KR100628517B1 - Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof - Google Patents

Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof Download PDF

Info

Publication number
KR100628517B1
KR100628517B1 KR20050065473A KR20050065473A KR100628517B1 KR 100628517 B1 KR100628517 B1 KR 100628517B1 KR 20050065473 A KR20050065473 A KR 20050065473A KR 20050065473 A KR20050065473 A KR 20050065473A KR 100628517 B1 KR100628517 B1 KR 100628517B1
Authority
KR
South Korea
Prior art keywords
weight
nickel
inorganic
concrete
metal ion
Prior art date
Application number
KR20050065473A
Other languages
Korean (ko)
Inventor
성길모
송인철
Original Assignee
(주)유성테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유성테크 filed Critical (주)유성테크
Priority to KR20050065473A priority Critical patent/KR100628517B1/en
Application granted granted Critical
Publication of KR100628517B1 publication Critical patent/KR100628517B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1062Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/308Iron oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/54Pigments; Dyes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/67Biocides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 하수관에 사용되는 콘크리트의 황산화세균에 의한 부식을 방지하기 위하여 텅스텐과 니켈 2종의 금속을 이용하여 포졸란 재료인 플라이 애쉬에 담지시켜 콘크리트에 사용하였을 때에 강도증진 효과와 더불어 방균특성을 갖는 콘크리트 하수관용 무기계 혼화제 및 그 제조 방법에 관한 것이다. In order to prevent corrosion caused by sulfated bacteria of concrete used in sewage pipes, the present invention has a strength improvement effect and anti-bacterial properties when used in concrete by using two kinds of tungsten and nickel metals in fly ash, a pozzolanic material. The inorganic admixture for concrete sewer pipes, and its manufacturing method.

여기서, 방균성을 부여하기 위하여 니켈원과 텅스텐원의 2종 금속원을 물에 용해시켜 제조하였으며, 니켈과 텅스텐의 함량 비율로 니켈이 50중량% ~ 80중량%에 텅스텐은 50중량% ~ 20중량%인 금속이온 수용액과 화력발전소에서 발생되며 상기 금속이온 수용액에 넣어져 0.01중량% ~ 40중량%의 금속이온을 플라이애시에 담지시켜 황산화세균인 티오바실러스 노벨러스의 생육장해가 높은 방균제를 제조한 다음 방균제의 첨가여부를 구분하기 위하여 열과 빛에 대해여 내구적인 무기착색제를 첨가하여 방균제를 제조하고 이를 고강도 혼합재료에 첨가하여 방균특성과 더불어 고강도 하수관을 만드는 것을 목적으로 한다.Herein, two kinds of metal sources, a nickel source and a tungsten source, were dissolved in water in order to impart antibacterial properties, and 50% by weight to 80% by weight of nickel and 50% by weight to 20% of tungsten were contained in the content ratio of nickel and tungsten. It is generated in the aqueous solution of metal ions by weight% and thermal power plant, and is put in the aqueous metal ion solution to support fly ash of 0.01% by weight to 40% by weight of metal ions, thereby preventing a high growth barrier of thiobarcillus Novellus. In order to distinguish the addition of antiseptics, the antiseptics are prepared by adding a durable inorganic coloring agent to heat and light, and adding the antiseptics to the high-strength mixture to make high-strength sewer pipes with antibacterial properties.

방균, 혼화재료, 하수관, 고강도 콘크리트 2차제품  Antibacterial, Admixture, Sewage Pipe, High Strength Concrete

Description

방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 및 그 제조 방법{Inorganic Based Admixture For Concrete Sewer Pipe With Anti-Biotics and High-Srength And Manufacturing Method Thereof}Inorganic Based Admixture For Concrete Sewer Pipe With Anti-Biotics and High-Srength And Manufacturing Method Thereof}

도 1은 본 발명의 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제의 제조방법을 도시한 흐름도이고, 1 is a flow chart showing a method for producing an inorganic admixture for concrete sewage pipe having antiseptic properties and high strength of the present invention,

도 2a는 배지위에 티오바실러스 노벨러스를 도말한 대조 표준(Control) 시료를 나타낸 사진이고,Figure 2a is a photograph showing a control sample (Control) plated with thiobacillus Novellus on the medium,

도 2b는 도 2a의 Control 시료위에 Broth Microdilution MIC testing 방법을 이용하여 [비교예]의 시험물질을 적하하고 배양한 상태의 시험 결과사진이고,Figure 2b is a photograph of the test result of the test material of [Comparative Example] dropping and cultured using the Broth Microdilution MIC testing method on the control sample of Figure 2a,

도 2c는 도 2a의 Control 시료위에 Broth Microdilution MIC testing 방법을 이용하여 [실시예]의 시험물질을 적하하고 배양한 상태의 시험 결과사진이다.Figure 2c is a photograph of the test result of the test material of [Example] dropping and cultured using the Broth Microdilution MIC testing method on the control sample of Figure 2a.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

S100 : 금속이온수용액생성단계S100: Metal ion solution generation step

S110 : 교반단계 S120 : 가열단계S110: stirring step S120: heating step

S130 : 열처리단계 S140 : 분쇄단계S130: heat treatment step S140: grinding step

S150 : 방균제제조단계 S160 : 고강도혼합재료제조단계S150: Antibacterial manufacturing step S160: High strength mixed material manufacturing step

S170 : 혼합단계S170: Mixing Step

본 발명은 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 및 그 제조방법에 관한 것으로, 더 상세하게는 하수관에 서식하면서 황화수소를 분해해 황산을 생성하여 하수관의 부식을 촉진시키는 황산화세균의 생육을 억제하기 위해 플라이애시에 텅스텐과 니켈의 금속이온을 담지시켜 제조한 방균제를 혼합사용하여 관을 제조하되, 방균제의 첨가여부를 확인할 수 있도록 무기착색제를 첨가하여 이를 고강도 혼합재료와 함께 사용하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 및 그 제조방법에 관한 것이다.The present invention relates to an inorganic admixture for concrete sewage pipes having antiseptic properties and high strength, and more particularly, to the growth of sulfated bacteria which inhabit the sewage pipes to decompose hydrogen sulfide to generate sulfuric acid to promote corrosion of the sewage pipes. In order to suppress, the tube is made by mixing and using a fungicide prepared by supporting tungsten and nickel metal ions in fly ash, but using an inorganic coloring agent to check the addition of the fungicide and using it together with a high strength mixed material. The present invention relates to an inorganic admixture for concrete sewage pipes having antibacterial properties and high strength, and a method of manufacturing the same.

콘크리트 하수관의 부식반응은 황산화세균에 의하여 생성된 강산에 의하여 진행되며, 이러한 황산화세균으로는 티오바실러스 노벨러스(Thiobacillus Novellus)가 대표적이다. 일반적인 콘크리트 하수관은 화강암 골재와 알칼리 성분의 시멘트 수화물로 구성되어 있는데, 화강암의 골재는 산에 불활성이기 때문에 황산과 반응하지 않지만, 시멘트 수화물은 황산과 활발하게 반응하여 석고와 같은 불활성 물질을 생성하게 된다. 이러한 반응에 의하여 골재는 관으로부터 박리되고, 골재가 떨어진 부분은 또 다른 시멘트가 산에 노출되어 부식이 지속적으로 발생하게 된다.Corrosion reaction of concrete sewer pipe is performed by strong acid produced by sulfated bacteria, and Thiobacillus Novellus is representative of these sulfated bacteria. Typical concrete sewer pipes are composed of granite aggregates and alkaline cement hydrates, which do not react with sulfuric acid because they are inert to acids, but cement hydrates actively react with sulfuric acid to produce inert substances such as gypsum. . As a result of this reaction, the aggregates are peeled off from the tube, and the part where the aggregates fall is exposed to acid, which causes another cement to continuously generate corrosion.

콘크리트의 황산화부식을 억제하기 위해서 황화물의 생성을 억제하는 방법과 황화수소의 발생을 억제하는 방법 등이 제시되고 있으나, 하수 중에 과산화수소, 염소화합물 또는 철, 아연, 납, 구리 등과 같은 금속염 등을 대량으로 첨가하기 때문에 경제성에 대한 문제점이 있었다.In order to suppress sulfuric acid corrosion of concrete, a method of suppressing the formation of sulfides and a method of suppressing the generation of hydrogen sulfide have been proposed, but a large amount of hydrogen peroxide, chlorine compounds or metal salts such as iron, zinc, lead, copper, etc. in sewage There was a problem about economics because it is added.

황하수소로부터 황산의 생성을 억제하기 위해 환기를 시킴으로서 하수관내의 황하수소의 농도를 저감시키는 방법도 있지만, 악취의 발생과 또한 만족할 만한 성과가 얻어지지 못하고 있는 실정이다. 이에 따라서 황산화세균의 생성을 억제하는 방법이 실용적인 측면에서 개발되어 왔다.There is also a method of reducing the concentration of hydrogen sulfide in sewage pipes by ventilation to suppress the production of sulfuric acid from hydrogen sulfide. However, the occurrence of odor and also satisfactory results have not been obtained. Accordingly, a method of suppressing the production of sulfated bacteria has been developed in practical terms.

이러한 황산화 세균을 억제하는 방균재료는 크게 유기계와 무기계 방균재료로 대별되며 무기계 방균재료의 경우 유기계 방균재료에 비해 반영구적인 지속성을 가지며, 온도나 습도 등의 외부환경에 대해서도 성능의 변화가 거의 없다는 장점이 있기 때문에 여러 종류의 방균제품에 응용되고 있다.Antimicrobial materials that suppress these sulfated bacteria are largely classified into organic and inorganic antibacterial materials. Inorganic antimicrobial materials have semi-permanent persistence compared to organic antimicrobial materials, and there is almost no change in performance in external environments such as temperature and humidity. Because of its advantages, it is applied to various kinds of antibacterial products.

현재 개발되어 시판되고 있는 무기계 방균재료는 산화티탄, 아파타이트, 실리카겔, 인산칼슘, 제올라이트, 인산지르코늄, 규산칼슘 및 티탄산칼륨 등 담체에 은, 구리, 아연, 니켈 등의 금속 착화합물을 고정화시킨 것이다. 이러한 무기계 방균재료는 실제 문구류, 실내장식을 비롯한 여러 분야에 응용되고 있다.Currently developed and commercially available inorganic antibacterial materials are immobilized metal complexes such as silver, copper, zinc and nickel on a carrier such as titanium oxide, apatite, silica gel, calcium phosphate, zeolite, zirconium phosphate, calcium silicate and potassium titanate. Such inorganic antibacterial materials are applied to various fields, including actual stationery, interior decoration.

중금속의 방균작용에 관해서는 금속 본래의 독성과 방균성에 의한 것은 아니다. 그것의 표면 산화와 금속을 함유하는 용액 중에 해리시킨 금속이온에 기인하는 것으로 생각되어 지고 있다. The antibacterial action of heavy metals is not due to the inherent toxicity and antibacterial properties of metals. It is thought to be due to its surface oxidation and metal ions dissociated in a solution containing a metal.

그 금속 이온의 방균 작용은 수은(水銀) 〉 은(銀) 〉동(銅) 〉 아연(亞鉛) 순이지만 실제로는 그 금속염의 용해성 해리도등에 좌우 된다. The antibacterial action of the metal ions is in the order of mercury> silver> copper> zinc but actually depends on the solubility dissociation degree of the metal salt.

방균성 금속 이온의 방균작용에 대한 메카니즘은 해명되고 있지는 않지만 다음에 의해 설명 될 수 있다. The mechanism for the antibacterial action of antimicrobial metal ions is not elucidated but can be explained by the following.

[금속 이온에 의한 단백질의 변성][Denatured Protein by Metal Ions]

금속 이온이 확산에 의해 미생물의 세포막에 도달하여 세포막 등의 단백질에 흡착됨과 동시에 세포 파괴를 강하게 일으킨다. 세포막(효소) 등의 단백질에 흡착된 방균 금속은 세포의 구성 성분인 S-H기의 라디칼 등을 파괴하고 미생물의 에너지 대사기능을 못하게 하고 금속 자신은 황화물 등으로 전환된다. Metal ions reach the cell membranes of microorganisms by diffusion and are adsorbed to proteins such as cell membranes, and at the same time, they strongly cause cell destruction. Antibacterial metal adsorbed to proteins such as cell membranes (enzymes) destroys radicals of the S-H group, which are the constituents of cells, prevents microbial energy metabolism, and the metals themselves are converted to sulfides.

[금속 이온의 촉매 반응에 의한 활성산소의 생성][Generation of Active Oxygen by Catalytic Reaction of Metal Ions]

금속이온이 촉매 주위의 담체에 함유되어 있는 산소를 부분적으로 활성산소(O, O-, O2+)로 변환한다. 그 활성 산소는 오존, 과산화수소와 같은 형태로 강한 방균작용을 할 수 있다. 활성 산소는 미생물의 세포내로 확산되어 세포막(효소) 등의 단백질에 흡착되어 S-H기를 파괴 한다. Metal ions partially convert oxygen contained in the carrier around the catalyst into active oxygen (O, O-, O2 +). The active oxygen can act as a strong antibacterial agent in the form of ozone and hydrogen peroxide. Active oxygen diffuses into cells of microorganisms and is adsorbed to proteins such as cell membranes (enzymes) to destroy S-H groups.

현재에도 이러한 방균성 금속을 제올라이트, 물유리, 플라이애시 등의 무기질 담체에 담지시켜 방균성 무기재료 개발이 활발히 진행되고 있다.Even now, the development of antibacterial inorganic materials is actively progressed by supporting such antibacterial metals on inorganic carriers such as zeolite, water glass, and fly ash.

이러한 방균성 재료가 첨가된 항균관은 방균성 재료가 무색을 띄고 있으므로, 일반관과 구별이 잘 되지 않고 있다. 따라서, 일부에서는 녹색으로 기호나 문 자를 기입하여 일반관과는 차별화하여 방균관을 분리하고 있으나, 이 또한 관체의 일부분에 표시되어 있어 설치자가 쉽게 파악하기 힘든 실정이다.The antimicrobial tube to which such antimicrobial material is added is not distinguished from general tubes because antimicrobial material is colorless. Therefore, in some cases, the letter or character is written in green to distinguish the anti-bacterial tube from the general tube, but this is also displayed on a part of the tube, so it is difficult for the installer to easily grasp.

따라서, 본 발명은 상기 문제점을 해소하기 위해 안출된 것으로, Accordingly, the present invention has been made to solve the above problems,

산업폐기물계 포졸란 재료인 플라이애시를 이용하여 방균성 금속인 니켈과 텅스텐의 두가지 금속이온을 플라이애시에 담지하여 황산화세균인 티오바실러스 노벨러스에 의한 콘크리트 부식을 방지하고 착색제로서 무기계인 산화철(Fe2O3)류가 혼합된 방균제를 제조하여 관제조시 사용함으로써 제조된 방균관이 일반관과 차별되도록 함은 물론 강도가 보강된 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제의 제공을 목적으로 한다.Fly ash, an industrial waste-based pozzolanic material, is used to carry two metal ions, nickel and tungsten, to prevent fly-by-concrete corrosion. The purpose of the present invention is to provide an inorganic admixture for concrete sewage pipes having strength and strengthening antibacterial properties and high strength as well as distinguishing antibacterial pipes from general pipes by preparing and using antimicrobial agents mixed with streams.

상기 과제를 달성하기 위한 본 발명에 따른 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제는, Inorganic admixture for concrete sewage pipe having antibacterial property and high strength according to the present invention for achieving the above object,

콘크리트 하수관의 부식을 발생시키는 황산화세균에 대해 방균특성을 지닌 콘크리트 하수관용 무기계 혼화제에 있어서, 방균성을 부여하기 위하여 니켈원과 텅스텐원의 2종 금속원을 물에 용해시켜 제조하고 니켈과 텅스텐의 함량비율은 니켈이 50중량% ~ 80중량%에 텅스텐은 20중량% ~ 50중량%인 금속이온 수용액과, 상기 금속이온 수용액에 넣어져 0.01중량% ~ 40중량%의 금속이온이 담지되는 담지체와, 상기 담지체가 포함된 금속이온수용액을 가열하여 남은 물질을 분쇄한 미분과 1 : (0.1 ~ 7) 의 비율로 헤마타이트와 마게마이트로 이루어진 군으로부터 선택사용된 산화철 무기착색제를 혼합하여 제조된 방균제와; 화력발전소에서 수득한 플라이애시 10 ~ 50중량%와 고로슬래그 미분말 10 ~ 50중량%, 무수석고 10 ~ 30중량%, CSA계 팽창제 1 ~ 10중량%, 소석회 1 ~ 10중량%로 이루어진 고강도 혼합재료로 구성되되, 상기 방균제는 고강도혼합재료에 대해 0.1 ~ 5 중량%로 혼합되어 이루어짐을 특징으로 한다. In the inorganic admixture for concrete sewer pipes, which have anti-bacterial properties against sulfated bacteria causing corrosion of concrete sewer pipes, two kinds of metal sources, nickel source and tungsten source, are prepared by dissolving in water to give anti-bacterial properties. The content ratio of 50% to 80% by weight of nickel and 20% to 50% by weight of tungsten and a metal ion aqueous solution, which is put in the aqueous metal ion solution to support 0.01% to 40% by weight of metal ions It is prepared by mixing the retarded powder with the iron oxide inorganic colorant selected from the group consisting of hematite and margeite in a ratio of 1: 1 (0.1 to 7) and finely divided the remaining material by heating the metal ion aqueous solution containing the support. Fungicides; High strength mixed material consisting of 10 to 50% by weight of fly ash obtained from thermal power plant, 10 to 50% by weight of blast furnace slag, 10 to 30% by weight of anhydrous gypsum, 1 to 10% by weight of CSA-based expanding agent, and 1 to 10% by weight of slaked lime Consisting of, the antimicrobial agent is characterized in that the mixture is made of 0.1 to 5% by weight relative to the high-strength mixture material.

또한 상기 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제를 제조하는 방법은, In addition, the method for producing an inorganic admixture for concrete sewage pipe having the antibacterial and high strength,

니켈원과 텅스텐원의 2종 금속원을 물에 용해시켜 금속이온 수용액을 생성하는 금속이온 수용액 생성단계와; 금속이온이 담지되도록 상기 금속이온 수용액에 담지체를 넣고 교반시키는 교반단계와; 상기 금속이온 수용액에 포함된 수분이 증발되도록 90 ~ 100℃에서 가열하는 가열단계와; 수분이 증발된 상기 금속이온 수용액을 300 ~ 400℃에서 3 ~ 5시간 열처리하여 덩어리를 생성하는 열처리 단계 및; 열처리하여 얻어진 상기 덩어리를 150mesh이하로 분쇄하여 분말로 만드는 분쇄단계;와 상기 분쇄된 미분과 헤마타이트와 마게마이트로 이루어진 군으로부터 선택사용된 산화철(Fe2O3) 무기착색제를 1 : (0.1 ~ 7)의 비율로 혼합하는 방균제제조단계과; 화력발전소에서 수득한 플라이애시 10 ~ 50중량%와 고로슬래그 미분말 10 ~ 50중량%, 무수석고 10 ~ 30중량%, CSA계 팽창제 1 ~ 10중량%, 소석회 1 ~ 10중량%로 혼합하여 고강도혼합재료제조단계과; 상기 제조된 고강도혼합제에 대해 방균제를 0.1 ~ 5중량% 혼합되는 혼합단계;를 포함하여 이루어짐을 특징으로 한다.A metal ion aqueous solution generation step of dissolving two metal sources of a nickel source and a tungsten source in water to generate a metal ion aqueous solution; A stirring step of putting a carrier in the aqueous metal ion solution so that metal ions are supported; A heating step of heating at 90 to 100 ° C. such that water contained in the metal ion aqueous solution is evaporated; A heat treatment step of heat-treating the aqueous metal ion solution in which water is evaporated at 300 to 400 ° C. for 3 to 5 hours to generate a mass; A pulverizing step of pulverizing the agglomerates obtained by heat treatment to 150 mesh or less; and powdered iron oxide (Fe 2 O 3 ) inorganic colorant selected from the group consisting of the pulverized fine powder, hematite and margemate 1: (0.1 ~ 7) the antimicrobial manufacturing step of mixing at the ratio; 10 to 50% by weight of fly ash obtained from thermal power plant, 10 to 50% by weight of blast furnace slag, 10 to 30% by weight of anhydrous gypsum, 1 to 10% by weight of CSA-based expanding agent, 1 to 10% by weight of slaked lime A material manufacturing step; Characterized in that it comprises a; mixing step of mixing the antimicrobial agent 0.1 ~ 5% by weight with respect to the prepared high-strength mixture.

상기 금속이온 수용액 생성단계에서 용해된 니켈과 텅스텐의 함량비율은 용해량에 대해 니켈이 50중량% ~ 80중량%에 텅스텐은 20중량% ~ 50중량%이며, 용해를 촉진시키기 위해 20℃ ~ 50℃로 가열하여 용해시간을 단축시킬 수 있다.The content ratio of nickel and tungsten dissolved in the metal ion aqueous solution generation step is 50% by weight to 80% by weight of nickel and 20% by weight to 50% by weight of tungsten, and 20 ° C. to 50% to promote dissolution. It can be heated to ℃ to shorten the dissolution time.

그리고, 상기 금속이온 수용액 생성단계의 니켈원으로써는 수용성인 이염화니켈(NiCl2ㆍ6H2O)과 황산니켈(NiSO4ㆍ7H2O)이고, 텅스텐원으로써는 수용성인 텅스텐산나트륨(Na2WO4ㆍ2H2O)을 사용한다.In addition, as the nickel source of the metal ion aqueous solution generation step, water-soluble nickel dichloride (NiCl 2 · 6H 2 O) and nickel sulfate (NiSO 4 · 7H 2 O) are used, and as the tungsten source, water-soluble sodium tungstate (Na 2 WO 4 ㆍ 2H 2 O).

또한, 상기 교반단계에서 담지체는 금속이온수용액의 금속이온량을 0.01 ~ 40중량%가 되도록 투입하고, 20℃ ~ 30℃에서 1 ~ 10시간 교반시킨다.In addition, the carrier in the stirring step is added to the metal ion amount of the metal ion solution to 0.01 to 40% by weight, and stirred for 1 to 10 hours at 20 ℃ to 30 ℃.

또한, 상기 담지체로는 플라이애시, 제올라이트, 활성탄, 실리카겔, 알루미나 등으로 이루어진 군으로부터 일종 또는 이종 이상 선택사용될 수 있다. 상기 담지체는 외피에 금속이온을 코팅시키기 위한 것으로, 플라이애시등의 금속성재질은 이온결합에 의해 코팅이 발생되도록 하고, 다공성물질인 제올라이트 등은 흡착에 의해 금속이온이 코팅되도록 한 것이다.In addition, the support may be selected from the group consisting of fly ash, zeolite, activated carbon, silica gel, alumina, or the like, or two or more kinds thereof. The support is to coat the metal ions on the shell, the metallic material such as fly ash is to cause the coating is generated by the ionic bond, the porous material zeolite and the like is to be coated with the metal ion by adsorption.

이하에서 도면을 참조하여 본 발명을 보다 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제의 제조방법을 도시한 흐름도이다.1 is a flow chart illustrating a method for preparing an inorganic admixture for concrete sewer pipe having antiseptic properties and high strength according to the present invention.

도시된 바와같이 본 발명은 금속이온수용액생성단계(S100), 교반단계(S110), 가열단계(S120), 열처리단계(S130), 분쇄단계(S140), 방균제제조단계(S150), 고강도혼합재료제조단계(S160), 혼합단계(S170)로 이루어진다.As shown in the present invention, the metal ion aqueous solution generation step (S100), stirring step (S110), heating step (S120), heat treatment step (S130), grinding step (S140), antibacterial manufacturing step (S150), high strength mixing Material manufacturing step (S160), mixing step (S170) is made.

상기 금속이온수용액생성단계(S100)는, 황산화세균인 티오바실러스 노벨러스에 대해 생육장해 작용이 높은 니켈, 텅스텐, 은, 구리 등의 금속이온을 물에 용해시켜 수용액을 생성하는 단계이다. 특히 본 발명에서는 니켈과 텅스텐을 실시예로 사용하고 있지만 은, 구리 등의 사용도 가능하다. The metal ion aqueous solution generation step (S100) is a step of dissolving metal ions, such as nickel, tungsten, silver, and copper, which have high growth-disturbing activity against thiobacilli, which are sulfated bacteria, in water to generate an aqueous solution. In particular, in the present invention, nickel and tungsten are used as examples, but silver and copper may also be used.

이러한 수용액을 제조하기 위한 니켈원으로써는 수용성인 이염화니켈(NiCl2ㆍ6H2O)과 황산니켈(NiSO4ㆍ7H2O) 등이 있고, 텅스텐원으로써는 수용성인 텅스텐산나트륨(Na2WO4ㆍ2H2O)등을 사용한다.The nickel source for preparing such an aqueous solution includes water-soluble nickel dichloride (NiCl 2 · 6H 2 O) and nickel sulfate (NiSO 4 · 7H 2 O), and the like. As the tungsten source, water-soluble sodium tungstate (Na 2 WO 4 · 2H 2 O) is used. .

아울러, 상기 2종 금속원인 니켈원과 텅스텐원을 물에 용해시켜 금속이온 수용액을 생성하는 단계에서는 20℃ ~ 50℃로 가열하여 용해시간을 단축시킬 수 있다.In addition, in the step of dissolving the nickel source and tungsten source, the two kinds of metal sources in water to produce a metal ion aqueous solution, it is possible to shorten the dissolution time by heating to 20 ℃ ~ 50 ℃.

또한, 금속이온 수용액을 제조하는 경우에 있어서, 니켈의 양은 50중량% ~ 80중량%에 대해서 텅스텐의 양은 20중량% ~ 50중량% 정도를 사용한다. 이때 경제성을 고려하면 니켈 80중량%에 대해서 텅스텐 20중량%를 사용하는 것이 좋다.In the case of producing the aqueous metal ion solution, the amount of tungsten is used in an amount of about 20% by weight to about 50% by weight relative to 50% by weight to 80% by weight of nickel. In consideration of economics, it is preferable to use 20% by weight of tungsten with respect to 80% by weight of nickel.

그리고, 금속이온 수용액의 제조과정에서 별도로 항균특성을 부여하기 위해 상술된 바와 같은 은(Ag)을 첨가할 수 있다.In addition, silver (Ag) as described above may be added to impart antimicrobial properties separately during the preparation of the aqueous metal ion solution.

한편 상기와 같이 제조된 금속이온수용액에 금속이온이 코팅 또는 흡착되도록 플라이애시를 넣고 20℃ ~ 30℃에서 1 ~ 10시간 교반하는 교반단계(S110)가 이 루어진다.Meanwhile, a fly ash is put in the metal ion aqueous solution prepared as described above so that the metal ions are coated or adsorbed, and then stirred at 20 ° C. to 30 ° C. for 1 to 10 hours to form a stirring step (S110).

상기 담지체로는 플라이애시, 제올라이트, 활성탄, 실리카겔, 알루미나 등으로 이루어진 군으로부터 일종 또는 이종 이상 선택 사용될 수 있고, 바람직하게는 화력발전소에서 수득한 플라이애시를 사용하는 것이며, 담지되는 량은 금속이온수용액에 담지되어 금속이온의 함량이 0.01중량% ~ 40중량% 정도가 되도록 함이 바람직하며, 특히 1중량% ~ 30중량%가 되도록 하는 것이 바람직하다. 상기에서 금속이온의 함량이 0.01중량% 이하가 되면, 티오바실러스 노벨러스에 대한 생육장해 작용이 나타나기 힘들고, 또한 40중량% 이상이 되어도 티오바실러스 노벨러스에 대한 생육장해 작용의 향상을 기대하기 힘들며 경제적으로도 바람직하지 못하다. The support may be selected from the group consisting of fly ash, zeolite, activated carbon, silica gel, alumina, and the like, or a kind or two or more, preferably using a fly ash obtained from a thermal power plant, and the amount to be supported is a metal ion aqueous solution. It is preferable that the content of the metal ions to be supported on the 0.01 to 40% by weight, especially 1 to 30% by weight. When the content of the metal ions is less than 0.01% by weight, it is difficult to show the growth impairment effect on the thiobacilli Novellus, and even if more than 40% by weight, it is difficult to expect the improvement of the growth impairment effect on the thiobacilli Novellus and economically. Not desirable

상기 교반이 완료되면 금속이온수용액에 포함되어 있는 수분을 증발시키는 단계로 90℃ ~ 100℃의 열을 가하여 증발시키는 가열단계(S120)가 수행되어진다.When the stirring is completed, a heating step (S120) of evaporating by applying heat of 90 ° C. to 100 ° C. is performed to evaporate the moisture contained in the metal ion aqueous solution.

또한, 가열단계에서 증발하고 남은 잔유물에 300 ~ 400℃에서 3 ~ 5시간 열을 가하여 잔유물을 하나의 덩어리로 형성하는 열처리단계(S130)가 이루어지며, 이 때 열처리온도는 기재된 온도보다 더 고온으로 형성하여 열처리시간을 단축할 수도 있다.In addition, a heat treatment step (S130) is formed by applying heat to the residue remaining after evaporation in the heating step at 300 to 400 ° C. for 3 to 5 hours to form the residue as a mass, wherein the heat treatment temperature is higher than the temperature described. The heat treatment time may be shortened by forming.

이와 같이 열처리에 의해 뭉처진 덩어리를 150mesh이하로 분쇄하는 분쇄단계(S140)가 수행되어 지고, 분쇄된 미분과 무기착색제를 혼합하여 방균제를 제조(S150)하게 된다.As such, the pulverization step (S140) of pulverizing the agglomerated mass by the heat treatment to 150 mesh or less is performed, and the pulverized fine powder and the inorganic colorant are mixed to prepare a fungicide (S150).

상기 방균제에 혼합되는 무기착색제는 헤마타이트(Hematite, α-Fe2O3) 또는 마게마이트(Maghemite, Γ-Fe2O3)인 산화철(Fe2O3)류를 사용하여 착색과 강도를 동시에 부여할 수 있도록 하는 것이 바람직하며, 혼합비율로는 분쇄된 미분 1에 대해 0.1 ~ 7 중량부의 비율로 혼합된다. 즉, 상기 무기착색제의 혼합비율은 0.1 이하로 혼합될 경우 일반관과 착색의 구분이 거의 나타나지 않고, 7중량부 이상으로 혼합할 경우에는 강도는 증가시킬 수 있으나, 결합력이 저하되는 단점이 있다.Inorganic coloring agent mixed with the antimicrobial agent is used for coloring and strength using hematite (α-Fe 2 O 3 ) or margeite (Maghemite, Γ-Fe 2 O 3 ) iron oxide (Fe 2 O 3 ) It is preferable to be provided at the same time, the mixing ratio is mixed in a ratio of 0.1 to 7 parts by weight relative to the ground fine powder 1. That is, when the mixing ratio of the inorganic coloring agent is mixed at 0.1 or less, almost no distinction between the general tube and the coloring is obtained, and when mixing at 7 parts by weight or more, the strength may be increased, but the bonding strength may be lowered.

한편, 상기 고강도혼합재료제조단계(S160)에서는 플라이애시, 고로슬래그 미분말, 무수석고, CSA계 팽창제, 소석회를 혼합하는 단계로 화력발전소에서 수득한 플라이애시 10 ~ 50중량%와 고로슬래그 미분말 10 ~ 50중량%, 무수석고 10 ~ 30중량%, CSA계 팽창제 1 ~ 10중량%, 소석회 1 ~ 10중량%로 혼합하여 고강도혼합제를 제조하는 단계이다.On the other hand, in the high-strength mixed material manufacturing step (S160) in the step of mixing fly ash, blast furnace slag powder, anhydrous gypsum, CSA-based expansion agent, calcined lime 10 ~ 50% by weight of the fly ash obtained from the thermal power plant and blast furnace slag fine powder 10 ~ 50% by weight, anhydrous gypsum 10 to 30% by weight, CSA-based expansion agent 1 to 10% by weight, calcined lime 1 to 10% by weight to prepare a high-strength mixture.

이와 같이 제조된 고강도혼합제는 제조된 방균제와 혼합하는 혼합단계(S170)에 의해 최종적인 방균성 및 고강도를 갖는 콘크리트 하수관용 무기계 혼화제를 제조하는 것이며, 상기 혼합조건으로는 고강도혼합제에 대해 방균제를 0.1 ~ 5 중량%를 혼합하는 것이다.The high strength admixture prepared as described above is to prepare an inorganic admixture for concrete sewer pipe having final antibacterial property and high strength by mixing with the prepared antibacterial agent (S170), and the mixing condition is an antimicrobial agent for the high strength admixture. 0.1 to 5% by weight to mix.

[실시예]EXAMPLE

2L의 물에 이염화니켈(NiCl2ㆍ6H2O) 186.5g을 용해시키고, 텅스텐산나트륨(Na2WO4ㆍ2H2O) 110g을 용해시킨 후, 금속이온 수용액에 플라이애시 200g을 넣고 20℃에서 10시간 교반시킨 후, 100℃에서 수분을 모두 증발시켰고, 350℃에서 4시간 열처리하여 얻어진 덩어리를 분쇄하여 150mesh 이하 통과분을 얻었다. 그 후
헤마타이트(α-Fe2O3)와 마게마이트(Γ-Fe2O3)로 이루어진 군으로부터 선택사용된 산화철 무기착색제를 첨가하여 방균제를 제조하였다.
After dissolving 186.5 g of nickel dichloride (NiCl 2 · 6H 2 O) in 2 L of water, and dissolving 110 g of sodium tungstate (Na 2 WO 4 · 2H 2 O), 200 g of fly ash was added to an aqueous metal ion solution and stirred at 20 ° C. for 10 hours. All the water was evaporated at 100 ° C., and the mass obtained by heat treatment at 350 ° C. for 4 hours was pulverized to obtain a passage of 150 mesh or less. After that
A fungicide was prepared by adding an iron oxide inorganic colorant selected from the group consisting of hematite (α-Fe 2 O 3 ) and margeite (Γ-Fe 2 O 3 ).

상기의 [실시예]에서 얻어진 무기방균제와 현재 판매되고 있는 일본 포졸리스사의 RCF-95[비교예]를 선택하여 티오바실러스 노벨러스에 대한 생육장해 작용을 Broth Microdilution MIC testing 방법에 의해서 시험하였다. The growth inhibitory effect on the thiobarcillus novelus was tested by the Broth Microdilution MIC testing method by selecting the inorganic antimicrobial agent obtained in the above [Example] and RCF-95 [Comparative Example], currently sold by Pozolis.

도 2a는 배지위에 티오바실러스 노벨러스를 도말한 대조 표준(Control) 시료를 나타낸 사진이다.Figure 2a is a photograph showing a control sample (Control) plated with thiobacillus Novellus on the medium.

먼저, 도 2a에 도시된 바와 같이, 티오바실러스 노벨러스를 농도가 4×108/ml이 되도록 0.85% saline에 현탁한 후에 티오바실러스 노벨러스의 적정배지인 Nutrient agar에 도말하였다.First, as shown in FIG. 2A, thiobacilli Novellus was suspended in 0.85% saline to have a concentration of 4 × 10 8 / ml, and then plated on Nutrient agar, which is an appropriate medium of thiobacilli Novellus.

도 2b는 도 2a의 Control 시료위에 Broth Microdilution MIC testing 방법을 이용하여 [비교예]의 시험물질을 적하하고 배양한 상태의 시험 결과사진이고, 도 2c는 도 2a의 Control 시료위에 Broth Microdilution MIC testing 방법을 이용하여 [실시예]의 시험물질을 적하하고 배양한 상태의 시험 결과사진이다.Figure 2b is a photograph of the test result of the test material of [Comparative Example] dropping and cultured using the Broth Microdilution MIC testing method on the control sample of Figure 2a, Figure 2c is Broth Microdilution MIC testing method on the control sample of Figure 2a The test result photograph in the state of dropping and culturing the test substance of Example is used.

도 2a, 2b, 2c에 도시된 바와같이, 티오바실러스 노벨러스를 도말한 배지 위에 시험물질 20ul를 적하하고, 30℃에서 2일간 배양하였다. 배양 후 나타나는 투명환(Clear Zone)의 직경(mm)을 측정하였고 모든 시험은 3회 반복을 시행하였다. 여기서, 시험물질의 농도는 각각의 물질 1g을 멸균수 1ml에 현탁시켜서 사용하였다.As shown in Fig. 2a, 2b, 2c, 20ul of the test substance was added dropwise onto the thiobacillus Novellus smeared medium, and incubated at 30 ° C for 2 days. The diameter (mm) of the clear zone after culture was measured, and all tests were repeated three times. Here, the concentration of the test substance was used by suspending 1 g of each substance in 1 ml of sterile water.

시험예 1 : Broth Microdilution MIC testing 결과Test Example 1: Broth Microdilution MIC testing results

[실시예]과 [비교예]의 2종류 모두 티오바실러스 노벨러스(Thiobacillus Novellus;KCTC 2845)에 대하여 억제효과를 도 2a-2c를 통하여 도시하였고, [표 1]에 정리하여 다시 나타내었다.In both examples of [Example] and [Comparative Example], the inhibitory effect of Thiobacillus Novellus (KCTC 2845) is illustrated through FIGS. 2A-2C and summarized in Table 1 again.

시험예 2 : [실시예]에서 얻어진 무기방균제의 압축강도Test Example 2: The compressive strength of the inorganic antibacterial agent obtained in Example

[실시예]에서 얻어진 무기방균제에 대해서 콘크리트 압축강도를 비교 시험하였다. 콘크리트의 공시체를 제조하기 위해서 시멘트는 비중 3.15 분말도 3,300cm2/g인 보통 1종 포틀랜드 시멘트를 사용하였으며, 잔골재는 비중이 2.60, 굵은골재 비중이 2.64이며 최대골재크기는 13mm인 것을 사용하였다. 콘크리트 공시체의 재료배합비는 [표 2]에, 압축강도 결과는 [표 3]에 나타내었다. [표 2]에 기재한 배합비의 시멘트, 골재, 해당량의 물과 혼화재료는 혼합기를 이용하여 균일하게 혼합한 후 콘크리트 배합물을 공시체 제작하였다. 공시체의 제작은 KS F 2403의 압축강도 시험용 공시체 제작에 준하여 Ø 10× 20cm공시체를 제작하였다.The compressive strength of concrete was compared and tested for the inorganic antibacterial agent obtained in Example. In order to prepare the test specimen of concrete, cement was used as a common type 1 portland cement with a specific gravity of 3.15 powder and 3,300cm2 / g. The fine aggregate was 2.60, the coarse aggregate was 2.64, and the maximum aggregate size was 13mm. The material mix ratio of the concrete specimens is shown in [Table 2], and the compressive strength results are shown in [Table 3]. The cement, aggregate, and the corresponding amount of water and the mixed material of the mixing ratio described in Table 2 were mixed uniformly using a mixer, and then the concrete mixture was prepared. Ø 10 × 20cm specimens were prepared in accordance with KS F 2403 compressive strength test specimens.

콘크리트 공시체는 상압 하에서 2 ~ 3시간동안 초기 양생시킨 후, 매시간 20℃ 이하로 승온시켜 60℃ ~ 70℃의 온도에 도달한 후 상대습도 90% 이상에서 4 ~ 8시간 동안 유지시켰다. 상기 조건으로 양생된 제품을 1, 7, 28일에 걸쳐 압축강도를 측정하였다.Concrete specimens were initially cured for 2 to 3 hours under atmospheric pressure, and then heated up to 20 ° C. or less every hour to reach a temperature of 60 ° C. to 70 ° C., and then maintained at 90% relative humidity for 4 to 8 hours. Compressive strength was measured for 1, 7, 28 days of the product cured under the above conditions.

Figure 112005039122983-pat00001
Figure 112005039122983-pat00001

Figure 112005039122983-pat00002
Figure 112005039122983-pat00002

Figure 112005039122983-pat00003
Figure 112005039122983-pat00003

이상에서 설명한 바와 같이 본 발명은 황산화 세균에 의한 콘크리트의 부식을 방지하고 그로 인해 콘크리트 제품의 수명 연장과 더불어 플라이애시, 고로슬래그등 포졸란 재료를 사용함으로써 콘크리트 2차 제품의 강도 발현과 화학저항성 증가, 시멘트를 대체함으로써 얻어지는 콘크리트 수화열저감에 의한 균열방지에 의한 내구성 향상 및 상대적으로 비싼 시멘트를 대체함으로써 얻어지는 생산 단가 절감과 산업폐기물을 재활용함으로써 공해문제 감소 등 많은 이점을 얻을 수 있다.As described above, the present invention prevents corrosion of concrete by sulfated bacteria and thereby increases the life of concrete products and increases the strength and chemical resistance of secondary concrete products by using pozzolanic materials such as fly ash and blast furnace slag. For example, many advantages can be obtained, such as improvement in durability by preventing cracking due to the reduction of heat of hydration of concrete obtained by replacing cement, and reduction of production cost obtained by replacing relatively expensive cement and reduction of pollution problem by recycling industrial waste.

아울러 착색제로써 산화철류를 혼합사용하기 때문에 제조된 관에 색을 부여하게 됨으로, 일반 관과는 식별이 용이한 방균관의 제공이 가능하게 된 것이다.In addition, since the iron oxides are mixed and used as a colorant, color is given to the manufactured tube, and thus, it is possible to provide an antimicrobial tube that can be easily distinguished from the general tube.

Claims (7)

콘크리트 하수관의 부식을 발생시키는 황산화세균에 대해 방균특성을 지닌 콘크리트 하수관용 무기계 혼화제에 있어서,In the inorganic admixture for concrete sewer pipes, which have anti-bacterial properties against sulfated bacteria causing corrosion of concrete sewer pipes, 방균성을 부여하기 위하여 니켈원과 텅스텐원의 2종 금속원을 물에 용해시켜 제조하고 니켈과 텅스텐의 함량비율은 니켈이 50중량% ~ 80중량%에 텅스텐은 20중량% ~ 50중량%인 금속이온 수용액과, 상기 금속이온 수용액에 넣어져 0.01중량% ~ 40중량%의 금속이온이 담지되는 담지체와, 상기 담지체가 포함된 금속이온수용액을 가열하여 남은 물질을 분쇄한 미분과 1 : (0.1 ~ 7) 의 비율로 헤마타이트와 마게마이트로 이루어진 군으로부터 선택사용된 산화철 무기착색제를 혼합하여 제조된 방균제와;In order to provide antibacterial properties, two kinds of metal sources, nickel source and tungsten source, are dissolved in water, and the content ratio of nickel and tungsten is 50% to 80% by weight of nickel and 20% to 50% by weight of tungsten. A fine powder obtained by pulverizing the remaining material by heating a metal ion aqueous solution, a carrier loaded in the aqueous metal ion solution and carrying 0.01 to 40% by weight of metal ions, and a metal ion aqueous solution containing the carrier. Antimicrobial agent prepared by mixing the iron oxide inorganic coloring agent selected from the group consisting of hematite and margemate in the ratio of 0.1 ~ 7); 화력발전소에서 수득한 플라이애시 10 ~ 50중량%와 고로슬래그 미분말 10 ~ 50중량%, 무수석고 10 ~ 30중량%, CSA계 팽창제 1 ~ 10중량%, 소석회 1 ~ 10중량%로 이루어진 고강도 혼합재료로 구성되되, High strength mixed material consisting of 10 to 50% by weight of fly ash obtained from thermal power plant, 10 to 50% by weight of blast furnace slag, 10 to 30% by weight of anhydrous gypsum, 1 to 10% by weight of CSA-based expanding agent, and 1 to 10% by weight of slaked lime Consisting of 상기 방균제는 고강도혼합재료에 대해 0.1 ~ 5 중량%로 혼합되어 이루어짐을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제.The antibacterial agent is an inorganic compound admixture for concrete sewage pipes having anti-bacterial and high strength, characterized in that the mixture is made of 0.1 to 5% by weight relative to the high-strength mixed material. 제 1항에 있어서,The method of claim 1, 상기 담지체는 플라이애시, 제올라이트, 활성탄, 실리카겔, 알루미나 등으로 이루어진 군으로부터 일종 또는 이종 이상 선택사용됨을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.The carrier is a fly ash, zeolite, activated carbon, silica gel, alumina and the like selected from the group consisting of one or more selected from the group consisting of inorganic sequestrant having a high strength and antibacterial. 니켈원과 텅스텐원의 2종 금속원을 물에 용해시켜 금속이온 수용액을 생성하는 금속이온 수용액 생성단계와(S100); Generating a metal ion aqueous solution by dissolving two metal sources of a nickel source and a tungsten source in water (S100); 금속이온이 코팅되도록 상기 금속이온 수용액에 담지체를 넣고 교반시키는 교반단계와(S110);A stirring step of putting the carrier in the aqueous metal ion solution so that the metal ions are coated (S110); 상기 금속이온 수용액에 포함된 수분이 증발되도록 90 ~ 100℃에서 가열하는 가열단계와(S120);A heating step of heating at 90 to 100 ° C. such that water contained in the aqueous metal ion solution is evaporated (S120); 수분이 증발된 상기 금속이온 수용액을 300 ~ 400℃에서 3 ~ 5시간 열처리하여 덩어리를 생성하는 열처리 단계(S130) 및; A heat treatment step (S130) of heat-treating the metal ion aqueous solution in which water is evaporated at 300 to 400 ° C. for 3 to 5 hours to generate a mass; 열처리하여 얻어진 상기 덩어리를 150mesh이하로 분쇄하여 분말로 만드는 분쇄단계(S140);와 A pulverization step (S140) of pulverizing the mass obtained by heat treatment to 150mesh or less; and 상기 분쇄된 미분과 헤마타이트와 마게마이트로 이루어진 군으로부터 선택사용된 산화철(Fe2O3) 무기착색제를 1 : (0.1 ~ 7)의 비율로 혼합하는 방균제 제조단계(S150)과;The antimicrobial agent manufacturing step (S150) of mixing the pulverized fine powder and hematite and margemate used iron oxide (Fe 2 O 3 ) inorganic colorant in a ratio of 1: (0.1 ~ 7); 화력발전소에서 수득한 플라이애시 10 ~ 50중량%와 고로슬래그 미분말 10 ~ 50중량%, 무수석고 10 ~ 30중량%, CSA계 팽창제 1 ~ 10중량%, 소석회 1 ~ 10중량%로 혼합하여 고강도혼합재료제조단계(S160)과;10 to 50% by weight of fly ash obtained from thermal power plant, 10 to 50% by weight of blast furnace slag, 10 to 30% by weight of anhydrous gypsum, 1 to 10% by weight of CSA-based expanding agent, 1 to 10% by weight of slaked lime A material manufacturing step (S160); 상기 제조된 고강도혼합재에 대해 방균제를 0.1 ~ 5 중량% 혼합되는 혼합단계(S170);를 포함하여 이루어짐을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.Method for producing an inorganic admixture for concrete sewage pipes having anti-bacterial and high strength characterized in that it comprises a; mixing step (S170) is 0.1 to 5% by weight of the antimicrobial agent for the prepared high-strength mixture. 제 3항에 있어서,The method of claim 3, wherein 상기 금속이온 수용액 생성단계(S100)에서 용해된 니켈과 텅스텐의 함량비율은 용해량에 대해 니켈이 50중량% ~ 80중량%에 텅스텐은 20중량% ~ 50중량%이며, 용해를 촉진시키기 위해 20℃ ~ 50℃로 가열하여 용해시간을 단축시키는 것을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.The content ratio of nickel and tungsten dissolved in the metal ion aqueous solution generation step (S100) is 50% by weight to 80% by weight of nickel and 20% by weight to 50% by weight of tungsten relative to the amount of dissolution. Method for producing an inorganic admixture for concrete sewage pipes having anti-bacterial and high strength by heating to ℃ ~ 50 ℃ to shorten the dissolution time. 제 3항에 있어서,The method of claim 3, wherein 상기 금속이온 수용액 생성단계(S100)의 니켈원으로써는 수용성인 이염화니켈(NiCl2ㆍ6H2O)과 황산니켈(NiSO4ㆍ7H2O)이고, 텅스텐원으로써는 수용성인 텅스텐산나트륨(Na2WO4ㆍ2H2O)인 것을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.The nickel source of the metal ion aqueous solution generation step (S100) is water-soluble nickel dichloride (NiCl 2 .6H 2 O) and nickel sulfate (NiSO 4 .7H 2 O), and the tungsten source is water-soluble sodium tungstate ( Na 2 WO 4 ㆍ 2H 2 O) A method for producing an inorganic admixture for concrete sewage pipe having antiseptic properties and high strength. 제 3항에 있어서,The method of claim 3, wherein 상기 교반단계(S110)에서 담지체는 금속이온수용액의 금속이온량을 0.01 ~ 40중량%가 되도록 투입하고, 20℃ ~ 30℃에서 1 ~ 10시간 교반시키는 것을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.In the stirring step (S110), the carrier is added to the amount of metal ions of the metal ion solution to 0.01 to 40% by weight, and concrete having antibacterial and high strength, characterized in that for 1 to 10 hours stirring at 20 ℃ ~ 30 ℃ Inorganic admixture for sewage pipes. 제 3항 또는 6항에 있어서,The method according to claim 3 or 6, wherein 상기 담지체는 플라이애시, 제올라이트, 활성탄, 실리카겔, 알루미나로 이루어진 군으로부터 일종 또는 이종 이상 선택사용됨을 특징으로 하는 방균성과 고강도를 갖는 콘크리트 하수관용 무기계 혼화제 제조방법.The carrier is a fly ash, zeolite, activated carbon, silica gel, alumina selected from the group consisting of at least one or more selected from the group consisting of inorganic anti-bacterial admixture for a sewer pipe having high strength.
KR20050065473A 2005-07-19 2005-07-19 Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof KR100628517B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20050065473A KR100628517B1 (en) 2005-07-19 2005-07-19 Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050065473A KR100628517B1 (en) 2005-07-19 2005-07-19 Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR100628517B1 true KR100628517B1 (en) 2006-09-26

Family

ID=37628825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20050065473A KR100628517B1 (en) 2005-07-19 2005-07-19 Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100628517B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810027B1 (en) 2006-10-27 2008-03-07 (주)대우건설 Concrete anti-corrosive admixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810027B1 (en) 2006-10-27 2008-03-07 (주)대우건설 Concrete anti-corrosive admixture

Similar Documents

Publication Publication Date Title
Grengg et al. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review
Sikora et al. The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars
Su et al. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete
Pacheco-Torgal et al. Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability
Lazaro et al. Nanotechnologies for sustainable construction
Tuntachon et al. Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2
Xiao et al. Biosynthesis of FeS nanoparticles from contaminant degradation in one single system
Huseien et al. Durability performance of modified concrete incorporating fly ash and effective microorganism
Adak et al. Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology
Haile et al. Evaluation of the bactericidal characteristics of nano-copper oxide or functionalized zeolite coating for bio-corrosion control in concrete sewer pipes
KR101779935B1 (en) Development of coating materials for concrete protection using bacteria slime
JP2018538128A (en) Composition containing modified low chromate red mud and process for producing the composition
CN112342029B (en) Biological heavy metal contaminated soil remediation agent and preparation method and application thereof
Morsali et al. The application of bacteria as a main factor in self-healing concrete technology
Sidhu et al. Biomineralization of cyanobacteria Synechocystis pevalekii improves the durability properties of cement mortar
Strigáč et al. The fungistatic properties and potential application of by-product fly ash from fluidized bed combustion
Munyao et al. Study on the effect of Thiobacillus intermedius bacteria on the physico-mechanical properties of mortars of ordinary portland cement
Khan et al. Performance of cementitious and alkali-activated mortars exposed to laboratory simulated microbially induced corrosion test
Chen et al. Nanoscale construction biotechnology for cementitious materials: a prospectus
Kang et al. Antimicrobial performance and biodeterioration mechanisms of alkali-activated slag
Biswal et al. Investigation on Pseudomonas aeruginosa PAO1-driven bioleaching behavior of heavy metals in a novel geopolymer synthesized from municipal solid waste incineration bottom ash
KR100628517B1 (en) Inorganic based admixture for concrete sewer pipe with anti-biotics and high-srength and manufacturing method thereof
Farmani et al. Dual eco-friendly application of silica fume and scoria in cement-based materials through the enhancement of microbially-induced carbonate precipitation
Fronczyk et al. Immobilization of (bio-) healing agents for self-healing concrete technology: Does it really ensure long-term performance?
Munyao et al. Influence of Starkeya novella on mechanical and microstructural properties of cement mortars

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120919

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140915

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160826

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 14