.1N 수산화바륨 수용액 각각 200ml씩을 250ml 용량의 파이렉스 튜브에 담고 반응기와 연결하였다. 계속된 에어레이션으로 인해 반응기로부터 증발하는 수분을 응축할 수 있는 공병을 반응기의 상부에 배치하여 포집된 수분을 일정 간격으로 반응기에 재공급함으로써 반응기의 퇴비를 이용한 생분해도 측정에서 가장 중요한 요소인 함수율을 일정하게 유지되도록 하였다. Experimental apparatus: The experimental apparatus was constructed based on US ASTM D5209-92. The reactor (Testing Bottle, 2.5L acrylic reactor) was maintained at 55 ± 2 ℃ for the culture of microorganisms. Two holes were drilled in the reactor to allow for air supply and capture of the generated carbon dioxide. At this time, to remove the carbon dioxide of the air supplied to the reactor 10N aqueous sodium hydroxide solution and 0.025 barium hydroxide aqueous solution was put into a 1L Erlenmeyer flask 700ml each and connected. In addition, in order to capture the generated carbon dioxide 200ml each of 0.4N potassium hydroxide solution and 0.1N barium hydroxide aqueous solution was put in a 250ml Pyrex tube was connected to the reactor. By placing the empty bottle on the top of the reactor to condense the water evaporating from the reactor due to the continuous aeration, and supplying the collected moisture back to the reactor at regular intervals, the moisture content, which is the most important factor in measuring the biodegradability using the compost of the reactor It was kept constant.

②실험방법② Experiment Method

퇴비를 고체상으로 하여 생분해도 측정실험을 진행하였는데, 퇴비 150g(습윤중량, 함수율 54.3%)에 대해서 건조 중량비로 5%에 해당되는 시료를 고루 섞으면서 가능한한 시료가 표면으로 노출되지 않도록 주의하였다. 배양 보틀에 준비한 퇴비와 시료를 넣고(시료 한 개당 3개의 배양보틀을 준비함), 이산화탄소 포집기를 각각의 배양기에 연결한후, 분해 실험을 시작하였다. 매회 분회실험에 시료를 넣지 않은 배양기를 두어 퇴비만의 이산화탄소 발생량을 측정하여 분해도를 관찰하였다. 계속된 폭기로 인한 퇴비의 건조를 막기 위해 증발하여 응축되는 수분을 포집하여 반응기에 재 공급하였다.The biodegradability measurement experiment was carried out using the compost as a solid phase. Care was taken to ensure that the sample was exposed to the surface as much as possible while mixing 5% of the sample by dry weight ratio with respect to 150g of compost (wet weight, moisture content 54.3%). The compost and the sample prepared in the culture bottle (three culture bottles per sample) were prepared, the carbon dioxide collector was connected to each incubator, and the decomposition experiment was started. In each batch experiment, the incubator without the sample was placed, and the amount of carbon dioxide generated in the compost was measured to observe the degree of decomposition. In order to prevent drying of the compost due to continued aeration, the water condensed by condensation was collected and fed back to the reactor.

발생된 이산화탄소는 실험시작 후 3~4일 경과 후, 첫 번째 이산화탄소 포집기를 분리하고, 이후 약 1주일 간격으로 계속 분리 정량하였다. 이산화탄소발생량을 정량하기 위해 0.4N의 수산화칼륨용액인 경우 용액중에 포집된 이산화탄소의 이산화탄소를 침전으로 떨어뜨리기 위해 2N 염화바륨 용액을 첨가하여 잘 교반하고, 수산화바륨 수용액인 경우는 바로 페놀프탈레인 0.1㎖를 넣어준 후, 교반하면서 분홍색이 무색이 될 때까지 0.2N 염산 수용액으로 적정을 하였다. 이산화탄소 발생량을 정량하기 위해 페놀프탈레인 0.1㎖를 넣어준 후, 교반하면서 분홍색이 무색이 될 때까지 0.2N 염산 수용액으로 적정을 하였다.The generated carbon dioxide was separated from the first carbon dioxide collector 3 to 4 days after the start of the experiment, and then continuously separated and quantified at about 1 week intervals. In order to quantify the amount of carbon dioxide generated, add 2N barium chloride solution and stir well in case of 0.4N potassium hydroxide solution to drop the carbon dioxide of carbon dioxide collected in the solution to precipitate. After titration, the solution was titrated with 0.2 N aqueous hydrochloric acid solution until the color became pink without stirring. In order to quantify the amount of carbon dioxide generated, 0.1 ml of phenolphthalein was added and titrated with 0.2 N aqueous hydrochloric acid solution until the color became colorless while stirring.

③ 분석③ Analysis

A) 이산화탄소정량에 의한 분해도A) Exploded View by CO2 Quantification

시료에서 발생한 이산화탄소양에서 시료를 넣지 않은 배양기에서 발생한 이산화탄소의 양을 빼서 순수하게 시료로부터 발생한 이산화탄소의 양을 구하였다. 한편, 발생된 이산화탄소의 양은 하기 반응식1과 수학식 1에서 보는 바와 같이 처음 소모예상 염산양에서 소모된 염산양을 뺀 후 1.1을 곱한 값이다.The amount of carbon dioxide generated from the sample was obtained by subtracting the amount of carbon dioxide generated from the incubator without the sample from the amount of carbon dioxide generated from the sample. On the other hand, the amount of carbon dioxide generated is a value multiplied by 1.1 after subtracting the amount of hydrochloric acid consumed from the estimated hydrochloric acid consumption as shown in the following reaction formula 1 and equation (1).

Figure 112006058604159-pat00001
Figure 112006058604159-pat00001

Figure 112006058604159-pat00002
Figure 112006058604159-pat00002

발생된 이산화탄소량을 기준으로 하기 수학식 2를 통해 분해도를 측정하였으며, 80일동안의 분해도 측정결과를 도 1에 나타내었다. Based on the amount of carbon dioxide generated, the degree of decomposition was measured by the following Equation 2, and the result of measuring the degree of decomposition for 80 days is shown in FIG. 1.

Figure 112006058604159-pat00003
Figure 112006058604159-pat00003

도 1에서 보는 바와 같이 분해도가 매우 우수한 것으로 알려진 셀룰로오스와 본 발명에 따른 폴리우레탄의 분해도를 서로 비교해 보면 30일 이전까지는 서로 유 사한 분해도를 보이고 있으며, 이후 셀룰로오스의 분해도가 본 발명에 따른 폴리우레탄의 분해도 보다 다소 앞서는 결과를 보여주고 있다. 그러나, 도 1에서 확인할 수 있는 바와 같이 본 발명에 따른 폴리우레탄의 경우 셀룰로오스와 대등한 정도의 매우 우수한 분해도 특성을 나타냄을 확인할 수 있다. As shown in FIG. 1, when comparing the decomposition degree of cellulose known to be excellent in decomposition with the polyurethane according to the present invention, the decomposition degree was similar to each other until 30 days ago, and since the decomposition degree of cellulose was determined according to the present invention. Decomposition is somewhat more advanced. However, as can be seen in Figure 1 it can be seen that the polyurethane according to the present invention exhibits a very good degree of decomposition properties comparable to cellulose.

상기에서 설명한 바와 같이 본 발명은 생분해성과 가수분해성을 갖는 범용의 폴리우레탄에 첨가시 우수한 복합분해성을 발휘하여 단기간 내에 폴리우레탄의 완전 분해가 가능하도록 한 폴리우레탄용 복합분해제의 제조방법과, 그 방법에 의해 제조된 복합분해제를 함유하는 복합분해성 폴리우레탄 조성물을 제공하는 유용한 효과가 있다.As described above, the present invention provides a method for preparing a composite disintegrating agent for polyurethane, which is capable of fully dissolving the polyurethane within a short period of time by exhibiting excellent complex degradability when added to a general-purpose polyurethane having biodegradability and hydrolyzability, and There is a useful effect of providing a polydegradable polyurethane composition containing a complex degradant prepared by the process.

