KR100642658B1 - Method for improving the performance of a catalyst for manufacturing styrene - Google Patents

Method for improving the performance of a catalyst for manufacturing styrene Download PDF

Info

Publication number
KR100642658B1
KR100642658B1 KR1019990040434A KR19990040434A KR100642658B1 KR 100642658 B1 KR100642658 B1 KR 100642658B1 KR 1019990040434 A KR1019990040434 A KR 1019990040434A KR 19990040434 A KR19990040434 A KR 19990040434A KR 100642658 B1 KR100642658 B1 KR 100642658B1
Authority
KR
South Korea
Prior art keywords
koh
catalyst
reactor
ethylbenzene
steam
Prior art date
Application number
KR1019990040434A
Other languages
Korean (ko)
Other versions
KR20010028267A (en
Inventor
원종국
박윤석
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1019990040434A priority Critical patent/KR100642658B1/en
Publication of KR20010028267A publication Critical patent/KR20010028267A/en
Application granted granted Critical
Publication of KR100642658B1 publication Critical patent/KR100642658B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 스팀의 존재하에 에틸벤젠의 촉매적 탈수소화에 의해 스티렌 모노머를 제조하는 공정에 있어서, 공정의 진행에 따른 촉매의 성능저하 즉, 촉매효율의 저하를 방지하기 위한 촉매의 성능개선방법에 관한 것이다.The present invention relates to a method for improving the performance of a catalyst for preventing the degradation of the catalyst according to the progress of the process, that is, the reduction of the catalyst efficiency in the process of preparing the styrene monomer by the catalytic dehydrogenation of ethylbenzene in the presence of steam. It is about.

본 발명의 방법에서는 원료인 스팀과 에틸벤젠을 반응기로 공급하면서 동시에 별도의 공급라인을 통해 KOH를 반응기내로 주입하되, 증발이 매우 어려운 KOH를 감압하에서 직접 증발시켜 주입하는 것을 특징으로 한다. 이러한 본 발명의 촉매성능 개선방법에 의하면, 저온에서도 KOH의 증발이 용이하게 이루어질 수 있으므로, KOH의 공급을 위해 고온이 요구되는 종래의 방법에서 고온으로 인한 여러 문제점들을 해소할 수 있는 효과가 있다. In the method of the present invention, while supplying steam and ethyl benzene as a raw material to the reactor, while injecting KOH into the reactor through a separate supply line, it is characterized in that the KOH is very difficult to evaporate directly under reduced pressure. According to the catalyst performance improving method of the present invention, since the KOH can be easily evaporated even at low temperatures, there is an effect that can solve various problems due to the high temperature in the conventional method that requires a high temperature for the supply of KOH.

Description

스티렌 제조용 촉매의 성능개선방법{Method for improving the performance of a catalyst for manufacturing styrene}Method for improving the performance of a catalyst for manufacturing styrene

도1은 본 발명에 의한 KOH 주입공정을 나타낸 개념도이다.1 is a conceptual diagram showing a KOH injection process according to the present invention.

도2는 본 발명의 실시예에서 사용한 반응기의 단면도이다.2 is a cross-sectional view of the reactor used in the embodiment of the present invention.

도3은 본 발명의 실시예에서 사용한 스티렌 제조장치의 개략도이다. 3 is a schematic diagram of a styrene manufacturing apparatus used in the embodiment of the present invention.

* 도면의 주요부호에 대한 설명* Description of the major symbols in the drawings

1. 저장조, 2. 농축조,1. reservoir, 2. thickener,

3. 증발조, 4. 진공펌프,3. evaporator, 4. vacuum pump,

a. 촉매층, a. Catalyst layer,

11. 가열기, 12. 1번 반응기,11.heater, 12. 1 reactor,

13. 2번 반응기, 14. 배기가스흡수탑,13. reactor 2, 14. exhaust gas absorption tower,

15. 배기가스탈기탑, 16. 배기가스압축기,15. exhaust gas degassing tower, 16. exhaust gas compressor,

17. 미정제 스티렌 분리조, 18. 분리조 탈기탑,17. crude styrene separation tank, 18. separation tank degassing tower,

19. 벤젠-톨루엔 분리탑, 20. 에틸벤젠 회수탑,19. benzene-toluene separation tower, 20. ethylbenzene recovery tower,

21. 스티렌 정제탑, 22. 잔류 스티렌 정제탑,21. styrene purification tower, 22. residual styrene purification tower,

23. 스티렌 저장조.23. Styrene reservoir.

본 발명은 스팀의 존재하에 에틸벤젠의 촉매적 탈수소화에 의해 스티렌 모노머를 제조하는 공정에 있어서, 촉매의 성능을 개선하기 위한 방법에 관한 것이다.The present invention relates to a process for improving the performance of a catalyst in a process for producing styrene monomers by catalytic dehydrogenation of ethylbenzene in the presence of steam.

스티렌은 폴리스티렌, ABS수지 등의 여러가지 수지와 합성고무와 같은 탄성 중합체 제조용 원료로서 널리 사용되고 있으며, 그 용도의 확장에 따라 매년 생산량이 증가하고 있는 추세이다.Styrene is widely used as a raw material for producing elastic resins such as various resins such as polystyrene and ABS resins and synthetic rubber, and the production is increasing every year as the use thereof is expanded.

스티렌은 탈수소화 촉매층이 있는 반응기내에서 에틸벤젠을 과열된 수증기 즉, 스팀의 존재하에 상기 촉매상에서 탈수소화하여 제조된다는 것은 잘 알려져 있으며, 이러한 탈수소화 공정에서 중요한 것은 에틸벤젠의 스티렌으로의 높은 전환율 및 부산물의 생성을 억제하는 높은 선택성이다. 종래에는 높은 전환율과 높은 선택성의 달성을 위하여 주로 탈수소화 촉매에 관한 연구가 활발히 진행되었으며, 기본적으로 Fe와 K를 포함하며 그외 다른 알칼리 금속 등을 포함하는 다양한 촉매가 개발되었다. It is well known that styrene is prepared by dehydrogenation of ethylbenzene on the catalyst in the presence of superheated steam, ie steam, in a reactor with a dehydrogenation catalyst layer, which is important in this dehydrogenation process. And high selectivity to inhibit the production of by-products. Conventionally, researches on dehydrogenation catalysts have been actively conducted in order to achieve high conversion and high selectivity, and various catalysts including Fe and K and other alkali metals have been developed.

한편, 스티렌의 제조공정에서 사용되는 탈수소화 촉매는 초기활성이 높은 촉매라 하더라도 사용이 계속되면 그 활성이 점차 감소하여, 그에 따라 탈수소화 반응의 전환율 및 선택성도 떨어지게 된다. 이러한 이유로 통상 탈수소화 촉매의 수명은 약 2년 정도이며, 촉매의 수명이 다하면 상당한 고온에서 작동되는 반응기의 운전을 중지하고 새로운 촉매로 대체하여야 하는데, 이는 제조공정상에 번거로움을 초래할 뿐 아니라 촉매자체의 비용, 반응기의 재운전을 위한 열량공급등에 따른 비 용 등 제조비용의 상당한 상승요인이 된다. On the other hand, the dehydrogenation catalyst used in the manufacturing process of styrene, even if the catalyst with a high initial activity, the activity is gradually reduced when the use is continued, thereby reducing the conversion rate and selectivity of the dehydrogenation reaction. For this reason, dehydrogenation catalysts typically last about two years, and at the end of their lifetime, reactors operating at high temperatures must be shut down and replaced with new catalysts. This is a significant increase in manufacturing costs, such as the cost of a fuel cell and the cost of supplying calories to restart the reactor.

촉매의 수명을 연장하기 위한 여러 방법이 제안되었으나, 반응기의 운전을 중지하여야 하거나, 전환율 및 선택성에 나쁜 영향을 미치는 등의 문제점이 있었으며, 이러한 문제점을 해결하기 위한 방법으로 미국특허 제5,686, 369호에서는 알칼리금속 화합물 특히, KOH를 반응스트림에 계속적으로 또는 간헐적으로 공급하는 방법이 제안되었다. 이는 탈수소화 반응중에 촉매중의 다른 금속성분의 함량에는 큰 변화가 없으나, K성분의 함량은 크게 감소되며, 이로 인해 촉매의 활성이 점차 감소하게 되기 때문에 반응스트림에 K성분을 추가로 공급하므로써 촉매의 활성감소를 방지하여 촉매의 수명을 연장시키고자 한 기술이다. Several methods have been proposed to extend the life of the catalyst, but there have been problems such as stopping the operation of the reactor, adversely affecting the conversion rate and selectivity, and US Pat. No. 5,686,369. Has been proposed a method of continuously or intermittently feeding alkali metal compounds, in particular KOH, to the reaction stream. This is because the content of other metal components in the catalyst does not change significantly during the dehydrogenation reaction, but the content of K component is greatly reduced, and as a result, the activity of the catalyst gradually decreases. This technique aims to prolong the life of the catalyst by preventing the decrease of activity.

그러나, 상기 미국특허에서는 KOH를 주입하는 방법에 대하여 상세한 설명은 없고, 다만 건조된 고체상태, 또는 액체상태 또는 증기상태로 주입되는 것으로 기재되어 있고, 증기상태로 주입하는 경우에 대하여는 실시예에서 KOH를 고온으로 가열하여 증발시켜 주입하는 것으로 예시되어 있다. 그런데, KOH는 증기압이 매우 낮은 물질이어서, 지금까지 상업화된 공정에서는 KOH의 증발을 위해 약 800oC 이상의 고온에서 증발시키고 있으며, 이와 같은 고온은 실제 현장에서 적용시 증발기의 재질선택이 어렵고, 증발기의 내벽 재질이 약할 경우 고온에서 금속성분의 승화로 인해 KOH의 변질이 일어날 수 있으며, 증발기의 고온유지가 상당히 힘들뿐 아니라 기타 고온의 스팀이 지나가는 모든 라인의 밸브와 계측기기 등의 피팅(fitting)이 어려워 지는 등 여러가지 공정상 및 설비상의 문제점이 있어 이의 개선이 절실하다.However, there is no detailed description of the method of injecting KOH in the U.S. patent, but it is described as being injected in a dried solid state, or in a liquid state or in a vapor state, and in the case of injecting in a vapor state, KOH is used in Examples Is illustrated by heating to a high temperature and evaporating to inject. However, since KOH is a material having a very low vapor pressure, the commercialized process has been evaporating at a high temperature of about 800 o C or higher for the evaporation of KOH, and such high temperature is difficult to select the material of the evaporator when it is applied in actual field. If the inner wall material is weak, the KOH may be deteriorated due to the sublimation of the metal at high temperatures, and it is difficult to maintain the high temperature of the evaporator, and the fittings of valves and measuring devices of all lines through which high temperature steam passes. There are various process and equipment problems such as this difficulty, and the improvement is urgently needed.

따라서, 본 발명의 목적은 반응공정을 중지하지 않고, 또한 탈수소화 반응의 전환율 및 선택성에 악영향을 미치지 않으면서 촉매의 성능을 개선하기 위하여 KOH를 반응스트림에 주입하되, KOH를 저온에서 직접 증발시켜 반응스트림에 주입하므로써 고온에서 KOH를 증발시키는 경우의 문제점을 해소할 수 있는 촉매 성능개선 방법을 제공하는 것이다.Accordingly, an object of the present invention is to inject KOH into the reaction stream to improve the performance of the catalyst without stopping the reaction process and without adversely affecting the conversion and selectivity of the dehydrogenation reaction, but by directly evaporating KOH at low temperature. It is to provide a method for improving catalyst performance that can solve the problem of evaporating KOH at high temperature by injection into the reaction stream.

본 발명의 촉매 성능개선방법은 에틸벤젠을 촉매적 탈수소화하여 스티렌 모노머를 제조함에 있어서, 원료인 스팀과 에틸벤젠을 반응기로 공급하면서 동시에 별도의 공급라인을 통해 KOH를 반응기내로 주입하되, 증발이 매우 어려운 KOH를 감압하에서 직접 증발시켜 주입하는 것을 특징으로 한다.In the catalyst performance improving method of the present invention, in the preparation of styrene monomers by catalytic dehydrogenation of ethylbenzene, while supplying steam and ethylbenzene as raw materials to the reactor, KOH is injected into the reactor through a separate supply line, and evaporated. This very difficult KOH is characterized by being injected directly under reduced pressure.

본 발명의 방법에 있어서, KOH의 주입에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.In the method of the present invention, the injection of KOH will be described with reference to the accompanying drawings.

먼저, KOH를 일정농도로 물에 용해시켜 수용액 상태로 만든후 저장조(1)에서 저장하여 두고, 상기 저장조(1)로부터 일정량의 KOH 수용액을 농축조(2)로 보내어 일정량의 수분을 증발시켜 농축시킨다. 그런 다음 농축된 KOH 수용액을 증발조(3)로 보내어 감압하에서 증발시킨다. 이때 증발조에서 감압하에서 KOH를 증발시키므로써 약 700oC 이하의 저온에서도 KOH가 용이하게 증발되어 기체상태로 된다. 증발된 기체상태의 KOH를 진공펌프(4) 등의 수단을 이용하여 연속적으로 반응기로 공급 한다.First, KOH is dissolved in water to a certain concentration to make an aqueous solution, and then stored in the storage tank (1), by sending a certain amount of KOH aqueous solution from the storage tank (1) to the concentration tank (2) to evaporate a certain amount of water to concentrate. . Then, the concentrated aqueous KOH solution is sent to the evaporator 3 and evaporated under reduced pressure. At this time, by evaporating the KOH under reduced pressure in the evaporator, the KOH is easily evaporated to a gaseous state even at a low temperature of about 700 o C or less. Evaporated gaseous KOH is continuously supplied to the reactor using a means such as a vacuum pump (4).

본 발명의 방법에 따라 KOH를 반응기에 주입하면서, 원료인 에틸벤젠과 스팀을 공급하여 에틸벤젠을 탈수소화하여 스티렌 모노머를 제조한다. 스티렌 모노머의 제조공정은 스팀과열기, 반응기, 열교환기, 증발기, 배기가스 회수시스템 등이 구비된 통상의 제조장치를 사용한 공지의 기상 촉매적 탈수소 공정 및 벤젠-톨루엔 칼럼, 에틸벤젠 회수탑, 스티렌 정제탑, 스티렌 회수탑, 스티렌 저장조가 구비된 통상의 정제장치를 이용한 공지의 정제공정으로 수행되며, 이를 상술하면 다음과 같다. While injecting KOH into the reactor according to the method of the present invention, ethylbenzene and steam as raw materials are supplied to dehydrogenate ethylbenzene to prepare a styrene monomer. The production process of styrene monomer is known gas phase catalytic dehydrogenation process using a conventional production apparatus equipped with steam superheater, reactor, heat exchanger, evaporator, exhaust gas recovery system, benzene-toluene column, ethylbenzene recovery tower, styrene The purification column, the styrene recovery column, is carried out by a known purification process using a conventional purification device equipped with a styrene storage tank, which will be described below.

벤젠을 에틸렌으로 알킬화하여 만든 에틸벤젠을 스팀과 함께 혼합하여, 이 혼합증기를 반응기에 주입한다. 반응기는 통상적으로 사용되는 단열반응기 또는 등온반응기를 복수개, 바람직하게는 2개 또는 3개를 직렬 또는 병렬로 연속적으로 연결하여 사용한다. 에틸벤젠 주입시에 스팀을 혼합하여 주입하는 것은 에틸벤젠의 탈수소화 반응이 흡열반응이므로 반응을 위한 열원으로서 공급하는 것이며, 또한 스팀은 반응기내의 탈수소화 촉매를 산화시키는 산화제로 작용하고, 반응중에 생성된 C와 반응하여 촉매 표면의 코우킹(coking)을 방지하며, 에틸벤젠의 분압을 낮추어 스티렌으로의 평형이동을 유도하는 역할을 한다.Ethylbenzene made by alkylating benzene with ethylene is mixed with steam and this mixed steam is injected into the reactor. The reactor uses a plurality of adiabatic reactors or isothermal reactors that are commonly used, preferably two or three, in series or in parallel. In the case of ethylbenzene injection, steam is mixed and injected as a heat source for the reaction because the dehydrogenation reaction of ethylbenzene is an endothermic reaction, and steam acts as an oxidizing agent to oxidize the dehydrogenation catalyst in the reactor and is produced during the reaction. It reacts with C to prevent coking of the catalyst surface and lowers partial pressure of ethylbenzene to induce an equilibrium shift to styrene.

스팀과 에틸벤젠의 비율 즉, 스팀:에틸벤젠의 몰비는 약 7:1 내지 약 13:1이 적합하고, 이러한 비율의 혼합물을 제1반응기 입구에서 약 500oC 내지 약 700oC의 온도로 가열하여 반응기로 주입한다. 이때 액체 에틸벤젠의 주입속도인 총 공간속 도는 0.20 h-1 내지 0.40 h-1이 바람직하다. 반응기내에서의 반응온도는 약 500oC 내지 약 700oC, 바람직하게는 550oC 내지 650oC로 유지하고, 압력은 0.4 kg/cmk 2 내지 1.5 kg/cm2으로 유지한다. A ratio of steam to ethylbenzene, ie, a molar ratio of steam to ethylbenzene, is suitable from about 7: 1 to about 13: 1, and the mixture of these ratios is brought to a temperature of about 500 o C to about 700 o C at the inlet of the first reactor. Heated and injected into the reactor. In this case, the total space velocity, which is the injection rate of liquid ethylbenzene, is preferably 0.20 h −1 to 0.40 h −1 . The reaction temperature in the reactor is maintained at about 500 ° C. to about 700 ° C., preferably 550 ° C. to 650 ° C., and the pressure is maintained at 0.4 kg / cmk 2 to 1.5 kg / cm 2 .

에틸벤젠의 탈수소화에 사용되는 촉매로는 Fe와 K를 기본적으로 포함하는 Fe-K계, Fe-K-Mg계, Fe-K-Cr계, Fe-K-Ce계, Fe-K-Mg-Cr계, Fe-K-Ce-Mo계 등의 공지의 촉매를 선택, 사용할 수 있다. Catalysts used for the dehydrogenation of ethylbenzene include Fe-K-based, Fe-K-Mg-based, Fe-K-Cr-based, Fe-K-Ce-based, Fe-K-Mg-based Fe and K. Well-known catalysts, such as -Cr system and Fe-K-Ce-Mo system, can be selected and used.

상기와 같은 탈수소화 반응을 거친 반응유출물에는 조 스티렌, 미반응 에틸벤젠, 소량의 벤젠과 톨루엔 부산물 및 미량의 페닐아세틸렌, 메틸스티렌, 타르 등이 함유되어 있고, 기체 생성물에는 수소, 이산화탄소, 일산화탄소, 메탄 등이 함유되어 있다. 상기 반응유출물을 스티렌 정제장치로 보내어 스티렌 모노머를 정제, 분리한다.The reaction effluent after the dehydrogenation reaction contains crude styrene, unreacted ethylbenzene, a small amount of benzene and toluene by-products, and a small amount of phenylacetylene, methyl styrene, tar, etc., and gaseous products include hydrogen, carbon dioxide, and carbon monoxide. , Methane and the like. The reaction effluent is sent to a styrene purification device to purify and separate the styrene monomer.

이하 실시예 및 비교예를 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples.

실시예 Example

도2에 도시된 바와 같은 구조의 단열반응기 2개를 직렬로 연결한 탈수소 장치 및 정제장치로 이루어진 기존의 제조설비(도3)을 이용하여, 본 발명의 방법에 따라 감압하에서 증발시킨 기체상의 KOH를 에틸벤젠과 스팀의 혼합증기 주입시에 별도의 공급라인을 통해 반응기에 주입하면서, 에틸벤젠의 탈수소화 공정을 수행하였다. 촉매로는 Fe2O3/K2O 촉매를 사용하였다.탈수소화를 위한 반응조건은 하기 표1 에 나타내었다. 반응결과, 촉매성능을 나타내는 에틸벤젠의 스티렌으로의 전환율은 65%, 선택도는 96%이었다.Gas phase KOH evaporated under reduced pressure in accordance with the method of the present invention using an existing production facility consisting of a dehydrogenation device and a purification device connected in series with two adiabatic reactors having a structure as shown in FIG. Was injected into the reactor through a separate feed line at the time of mixed steam injection of ethylbenzene and steam, and the dehydrogenation process of ethylbenzene was performed. Fe 2 O 3 / K 2 O catalyst was used as a catalyst. The reaction conditions for dehydrogenation are shown in Table 1 below. As a result of the reaction, conversion of ethylbenzene to styrene showing catalytic performance was 65%, and selectivity was 96%.

공정변수Process variables 반응조건Reaction condition 스팀:에틸벤젠 몰비Steam: ethylbenzene molar ratio 9 : 19: 1 반응기 입구온도 제1반응기 제2반응기Reactor Inlet Temperature First Reactor Second Reactor 608oC 618oC608 o C 618 o C 반응기 출구온도 제1반응기 제2반응기Reactor Outlet Temperature First Reactor Second Reactor 538oC 568oC538 o C 568 o C 액체 에틸벤젠의 총공간속도Total Space Velocity of Liquid Ethylbenzene 0.38 h-1 0.38 h -1 평균압력 제1반응기 제2반응기Average Pressure First Reactor Second Reactor 0.78 kg/cm2 0.62 kg/cm2 0.78 kg / cm 2 0.62 kg / cm 2

비교예Comparative example

KOH를 주입하지 않는 것을 제외하고는 실시예와 동일하게 에틸벤젠의 촉매적 탈수소화를 진행하여 스티렌 모노머를 제조하였다.A styrene monomer was prepared by catalytic dehydrogenation of ethylbenzene in the same manner as in Example except that KOH was not injected.

본 발명의 촉매 성능개선방법에 의하면, 증발시키기 위해 극심한 고온이 요구되는 KOH를 감압하에서 직접 증발시키므로써 저온에서도 KOH를 용이하게 증발시킬 수 있으며, 이로 인해 고온증발시의 문제점들을 해소하고, 반응기 주입시의 유량조절이 보다 용이해지는 장점을 갖는다.According to the catalyst performance improvement method of the present invention, by directly evaporating the KOH that requires extremely high temperature to evaporate under reduced pressure, it is possible to easily evaporate KOH even at low temperatures, thereby solving the problems of high temperature evaporation, reactor injection It has the advantage that the flow rate control at the time becomes easier.

Claims (2)

스팀의 존재하에 에틸벤젠의 촉매적 탈수소화에 의해 스티렌 모노머를 제조하는 공정에 있어서, 원료인 스팀과 에틸벤젠을 반응기로 공급하면서 동시에 별도의 공급라인을 통해 감압하 저온에서 직접 증발시킨 KOH를 반응기내로 주입하는 것을 특징으로 하는 탈수소화 촉매의 성능 개선방법.In the process of producing styrene monomer by catalytic dehydrogenation of ethylbenzene in the presence of steam, while supplying steam and ethylbenzene as raw materials to the reactor, KOH is directly evaporated at low temperature under reduced pressure through a separate supply line. Method for improving the performance of the dehydrogenation catalyst, characterized in that the injection into the cabin. 제1항에 있어서, KOH 수용액을 일정 농도로 농축시킨후, 이 농축액을 감압하에서 증발시키는 것을 특징으로 하는 탈수소화 촉매의 성능 개선방법.The method for improving performance of a dehydrogenation catalyst according to claim 1, wherein the aqueous KOH solution is concentrated to a certain concentration, and then the concentrate is evaporated under reduced pressure.
KR1019990040434A 1999-09-20 1999-09-20 Method for improving the performance of a catalyst for manufacturing styrene KR100642658B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990040434A KR100642658B1 (en) 1999-09-20 1999-09-20 Method for improving the performance of a catalyst for manufacturing styrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990040434A KR100642658B1 (en) 1999-09-20 1999-09-20 Method for improving the performance of a catalyst for manufacturing styrene

Publications (2)

Publication Number Publication Date
KR20010028267A KR20010028267A (en) 2001-04-06
KR100642658B1 true KR100642658B1 (en) 2006-11-03

Family

ID=19612273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990040434A KR100642658B1 (en) 1999-09-20 1999-09-20 Method for improving the performance of a catalyst for manufacturing styrene

Country Status (1)

Country Link
KR (1) KR100642658B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338298B1 (en) 1993-07-07 2003-03-06 워싱톤 그룹 인터내셔날 인코포레이티드 Regeneration and Stabilization of Dehydrogenation Catalysts
KR100604135B1 (en) * 2003-08-08 2006-07-25 린나이코리아 주식회사 Gas range

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338298B1 (en) 1993-07-07 2003-03-06 워싱톤 그룹 인터내셔날 인코포레이티드 Regeneration and Stabilization of Dehydrogenation Catalysts
KR100604135B1 (en) * 2003-08-08 2006-07-25 린나이코리아 주식회사 Gas range

Also Published As

Publication number Publication date
KR20010028267A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
KR870001314B1 (en) Process for the catalytic dehydrogenation of hydro carbon
US4739124A (en) Method for oxygen addition to oxidative reheat zone of ethane dehydrogenation process
TWI389880B (en) Styrene monomer process based on oxidative dehydrogenation of ethylbenzene using co2 as a soft oxidant
JP2537067B2 (en) Method for producing hydrogen by steam reforming of methanol
JP5638013B2 (en) Hydrocarbon dehydrogenation method
US4778941A (en) Eduction of intermediate effluent in dehydrogenation process having oxidative reheat
CN112142547A (en) Method for removing residual oxygen in product stream of ethylene preparation by catalytic oxidative dehydrogenation of ethane
KR100642658B1 (en) Method for improving the performance of a catalyst for manufacturing styrene
US4113787A (en) Aromatic hydrocarbon dehydrogenation process
US3884650A (en) Waste disposal from oxidative dehydrogenation
US10005046B2 (en) Vaporization and transportation of alkali metal salts
KR100642659B1 (en) Method for improving the performance of a catalyst for manufacturing styrene
CN114728269B (en) Method for preparing insoluble polymer abatement additives in styrene process streams by catalytic oxidation
KR100730630B1 (en) Method for producing styrene for energy saving
US4338476A (en) Alkylaromatic hydrocarbon dehydrogenation process
GB2108523A (en) Dehydrogenation of alkylaromatic compounds to vinylaromatic monomers
CN114436744A (en) Method and system for preparing styrene by ethylbenzene dehydrogenation
KR20130018949A (en) Regeneration and stabilization of dehydrogenation catalyst
BR112021010980A2 (en) ADDITIVES TO REMEDY DIVINYL BENZENE CROSS-LINKING AND INSOLUBLE POLYMER FORMATION IN THE STYRENE PROCESS
KR890001849B1 (en) Process dehydrogenation of alkylaromatic hydrocarbon
CN113277924B (en) Heat exchange system for propylene preparation
KR100569591B1 (en) Method for purification of dicyclopentadiene with falling film evaporating system
CN116375552A (en) CO (carbon monoxide) 2 Process for preparing divinylbenzene by dehydrogenation of diethylbenzene oxide
TW202140413A (en) Process for producing acetic acid
WO2024127254A1 (en) Concentration of aqueous acetic acid by clathrate hydrate formation

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090929

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee