KR100639555B1 - Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers - Google Patents

Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers Download PDF

Info

Publication number
KR100639555B1
KR100639555B1 KR1020050101880A KR20050101880A KR100639555B1 KR 100639555 B1 KR100639555 B1 KR 100639555B1 KR 1020050101880 A KR1020050101880 A KR 1020050101880A KR 20050101880 A KR20050101880 A KR 20050101880A KR 100639555 B1 KR100639555 B1 KR 100639555B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
pcnf
templet
heating
carbon
Prior art date
Application number
KR1020050101880A
Other languages
Korean (ko)
Inventor
오제명
최경식
최철
윤성호
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020050101880A priority Critical patent/KR100639555B1/en
Application granted granted Critical
Publication of KR100639555B1 publication Critical patent/KR100639555B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

A method for synthesizing nano silicon carbide with high crystallinity is provided to produce silicon carbide with desired diameter on surface of PCNF(platelet carbon nano fiber) at relative low temperature, and to control diameter of finally formed products by adding PCNF as templet in polycarbomethyl silane solution, heating the solution to form the high crystalline silicon carbide and removing the templet to obtain the final formed product. The method comprises the steps of: admixing PCNF as templet to polycarbomethyl silane (Si(CH3)HCH2)n solution as a starting material in a ratio by weight of 1:2; drying the admixture to apply the starting material on the surface of the templet; heating the applied material at relative low temperature to synthesize high-crystallinity silicon carbide on the surface of PCNF; and removing the templet to obtain the final formed product. The heating step is performed by heating the applied material at above 1200deg.C under Ar atmosphere for 30 minutes or more, and exposing the heated material to below 700deg.C for at least 30 minutes.

Description

탄소나노 화이버를 이용한 고결정 나노 실리콘카바이드의 합성방법{Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers}Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers}

도 1은 본 발명에 따른 고결정 실리콘카바이드 합성공정을 나타낸 블록다이아그램이다. 1 is a block diagram showing a process for synthesizing a high crystal silicon carbide according to the present invention.

도 2는 본 발명에서 템플릿으로 이용하는 평판형 탄소 나노 화이버(PCNF)의 전자현미경(TEM) 사진이다. Figure 2 is an electron micrograph (TEM) of a planar carbon nanofiber (PCNF) used as a template in the present invention.

도 3과 도 4는 각각 본 발명에서 템플릿으로 이용하는 평판형 탄소 나노 화이버(PCNF)의 10,000배 및 100,000배 확대한 주사형 전자현미경(SEM) 사진이다. 3 and 4 are scanning electron microscope (SEM) images of 10,000 times and 100,000 times magnification of flat carbon nanofibers (PCNF) used as templates in the present invention, respectively.

도 5와 6은 각각 PCNF의 표면에 결정화된 실리콘카바이드의 10,000배 및 100,000배 확대한 주사형 전자현미경(SEM) 사진이다. 5 and 6 are scanning electron microscope (SEM) images of 10,000 times and 100,000 times magnification of silicon carbide crystallized on the surface of PCNF, respectively.

도 7와 8은 각각 PCNF를 제거한 후 성형물인 실리콘카바이드의 10,000배 및 100,000배 확대한 주사형 전자현미경(SEM) 사진이다. 7 and 8 are scanning electron microscope (SEM) images of 10,000 times and 100,000 times magnification of the silicon carbide as a molded product after removing the PCNF, respectively.

도 9는 온도 공정별 성형 물질인 실리콘카바이드(SiC)의 X-선 회절분석기(XRD) 그래프이다. 9 is an X-ray diffractometer (XRD) graph of silicon carbide (SiC), which is a molding material for each temperature process.

도 10은 본 발명에 따른 합성방법에 의해 성형된 평판형 고결정 실리콘카바이드 성형물의 전자현미경(TEM) 사진이다. 10 is an electron microscope (TEM) photograph of a plate-type high-crystalline silicon carbide molded product formed by the synthesis method according to the present invention.

도 11은 본 발명에 따른 합성방법에 의해 성형된 튜브형 고결정 실리콘카바이드의 전자현미경(TEM) 사진이다. 11 is an electron micrograph (TEM) of a tubular high crystal silicon carbide formed by the synthesis method according to the present invention.

본 발명은 탄소나노 화이버를 이용한 고결정 나노 실리콘카바이드의 합성방법에 관한 것이다. 더욱 상세하게, 본 발명은 비교적 낮은 온도에서 결정성이 높은 실리콘 카바이드를 합성할 수 있고, 직경의 크기도 제어할 수 있는 탄소나노 화이버를 이용한 고결정 나노 실리콘카바이드의 합성방법에 관한 것이다.The present invention relates to a method for synthesizing high crystal nano silicon carbide using carbon nanofibers. More specifically, the present invention relates to a method for synthesizing high crystalline nano silicon carbide using carbon nanofibers capable of synthesizing silicon carbide having high crystallinity at a relatively low temperature and controlling the size of the diameter.

실리콘카바이드(SiC)를 만드는 방법은 실리카(SiO2) 분말에 탄소(C)를 넣은 후 2200℃ 이상의 온도를 가하여 얻는 방법, 실란(Silane)과 프로판(Propane) 물질을 이용하여 1800℃에서 CVD(Chemical Vapor Deposition) 방식으로 얻는 방법, 또는 실리카(SiO2)와 규소(Si) 및 탄소(C)를 혼합하여 1300℃까지 승온시켜 얻는 방법과 폴리실란(Polysilane)을 1200 ~ 1500℃에서 열분해시켜 얻는 방법 등이 있다.Silicon carbide (SiC) is made by adding carbon (C) to a silica (SiO 2 ) powder and then applying a temperature of 2200 ° C. or higher, using silane (Silane) and propane (CVD) at 1800 ° C. Obtained by Chemical Vapor Deposition method, or obtained by mixing silica (SiO 2 ) with silicon (Si) and carbon (C) and raising the temperature to 1300 ° C. and by thermal decomposition of polysilane at 1200-1500 ° C. Method and the like.

이런 방법으로 얻은 실리콘카바이드는 화이버, 휘스커(Whisker), 필름, 멤블레인, 마이크로 튜브(Microtube), 나노로드(Nanorod)와 분말 또는 벌크와 같은 다양한 형태를 갖는다. 종래의 방법은 실리콘카바이드를 얻기 위해 높은 온도에서 출발 물질을 반응시킴으로서 제조 단가가 높고, 다양한 형태의 실리콘카바이드가 제조되어 원하는 형태와 크기로 제어하는 것이 불가능하였다.Silicon carbide obtained in this way has various forms such as fibers, whiskers, films, membranes, microtubes, nanorods and powders or bulks. The conventional method has high manufacturing cost by reacting the starting material at a high temperature to obtain silicon carbide, and various types of silicon carbide have been produced, making it impossible to control the desired shape and size.

이에 본 발명은 종래의 이와 같은 문제점을 해소하기 위한 것으로, 비교적 낮은 온도에서 반응시킬 수 있고, 높은 결정성을 가지며, 성형물의 직경도 제어할 수 있는 탄소나노 화이버를 이용한 고결정 실리콘카바이드의 합성방법을 제공하는데 그 목적이 있는 것이다. Accordingly, the present invention is to solve such a conventional problem, a method of synthesizing high-crystalline silicon carbide using carbon nanofibers that can be reacted at a relatively low temperature, has a high crystallinity, and can control the diameter of the moldings The purpose is to provide.

상기 목적을 달성하기 위한 본 발명의 탄소나노 화이버를 이용한 고결정 실리콘카바이드의 합성방법은,Synthesis method of high crystal silicon carbide using the carbon nanofiber of the present invention for achieving the above object,

출발물질로 폴리카보메틸실란[Si(CH3)HCH2]n 용액에 템플릿으로 탄소나노 화이버(Platelet Carbon Nano Tube: PCNF)를 무게비로 1 : 2의 비율로 혼합한 후, 건조시켜 템플릿 표면에 출발 물질이 코팅되게 하고, 상기 코팅 혼합물을 비교적 낮은 온도에서 가열하여 PCNF 표면에 고결정 실리콘카바이드를 합성한 후 템플릿을 제거하여 최종 성형물이 형성되게 하는 것으로 이루어지는 것을 특징으로 한다. As a starting material, carbon nanofibers (PCNF) were mixed in a polycarbomethylsilane [Si (CH 3 ) HCH 2 ] n solution at a ratio of 1: 2 by weight, and then dried on a template surface. The starting material is coated and the coating mixture is heated at a relatively low temperature to synthesize high crystalline silicon carbide on the PCNF surface and then the template is removed to form the final molding.

이하 본 발명을 첨부도면에 의거하여 더욱 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명의 탄소나노 화이버를 이용하여 열전도도와 기계적 강도가 높고, 화학적으로 안정한 나노 크기의 고결정 실리콘카바이드(SiC)를 합성하는 방법으로서, 도 1에 나타낸 바와 같이, 출발 물질로 폴리카보메틸실란[Si(CH3)HCH2]n을 용제(Solvent)에 넣어 용액을 만든 후 평판 구조의 탄소나노 화이버(Platelet Carbon Nano Tube: PCNF)를 무게비로 1 : 2의 비율로 섞는다. 이를 대기에서 건조시켜 용 제를 제거하고 폴리카보메틸실란이 탄소 나노 화이버(PCNF) 표면에 코팅되게 한다.As a method of synthesizing a chemically stable nano-sized high-crystalline silicon carbide (SiC) having high thermal conductivity and mechanical strength using the carbon nanofiber of the present invention, as shown in FIG. 1, polycarbomethylsilane [ Si (CH 3 ) HCH 2 ] n was added to a solvent to make a solution, and then plate plate carbon nanotubes (PCNF) were mixed at a weight ratio of 1: 2. It is dried in air to remove solvent and allow polycarbomethylsilane to be coated on the carbon nanofiber (PCNF) surface.

첨부 도면 중 도 2, 3 및 4는 본 발명에서 템플릿으로 이용하는 평판형 탄소 나노 화이버(PCNF)의 전자현미경(TEM) 및 각각 10,000배, 100,000배를 확대한 주사형 전자현미경(SEM) 사진들이다. 2, 3 and 4 of the accompanying drawings are electron microscopy (TEM) of planar carbon nanofibers (PCNF) used as a template in the present invention, and scanning electron microscopy (SEM) images of magnification of 10,000 times and 100,000 times, respectively.

한편, 코팅된 혼합물을 아르곤(Ar) 분위기에서 비교적 낮은 온도인 1200℃ 온도에서 30분 이상 가열하면 도 5와 6에 나타낸 바와 같이, 탄소 나노 화이버(PCNF) 표면에 고결정 실리콘카바이드(SiC)가 형성된다. 첨부 도면 중 도 5와 6은 각각 탄소 나노 화이버(PCNF)의 표면에 결정화된 실리콘카바이드의 10,000배 및 100,000배 확대한 주사형 전자현미경(SEM) 사진이다. Meanwhile, when the coated mixture is heated for 30 minutes or more at 1200 ° C., which is a relatively low temperature in an argon (Ar) atmosphere, as shown in FIGS. 5 and 6, high crystal silicon carbide (SiC) forms on the surface of carbon nanofibers (PCNF). Is formed. 5 and 6 are scanning electron microscope (SEM) images of 10,000 times and 100,000 times magnification of silicon carbide crystallized on the surface of carbon nanofibers (PCNF), respectively.

이를 대기 분위기하에서, 700℃ 미만에서 최소 30분 이상 노출시키면 탄소 나노 파이버(PCNF)가 연소에 의해 제거되어 그 자리에 나노 크기의 평판 또는 튜브 구조의 고결정 실리콘카바이드(β-SiC)만 남게되어 성형이 이루어진다. 첨부 도면 중 도 7와 8은 각각 탄소 나노 파이버(PCNF)를 제거한 후 성형물인 실리콘카바이드의 10,000배 및 100,000배 확대한 주사형 전자현미경(SEM) 사진이다. Under atmospheric conditions, exposure to carbon nanofibers (PCNF) for at least 30 minutes at temperatures below 700 ° C results in the removal of carbon nanofibers (PCNF) by combustion, leaving only nano-sized flat- or tube-structured high-crystalline silicon carbide (β-SiC) in place. Molding takes place. 7 and 8 are scanning electron microscope (SEM) images of 10,000 times and 100,000 times magnification of silicon carbide as a molded product after removing carbon nanofibers (PCNF), respectively.

본 발명의 방법에 의하면, 비교적 낮은 온도에서 직경이 20 nm ~ 80nm이고, 비표면적이 50㎡/g 이상, 면 간격(d002)은 약 0.2 nm의 평판형, 약 0.3 nm의 튜브형 미세구조를 갖는 결정성이 뛰어난 실리콘카바이드(SiC) 화이버를 합성할 수 있다.According to the method of the present invention, at a relatively low temperature, the diameter is 20 nm to 80 nm, the specific surface area is 50 m 2 / g or more, and the surface spacing (d 002 ) is about 0.2 nm, and the tubular microstructure is about 0.3 nm. Silicon carbide (SiC) fibers having excellent crystallinity can be synthesized.

첨부 도면 중에서 도 9는 온도 공정별 성형 물질인 실리콘카바이드(SiC)의 X-선 회절분석기(XRD) 그래프로서 1200℃부터 실리콘카바이드가 결정화되는 것을 보여주고 있다. 그리고, 도 10은 본 발명의 합성방법에 의해 성형된 평판형 고결정 실리콘카바이드를 촬영한 사진이고, 도 11은 튜브형 고결정 실리콘카바이드를 촬영한 사진이다. 9 is an X-ray diffractometer (XRD) graph of silicon carbide (SiC), which is a molding material for each temperature process, showing that silicon carbide is crystallized from 1200 ° C. FIG. 10 is a photograph of a plate-shaped high-crystalline silicon carbide molded by the synthesis method of the present invention, and FIG. 11 is a photograph of a tube-type high crystal silicon carbide.

또한, 템플릿 역할을 하는 탄소 나노 화이버(PCNF)의 직경을 자유롭게 선택함으로써 생성물의 크기를 용이하게 제어할 수 있으며, 세라믹 계열 등의 물질을 나노 크기로 제조할 수 있는 등 출발 물질을 자유롭게 선택하여 원하는 물성을 얻을 수 있다. In addition, it is possible to easily control the size of the product by freely selecting the diameter of the carbon nanofibers (PCNF) serving as a template, and to freely select the starting material, such as to produce a ceramic-based material, such as nano-sized Physical properties can be obtained.

이와 같은 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같다.The present invention will be described in more detail based on the following examples.

실시예Example 1 One

폴리카보메틸실란[Si(CH3)HCH2]n을 용제에 넣어 용액을 만든 후 평판 구조의 탄소나노 화이버(Platelet Carbon Nano Tube: PCNF)를 무게비로 1 : 2의 비율로 섞었다. 이를 대기에서 80℃의 조건으로 5시간 동안 건조시켜 폴리카보메틸실란이 탄소 나노 화이버(PCNF) 표면에 코팅되게 하였다. Polycarbomethylsilane [Si (CH 3 ) HCH 2 ] n was added to the solvent to form a solution, and platen carbon nanotubes (PCNF) having a flat structure were mixed at a weight ratio of 1: 2. It was dried for 5 hours at 80 ° C. in air to allow polycarbomethylsilane to be coated on the surface of carbon nanofibers (PCNF).

코팅된 혼합물을 아르곤(Ar) 분위기에서 분당 10℃씩 1200℃ 까지 승온한 후 1시간 동안 가열하여 탄소 나노 화이버(PCNF) 표면에 실리콘카바이드(SiC) 결정이 형성되게 하였다.The coated mixture was heated to 1200 ° C. at 10 ° C. per minute in an argon (Ar) atmosphere and heated for 1 hour to form silicon carbide (SiC) crystals on the surface of carbon nanofibers (PCNF).

이를 대기 분위기하에서, 650℃에서 2시간 동안 노출시켜 탄소 나노 파이버(PCNF)가 연소에 의해 제거한 결과 평판 또는 튜브 모양의 미세구조를 갖는 고결정 실리콘카바이드(SiC) 화이버만 남았다. 성형된 실리콘카바이드 화이버는 직경이 20 nm ~ 80nm이고, 비표면적이 50㎡/g 이상, 면 간격(d002)은 0.225 nm의 평판형 또는 0.333 nm의 튜브형 미세구조를 갖는 것으로 확인되었다.The carbon nanofibers (PCNF) were removed by combustion in the atmosphere at 650 ° C. for 2 hours, leaving only high-crystalline silicon carbide (SiC) fibers with a flat or tubular microstructure. The molded silicon carbide fibers were found to have a diameter of 20 nm to 80 nm, a specific surface area of 50 m 2 / g or more, and a plane spacing (d 002 ) having a flat or 0.233 nm tubular microstructure.

본 발명의 탄소나노 화이버를 이용한 고결정 나노 실리콘카바이드의 합성방법은 탄소 나노 화이버(PCNF)를 템플릿으로 활용하여 나노 크기의 실리콘카바이드를 비교적 낮은 온도에서 성형하는 방법으로써 저비용으로 원하는 직경의 실리콘카바이드를 성형할 수 있고, 템플릿의 직경을 자유롭게 선택함으로써 성형물 직경을 제어할 수 있으며, 이런 방법으로 비표면적을 넓혀 반응 촉매, 연료 전지 전극판 등으로 활용할 수 있다. 또한 출발 물질을 자유롭게 선정함으로써 원하는 물질과 형태를 갖는 물질을 성형할 수 있는 효과가 있다.Synthesis method of high crystalline nano silicon carbide using carbon nanofiber of the present invention is a method of forming nano-sized silicon carbide at a relatively low temperature by using carbon nanofiber (PCNF) as a template. Molding can be performed, and the diameter of the molding can be controlled by freely selecting the diameter of the template. In this way, the specific surface area can be increased to be used as a reaction catalyst, fuel cell electrode plate, or the like. In addition, there is an effect that can freely select the starting material to form a material having a desired material and form.

Claims (2)

출발물질로 폴리카보메틸실란[Si(CH3)HCH2]n 용액에 템플릿으로 탄소나노 화이버(PCNF)를 무게비로 1 : 2의 비율로 혼합한 후, 건조시켜 템플릿 표면에 출발 물질이 코팅되게 하고, 상기 코팅 혼합물을 비교적 낮은 온도에서 가열하여 상기 탄소나노 화이버(PCNF) 표면에 고결정 실리콘카바이드를 합성한 후, 템플릿을 제거하여 최종 성형물이 형성되게 하는 것으로 이루어지는 것을 특징으로 하는 탄소나노 화이버를 이용한 고결정 실리콘카바이드의 합성방법. Carbon nanofibers (PCNF) were mixed in a polycarbomethylsilane [Si (CH 3 ) HCH 2 ] n solution as a starting material in a ratio of 1: 2 by weight, and then dried to coat the starting material on the template surface. And heating the coating mixture at a relatively low temperature to synthesize high crystal silicon carbide on the surface of the carbon nanofibers (PCNF), and then removing the template to form a final molded product. Synthesis method of high crystal silicon carbide using 제 1항에 있어서, 상기 코팅 혼합물의 가열은 아르곤(Ar) 분위기 하에서 1200℃ 이상의 온도에서 30분 이상 가열한 후 700℃ 미만에서 최소 30분 이상 노출시키는 것을 특징으로 하는 탄소 나노 화이버를 이용한 고결정 실리콘카바이드의 합성방법.The method of claim 1, wherein the heating of the coating mixture is a high crystal using a carbon nanofiber, characterized in that at least 30 minutes or more at less than 700 ℃ after heating for 30 minutes at a temperature of 1200 ℃ or more in an argon (Ar) atmosphere Synthesis of Silicon Carbide.
KR1020050101880A 2005-10-27 2005-10-27 Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers KR100639555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050101880A KR100639555B1 (en) 2005-10-27 2005-10-27 Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050101880A KR100639555B1 (en) 2005-10-27 2005-10-27 Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers

Publications (1)

Publication Number Publication Date
KR100639555B1 true KR100639555B1 (en) 2006-10-31

Family

ID=37621132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050101880A KR100639555B1 (en) 2005-10-27 2005-10-27 Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers

Country Status (1)

Country Link
KR (1) KR100639555B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068297A (en) * 2018-12-05 2020-06-15 한국세라믹기술원 SiC nanotube and a method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068297A (en) * 2018-12-05 2020-06-15 한국세라믹기술원 SiC nanotube and a method thereof
KR102208517B1 (en) * 2018-12-05 2021-01-27 한국세라믹기술원 SiC nanotube and a method thereof

Similar Documents

Publication Publication Date Title
Wen et al. The fate and role of in situ formed carbon in polymer-derived ceramics
Han et al. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability
Vakifahmetoglu et al. Growth of one‐dimensional nanostructures in porous polymer‐derived ceramics by catalyst‐assisted pyrolysis. Part I: iron catalyst
Tang et al. Uniform boron nitride coatings on silicon carbide nanowires
Bernard et al. Boron nitride ceramics from molecular precursors: synthesis, properties and applications
Qiangang et al. Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD
Xiao et al. Carbon nanotubes as light absorbers in digital light processing three-dimensional printing of SiCN ceramics from preceramic polysilazane
JP5059589B2 (en) Boron nitride nanofiber and method for producing the same
Zhou et al. Fabrication of monolithic rGO/SiC (O) nanocomposite ceramics via precursor (polycarbosilane-vinyltriethoxysilane-graphene oxide) route
Lin et al. Influence of temperature and oxygen on the growth of large-scale SiC nanowires
Martín et al. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiN x example
KR100639555B1 (en) Method for synthesizing nano sized silicon carbide with high crystallinity using carbon nano fibers
Dong et al. Synthesis of several millimeters long SiC–SiO2 nanowires by a catalyst-free technique
CN109503172B (en) Preparation method of porous silicon carbide ceramic with vermicular crystal grains
JPH1017382A (en) Production of silicon carbide formed body
Shim et al. The effect of temperature and atmospheric-pressure on mechanical and electrical properties of polymer-derived SiC fibers
Hu et al. PDMS rubber as a single-source precursor for templated growth of silica nanotubes
Li et al. A novel method for massive fabrication of β-SiC nanowires
Zhou Ternary Si-Metal-N ceramics: single-source-precursor synthesis, nanostructure and properties characterization
JP2015507593A (en) An improved method for synthesizing carbon nanotubes on multiple supports
Termoss et al. Shaping potentialities of aluminum nitride polymeric precursors: Preparation of thin coatings and 1D nanostructures in liquid phase
KR101201623B1 (en) One-pot synthesis of silica nanoparticle in silica nanotube nano-structure
JPS6225603B2 (en)
CN112266261A (en) Method for in-situ growth of carbon nanotubes by using tail gas generated by polymer cracking
Nemeth et al. The Synthesis and Investigation of SiO2—MgO Coated Multiwalled Carbon Nanotube/Polymer Composites

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131016

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141015

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151015

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 12