Claims (9)

반응용기에 포스포릭 엑시드 20∼40중량%, 포스포러스 엑시드 10∼30중량%, 과염소산 나트륨 5∼15중량% 및 포화지방산 비스아미드를 잔량 투입하여 100중량%로 조절한 다음 120∼180℃로 승온하여 용융 반응시킨 후 냉각하는 것을 특징으로 하는 폴리우레탄용 복합분해제의 제조방법. 20-40% by weight of phosphoric acid, 10-30% by weight of phosphorus acid, 5-15% by weight of sodium perchlorate and saturated fatty acid bisamide were added to the reaction vessel to adjust the amount to 100% by weight, and then heated to 120-180 ° C. Method of producing a composite disintegrating agent for polyurethane, characterized in that the reaction by melting and cooling. 청구항 1에 있어서, The method according to claim 1, 상기 반응용기에 자외선 붕괴를 촉진시키는 탄산칼슘 0.1∼2중량%를 추가 투입하여 용융 반응시키는 것을 특징으로 하는 폴리우레탄용 복합분해제의 제조방법. A method for producing a composite disintegrating agent for polyurethane, characterized in that the reaction vessel by further adding 0.1 to 2% by weight of calcium carbonate to promote ultraviolet collapse. 청구항 1 또는 2에 있어서, The method according to claim 1 or 2, 상기 포화지방산 비스아미드가 메틸렌 비스 스테아르아미드(methylene bis stearamide) 또는 에틸렌 비스 스테아르아미드(ethylene bis stearamide)인 것을 특징으로 하는 폴리우레탄용 복합분해제의 제조방법. The saturated fatty acid bisamide is a methylene bis stearamide (methylene bis stearamide) or ethylene bis stearamide (ethylene bis stearamide) characterized in that the manufacturing method of the complex decomposition agent for polyurethane. 청구항 3의 제조방법에 의해 제조된 것임을 특징으로 하는 폴리에스테르 우 레탄용 복합분해제. Composite decomposition agent for polyester urethane characterized in that it is produced by the manufacturing method of claim 3. 상기 청구항 4의 폴리우레탄용 복합분해제를 폴리우레탄에 첨가 혼합하여서된 것임을 특징으로 하는 복합분해성을 갖는 폴리우레탄 조성물.Polyurethane composition having a complex degradability, characterized in that by adding and mixing the polyurethane composite decomposition agent of claim 4 to the polyurethane. 청구항 5에 있어서, The method according to claim 5, 상기 폴리우레탄은 방향족 폴리에스테르와 디이소시아네이트를 반응시켜 제조된 에스테르계 임을 특징으로 하는 복합분해성을 갖는 폴리우레탄 조성물. The polyurethane is a polyurethane composition having a complex degradability, characterized in that the ester produced by reacting the aromatic polyester and diisocyanate. 청구항 6에 있어서, The method according to claim 6, 상기 에스테르계 폴리우레탄은 융점이 120∼220℃이고, 수평균분자량이 1,000∼150,000이며, 중량평균분자량이 1,500∼300,000이고, 표면강도가 50∼100인 것임을 특징으로 하는 폴리우레탄 조성물. The polyurethane-based polyurethane composition is characterized in that the melting point is 120 ~ 220 ℃, number average molecular weight is 1,000 to 150,000, weight average molecular weight is 1,500 to 300,000, surface strength is 50 to 100. 청구항 5 내지 7항 중 어느 한 항에 있어서, The method according to any one of claims 5 to 7, 상기 폴리우레탄용 복합분해제는 폴리우레탄 100중량부에 대하여 0.5∼3.5중량부의 비율로 혼합된 것임을 특징으로 하는 복합분해성을 갖는 폴리우레탄 조성물. The polyurethane composite decomposer is a polyurethane composition having a complex degradability, characterized in that the mixture in a ratio of 0.5 to 3.5 parts by weight with respect to 100 parts by weight of polyurethane. 상기 청구항 8의 복합분해성 폴리우레탄 조성물을 압출 또는 사출성형하여 제조된 것임을 특징으로 하는 폴리우레탄 제품. Polyurethane product, characterized in that prepared by extruding or injection molding the multi-decomposable polyurethane composition of claim 8.
KR1020060077837A 2006-08-17 2006-08-17 Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive KR100644998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060077837A KR100644998B1 (en) 2006-08-17 2006-08-17 Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060077837A KR100644998B1 (en) 2006-08-17 2006-08-17 Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive

Publications (1)

Publication Number Publication Date
KR100644998B1 true KR100644998B1 (en) 2006-11-10

Family

ID=37654353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060077837A KR100644998B1 (en) 2006-08-17 2006-08-17 Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive

Country Status (1)

Country Link
KR (1) KR100644998B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039877B1 (en) * 2011-02-17 2011-06-09 동아화학 주식회사 A polyurethane biodegradable plastic using phosphorus pentoxide
KR101133810B1 (en) 2010-08-20 2012-04-05 주병열 Degradable and antibiotic polyurethane resin composition and its manufacturing method
KR101218451B1 (en) * 2010-10-01 2013-01-04 주병열 Degradable film for packageing of food material and its manufacturing method
US10245887B2 (en) 2015-07-23 2019-04-02 Bridgestrone Americas Tire Operations, LLC Methods relating to polyurethane foam-containing and degradable foam-containing tires, and degradable foam-containing tires
KR102235585B1 (en) * 2020-01-21 2021-04-05 주식회사 가이아 Manufacturing method of hybrid complex degradable additive for polyurethane and complex degradable polyurethane composition containing the complex degradble additive

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133810B1 (en) 2010-08-20 2012-04-05 주병열 Degradable and antibiotic polyurethane resin composition and its manufacturing method
KR101218451B1 (en) * 2010-10-01 2013-01-04 주병열 Degradable film for packageing of food material and its manufacturing method
KR101039877B1 (en) * 2011-02-17 2011-06-09 동아화학 주식회사 A polyurethane biodegradable plastic using phosphorus pentoxide
EP2489696A1 (en) * 2011-02-17 2012-08-22 DongAh Chemical Co., Ltd. Biodegradable polyurethane plastic using phosphorus pentoxide
US8445109B2 (en) 2011-02-17 2013-05-21 Dongah Chemical Co., Ltd. Biodegradable polyurethane plastic using phosphorus pentoxide
US10245887B2 (en) 2015-07-23 2019-04-02 Bridgestrone Americas Tire Operations, LLC Methods relating to polyurethane foam-containing and degradable foam-containing tires, and degradable foam-containing tires
US11597235B2 (en) 2015-07-23 2023-03-07 Bridgestone Americas Tire Operations, Llc Methods relating to polyurethane foam-containing and degradable foam-containing tires, and degradable foam-containing tires
KR102235585B1 (en) * 2020-01-21 2021-04-05 주식회사 가이아 Manufacturing method of hybrid complex degradable additive for polyurethane and complex degradable polyurethane composition containing the complex degradble additive

Similar Documents

Publication Publication Date Title
Valderrama et al. The potential of oxalic–and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization–CCU)
CN101851355B (en) Degradable starch-based plastic masterbatch and preparation method thereof
KR100644998B1 (en) Processing method of complex degradable additive for polyurethane and complex degragable polyurethane containg the complex degardable additive
RU2352597C1 (en) Biodegradable granular polyolefin blend and method of production
KR20140116418A (en) Method for Preparing a Polymer/Biological Entities Blend
CN1946807A (en) Biodegradable resin composition
EP1037943A1 (en) Stabilized molding compounds comprised of biologically degradable materials
EA026751B1 (en) Isocyanate free polymers and method of their production
IL263208A (en) Method for obtaining biodegradable polyesteretheramide
CN104945870A (en) All-biodegradable modified polylactic acid film-blowing resin and preparation method thereof
KR101039877B1 (en) A polyurethane biodegradable plastic using phosphorus pentoxide
KR101218451B1 (en) Degradable film for packageing of food material and its manufacturing method
KR102235585B1 (en) Manufacturing method of hybrid complex degradable additive for polyurethane and complex degradable polyurethane composition containing the complex degradble additive
KR102149113B1 (en) The partially biodegradable resin composition based on the biomass polyethylene
CN115926128A (en) Aliphatic-aromatic polyester composition, polyester fiber, and preparation method and application thereof
KR101133810B1 (en) Degradable and antibiotic polyurethane resin composition and its manufacturing method
KR101928931B1 (en) Polymer for bio plastics, Composition of the same and Preparing method thereof
KR102306557B1 (en) How to obtain a biodegradable polymer
KR20060047113A (en) Biodegradable plastic composition containing biodegradable powders
CN111253724B (en) Long-life polyglycolide material prepared by phosphite ester as hydrolysis-resistant reinforcing agent and without special protection and preparation method thereof
US11485849B2 (en) Composite biodegradable polymeric based material, a product and a method of making same
JP2008201995A (en) Batchwise production method of polyester-based resin
KR102059294B1 (en) Eco-friendly composition biodegradable in natural condition and the preparation method thereof
KR101895793B1 (en) Catalysts composition for decomposing plastics and preparation method thereof
KR100725754B1 (en) Fully biodegradable master batch with photodegradability introduced by reacting with oxygen, and its pla composite

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee