KR100614173B1 - Composition for heat storage and preparation method thereof - Google Patents

Composition for heat storage and preparation method thereof Download PDF

Info

Publication number
KR100614173B1
KR100614173B1 KR1020060063128A KR20060063128A KR100614173B1 KR 100614173 B1 KR100614173 B1 KR 100614173B1 KR 1020060063128 A KR1020060063128 A KR 1020060063128A KR 20060063128 A KR20060063128 A KR 20060063128A KR 100614173 B1 KR100614173 B1 KR 100614173B1
Authority
KR
South Korea
Prior art keywords
weight
parts
oxide
heat storage
heat
Prior art date
Application number
KR1020060063128A
Other languages
Korean (ko)
Inventor
나규동
허상수
최창희
Original Assignee
주식회사 에이치엔엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치엔엘 filed Critical 주식회사 에이치엔엘
Priority to KR1020060063128A priority Critical patent/KR100614173B1/en
Application granted granted Critical
Publication of KR100614173B1 publication Critical patent/KR100614173B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

본 발명은 이산화규소 (SiO2) 43-50 중량부, 산화알루미늄 (Al2O3) 8-10 중량부, 산화제이철 (Fe2O3) 0.05-0.2 중량부, 산화칼슘 (CaO) 0.1-0.4 중량부, 산화마그네슘 (MgO) 0.05-0.4 중량부, 산화칼륨 (K2O) 2-3 중량부, 산화나트륨 (Na2O) 3-5 중량부, 염화나트륨 (NaCl) 5-15 중량부 및 물 (H2O) 20-30 중량부를 함유하는, 신규한 축열재 조성물에 관한 것으로서, 기존의 잠열축열재에 비해 증가된 흡열 및 축열량을 가질 뿐 아니라, 독성이나 인화성이 없고, 화학적으로 안정하고 부식성이 없으며, 경제성도 충족시키므로, 심야전력을 이용한 축열, 축냉 및 각종 산업분야에서의 냉각, 가열과정 등의 에너지이용 합리화분야, 히트펌프, 히트파이프, 열회수 시스템과 연계한 에너지이용효율 극대화분야, 태양열을 이용한 열에너지 변환·축적·이용 등의 자연에너지이용분야, 레저용 선박, 수산업, 주방용품, 특수 의복 등의 생활산업분야, 농·수·축산물의 생산·저장·유통 등의 식량산업분야, 자동차·우주항공, 첨단무기, 전자·계측·통신기기(TEM)의 히트싱크, 핵융합로 냉각, 생물·생화학물질의 보관·운반 및 물리치료 의학기기 등의 첨단산업분야 등에 적용될 수 있다.The present invention is 43-50 parts by weight of silicon dioxide (SiO 2 ), 8-10 parts by weight of aluminum oxide (Al 2 O 3 ), 0.05-0.2 parts by weight of ferric oxide (Fe 2 O 3 ), calcium oxide (CaO) 0.1- 0.4 parts by weight, magnesium oxide (MgO) 0.05-0.4 parts by weight, potassium oxide (K 2 O) 2-3 parts by weight, sodium oxide (Na 2 O) 3-5 parts by weight, sodium chloride (NaCl) 5-15 parts by weight And 20-30 parts by weight of water (H 2 O), which relates to a novel heat storage material composition, which has an increased endotherm and heat storage amount as compared to a conventional latent heat storage material, and is not toxic or flammable, and chemically Stable, non-corrosive, and economical, satisfying energy efficiency rationalization fields such as heat storage, heat storage using midnight power, cooling and heating processes in various industries, and maximizing energy utilization efficiency in connection with heat pumps, heat pipes, and heat recovery systems. Field of natural energy use such as heat energy conversion, accumulation and use Domestic industry such as ships, fisheries, kitchen utensils, special clothing, and food industry such as production, storage and distribution of agricultural, aquatic and livestock products, automobiles, aerospace, advanced weapons, electronics, measurement and communication equipment (TEM) It can be applied to high-tech industries such as heat sink, fusion reactor cooling, storage and transportation of biological and biochemical materials, and physiotherapy medical device.

축열재, 잠열축열, 이산화규소, 산화알루미늄, 산화제이철, 산화칼슘, 산화마그네슘, 산화칼륨, 산화나트륨, 염화나트륨, 물  Heat storage material, latent heat storage, silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxide, sodium chloride, water

Description

축열재 조성물 및 그의 제조방법{Composition for heat storage and preparation method thereof}A heat storage material composition and its manufacturing method

도 1은 본 발명에 따른 축열재의 흡열량을 보여주는 그래프이고;1 is a graph showing the endothermic amount of heat storage material according to the present invention;

도 2는 비교대상발명에 따른 축열재의 흡열량을 보여주는 그래프이다.2 is a graph showing the endothermic amount of heat storage material according to the invention to be compared.

본 발명은 신규한 축열재 조성물 및 그의 제조방법에 관한 것으로서, 보다 상세하게는, 이산화규소 (SiO2) 43-50 중량부, 산화알루미늄 (Al2O3) 8-10 중량부, 산화제이철 (Fe2O3) 0.05-0.2 중량부, 산화칼슘 (CaO) 0.1-0.4 중량부, 산화마그네슘 (MgO) 0.05-0.4 중량부, 산화칼륨 (K2O) 2-3 중량부, 산화나트륨 (Na2O) 3-5 중량부, 염화나트륨 (NaCl) 5-15 중량부 및 물 (H2O) 20-30 중량부를 함유하는 축열재 조성물 및 그의 제조방법에 관한 것이다.The present invention relates to a novel heat storage material composition and a method for producing the same, more specifically, 43-50 parts by weight of silicon dioxide (SiO 2 ), 8-10 parts by weight of aluminum oxide (Al 2 O 3 ), ferric oxide ( Fe 2 O 3 ) 0.05-0.2 parts by weight, calcium oxide (CaO) 0.1-0.4 parts by weight, magnesium oxide (MgO) 0.05-0.4 parts by weight, potassium oxide (K 2 O) 2-3 parts by weight, sodium oxide (Na 2 O) relates to a heat storage material composition containing 3-5 parts by weight, 5-15 parts by weight of sodium chloride (NaCl) and 20-30 parts by weight of water (H 2 O), and a method for producing the same.

에너지 공급과 수요의 시간적 불일치를 해소하거나, 에너지 공급이 시간에 따라 크게 변화하는 태양열 등의 천연에너지를 효과적으로 이용하기 위해, 또는 폐 열의 효과적인 회수 이용을 위해서는 에너지 저장이 필요하다. 최근 현열보다는 상변화물질(Phase Change Material, PCM)의 잠열을 이용한 축열장치의 연구가 많이 수행되고 있는 바, 잠열축열 시스템은 다양한 형태의 에너지, 즉, 태양열, 지열, 풍력, 조력, 바이오-에너지 등의 미활용 자연에너지, 심야전력 등의 미활용 가공에너지, 연소가스 폐열, 폐수, 폐기물 소각열 등의 폐기 에너지를 상변화물질(PCM)의 잠열을 이용하여 고농도로 저장, 사용분야, 시기 및 목적에 적합하게 변환하여 이용하는 시스템으로 에너지를 효율적/합리적으로 이용하는 대표적인 기술이다.Energy storage is needed to resolve the time discrepancy between energy supply and demand, to make effective use of natural energy, such as solar heat, in which the energy supply varies greatly over time, or to use the effective recovery of waste heat. Recently, many studies of heat storage devices using latent heat of phase change material (PCM) rather than sensible heat have been conducted. The latent heat storage system has various forms of energy, namely, solar, geothermal, wind, tidal, and bio-energy. Natural energy such as unutilized natural energy, unutilized processing energy such as midnight power, waste energy such as combustion gas waste heat, waste water, and waste incineration heat are stored at high concentration by using latent heat of phase change material (PCM), and are suitable for use field, time and purpose. It is a representative technology that uses energy efficiently and reasonably as a system that is converted and used.

상변화물질들은 단위부피 및 단위무게당 열에너지의 저장용량이 커서 현열 장치보다 부피나 무게를 크게 줄일 수가 있다. 즉, 망초의 상변화를 이용하여 축열을 하면, 물의 현열을 이용한 장치보다 부피가 1/8로 줄어들며, 암석을 이용한 장치보다는 1/17로 줄어든다. 또한 상변화물질의 용융열을 이용한 축열기는 온도성층(thermocline) 현상이 심하지 않으므로, 사용온도에 알맞는 범위에서 거의 일정한 온도로 축열 및 방열을 할 수 있다. 현열을 이용한 축열기에서는 축열 매체와 열수송 유체간의 온도차이가 22-23 ℃ 이상은 되어야 충분히 축열을 할 수 있지만, 용융열을 이용한 축열기에서는 단지 몇 도만 높아도 된다.Phase change materials have a large storage capacity of heat energy per unit volume and unit weight, which can significantly reduce volume or weight than sensible devices. That is, when heat storage is performed using the phase change of the forget-me-not, the volume is reduced to 1/8 of the device using the sensible heat of water, and it is reduced to 1/17 than the device using the rock. In addition, since the heat accumulator using the heat of fusion of the phase change material is not severe in the thermocline phenomenon, heat storage and heat dissipation can be performed at a substantially constant temperature within a range suitable for the use temperature. In the sensible heat accumulator, the temperature difference between the heat storage medium and the heat transport fluid must be 22-23 ° C. or higher to sufficiently accumulate the heat.

상변화물질이 산업화에 이용되기 위해서는, 첫째 단위부피 및 단위무게당 축열 용량 (에너지 저장 밀도)이 커야 한다. 둘째, 열전달 속도를 크게 하고 축열기를 효율적으로 사용하기 위해서는 축열매체의 용융온도 부근에 걸쳐 조업을 해야 하기 때문에 현열에 의한 축열량도 무시할 수 없는 바, 전체적으로 축열 용량을 크게 하기 위해서는 축열매체의 비열이 클수록 좋다. 셋째, 증기압이 크면 압력용기 를 사용해야 하며, 이는 장치제작비를 높이는 요인이 되므로, 증기압이 작아야 한다. 넷째, 열전도도는 축열 및 방열과정의 열전달 속도와 관련이 있으며, 특히 방열과정에서 열전달 표면에 붙어있는 고체는 열전달을 크게 방해하므로 축열매체의 열전도도는 클수록 좋다. 다섯째, 용융온도에서 과냉각(supercooling, subcooling)이 되면 결국은 유리체를 형성하게 되어 저장된 열에너지를 회수할 수 없으므로, 결정화 속도가 크고 과냉각 현상이 작아야 한다. 대개의 무기수화염들은 과냉각 현상이 있으며, 과냉각을 해결하고 결정속도를 빠르게 하기 위해서는 조핵제(nucleating agent)를 사용하거나 축열용기 속에 "콜드 핑거(cold finger)"를 만들어 넣는다. 여섯째, 만일 넓은 온도범위에 걸쳐 상변화를 하면 고체와 액체의 밀도차이로 인하여 상분리가 일어나고 축열매체의 조성이 변할 수 있으며, 일정한 온도에서 축열, 방열을 할 수가 없어 에너지 이용면에서도 비효율적으로 되므로, 일정한 온도에서 상변화가 일어나야 한다. 일곱째, 축열매체들은 상변화를 하면서 부피가 변하는데, 팽창의 정도가 크면 축열용기를 파손시킬 수 있으므로, 상변화에 따른 부피변화가 작아야 한다. 0 ℃ 이상의 용융점을 갖는 무기수화물은 용융할 때, 10% 정도까지 팽창한다. 여덟째, 독성이나 인화성이 없어야 한다. 아홉째, 저온의 축열매체에서는 큰 문제가 되지 않지만 고온의 경우에는 화학반응 속도가 커지고, 용기의 부식도 크게 발생할 수 있으므로, 화학적으로 안정하고 부식성이 없어야 한다. 그밖에도, 상변화 온도가 사용온도 범위와 일치해야 하며, 가격이 저렴하고 쉽게 구할 수 있어야 한다.In order for phase change materials to be used for industrialization, first, the heat storage capacity (energy storage density) per unit volume and unit weight must be large. Second, in order to increase the heat transfer rate and efficiently use the heat accumulator, operation must be carried out near the melting temperature of the heat storage medium, so the amount of heat storage due to sensible heat cannot be ignored. The larger this is, the better. Third, if the vapor pressure is large, a pressure vessel should be used, which increases the manufacturing cost of the device, so the vapor pressure should be small. Fourth, the thermal conductivity is related to the heat transfer rate of the heat storage and heat dissipation process, and in particular, the solid attached to the heat transfer surface greatly interferes with heat transfer in the heat dissipation process, so the heat conductivity of the heat storage medium is better. Fifth, when the supercooling (subcooling) at the melting temperature eventually forms a vitreous body and cannot store the stored heat energy, the crystallization rate should be large and the subcooling phenomenon should be small. Most inorganic hydrochlorides are supercooled and use a nucleating agent or create a "cold finger" in a regenerated container to resolve subcooling and speed up crystallization. Sixth, if the phase change over a wide temperature range, phase separation may occur due to the density difference between the solid and the liquid, and the composition of the heat storage medium may change, and the heat storage and heat dissipation at a constant temperature may be inefficient in terms of energy use. Phase change should occur at a constant temperature. Seventh, the heat storage medium changes the volume while the phase change, but if the degree of expansion is large, the heat storage container can be damaged, the volume change by the phase change should be small. Inorganic hydrates having a melting point of 0 ° C. or more expand to about 10% when melted. Eighth, there should be no toxicity or flammability. Ninth, the low temperature heat storage medium is not a big problem, but at high temperatures, the chemical reaction rate is increased and the container may also be greatly corroded, and thus, it should be chemically stable and not corrosive. In addition, the phase change temperature must be consistent with the operating temperature range, and must be inexpensive and readily available.

그러나, 지금까지 개발된 축열재 중 상기한 바와 같은 조건들을 모두 충족시 키는 축열재는 없었으며, 열에너지의 사용목적에 따라 각 물질들의 적합성 및 경제성을 검토하여 축열매체를 선택해야만 했다. 한편, 한국특허등록 제420,008호에 따르면, 이산화규소 37-42%와 알루미늄 3.8-7.8%, 칼슘 0.5-1.1%, 마그네슘 0.5-1%, 칼륨 0.5-1.1%, 나트륨 1.7-2.3% 및 철 0.3-0.9% 등의 산화물로 구성된 혼합물에 물 46-56%를 넣고 교반하여 무기물 슬러리화함을 특징으로 하는 보일러용 에너지 저장형 축열물질이 개시되어 있는 바, 상기 축열물질은 1,063 J/g의 축열량을 갖는 것으로 기재되어 있다. 그러나, 사용된 축열물질의 구체적인 구성성분 및 함량이 불명확하여 반복재현이 불가능할 뿐만 아니라, 축열량에도 개선의 여지가 여전히 남아있었다. 한편, 염화나트륨은 물, 수산화나트륨, 초산과 배합되어 잠열축열재로 사용되거나, 주잠열재에 대한 잠열온도조절제로서 Na2CO3·10H20, 염화칼륨 및 염화암모늄과 배합되어 사용되거나 (한국특허등록 제95,102호), 공업용 염화칼슘 (CaCl2·6H2O)의 핵형성제로서 사용된 바 있다 (한국특허등록 제59,304호). However, none of the heat storage materials developed so far satisfies all of the above conditions, and the heat storage medium had to be selected by examining the suitability and economic feasibility of each material according to the purpose of using the thermal energy. Meanwhile, according to Korean Patent Registration No. 420,008, silicon dioxide 37-42%, aluminum 3.8-7.8%, calcium 0.5-1.1%, magnesium 0.5-1%, potassium 0.5-1.1%, sodium 1.7-2.3% and iron 0.3 An energy storage type heat storage material for a boiler is disclosed, which is added to a mixture composed of an oxide such as -0.9%, and stirred to form an inorganic slurry. The heat storage material has a heat storage amount of 1,063 J / g. It is described as having. However, the specific constituents and contents of the heat storage material used are not clear, so that the repetitive reproduction is not possible, and there is still room for improvement in the heat storage amount. Meanwhile, sodium chloride is used as a latent heat storage material in combination with water, sodium hydroxide, and acetic acid, or used in combination with Na 2 CO 3 · 10H 2 0, potassium chloride and ammonium chloride as a latent heat storage material for the main latent heat material (Korea Patent Registration No. 95,102), has been used as a nucleating agent of industrial calcium chloride (CaCl 2 · 6H 2 O) (Korean Patent No. 59,304).

이에, 본 발명자들은 상기 나열한 바와 같은 축열재가 갖추어야할 제반요건들을 구비한 신규한 축열재 조성물을 개발해내기 위하여, 지속적인 연구를 수행해왔다. 그 결과, 특정 종류의 무기물을 특정 비율로 물과 혼합하여 된 조성물이 상기 목적에 부합함을 확인하고, 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have carried out continuous research to develop a novel heat storage material composition having all the requirements that the heat storage material as listed above should have. As a result, it was confirmed that the composition obtained by mixing a specific kind of inorganic material with water at a specific ratio meets the above object, and has completed the present invention.

따라서, 본 발명의 제1목적은 기존의 잠열축열재에 비해 증가된 흡열 및 축열량을 가질 뿐 아니라 축열재가 갖추어야 할 제반요건을 구비한 신규한 축열재 조 성물을 제공하기 위한 것이다.Accordingly, a first object of the present invention is to provide a novel heat storage material composition having not only increased endothermic heat storage and heat storage amount compared to the existing latent heat storage material, but also having all the requirements for the heat storage material.

본 발명에 따른 축열재는 심야전력을 이용한 축열 (보일러, 온수기, 온풍기 등), 축냉 (빙축열 냉방, 저온 PCM 축냉식 냉장 및 냉동 등), 냉각(cooling), 가열(heating), 히트펌프(heat pump), 히트파이프(heat pipe), 열회수(heat recovery) 시스템, 태양열을 이용한 열에너지 변환·축적·이용, 레저용 선박, 수산업, 주방용품, 특수 의복, 농·수·축산물의 생산·저장·유통, 자동차·우주항공, 첨단무기, 전자·계측·통신기기(TEM)의 히트싱크(heat sink), 핵융합로 냉각, 생물·생화학물질의 보관·운반 또는 물리치료 의학기기 등 광범위한 용도로 사용될 수 있다.The heat storage material according to the present invention is a heat storage (boiler, water heater, hot air heater, etc.), cold storage (ice heat storage cooling, low temperature PCM cold storage refrigeration and freezing, etc.), cooling (heating), heat pump (heat pump) , Heat pipe, heat recovery system, solar energy conversion, accumulation and use, recreational vessels, fisheries, kitchen utensils, special clothing, production, storage, distribution of agricultural, aquatic and livestock products, automobiles · It can be used in a wide range of applications, including aerospace, advanced weapons, heat sinks for electronic, instrumentation, and communication devices, cooling fusion reactors, storing and transporting biological and biochemicals, and physiotherapy medical devices.

본 발명의 제2목적은 상기 축열재 조성물을 제조하는 방법을 제공하기 위한 것이다.A second object of the present invention is to provide a method for producing the heat storage material composition.

본 발명의 제1면은 이산화규소 43-50 중량부, 산화알루미늄 8-10 중량부, 산화제이철 0.05-0.2 중량부, 산화칼슘 0.1-0.4 중량부, 산화마그네슘 0.05-0.4 중량부, 산화칼륨 2-3 중량부, 산화나트륨 3-5 중량부, 염화나트륨 5-15 중량부 및 물 20-30 중량부를 함유하는 축열재 조성물에 관한 것이다.The first aspect of the present invention is 43-50 parts by weight of silicon dioxide, 8-10 parts by weight of aluminum oxide, 0.05-0.2 parts by weight of ferric oxide, 0.1-0.4 parts by weight of calcium oxide, 0.05-0.4 parts by weight of magnesium oxide, potassium oxide 2 And -3 parts by weight, 3-5 parts by weight of sodium oxide, 5-15 parts by weight of sodium chloride and 20-30 parts by weight of water.

본 발명의 제2면은 이산화규소, 산화알루미늄, 산화제이철, 산화칼슘, 산화마그네슘, 산화칼륨, 산화나트륨 및 염화나트륨의 혼합물을 물에 넣고 교반하여 슬러리화하는 단계를 포함하는, 상기 축열재 조성물의 제조방법에 관한 것이다.The second aspect of the present invention comprises the step of slurrying the mixture of silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxide and sodium chloride in water and stirring to slurry the It relates to a manufacturing method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 특정 종류의 무기물을 특정 비율로 물과 혼합하여 된 축열재 조성물에 관한 것이다. 즉, 본 발명의 조성물은 이산화규소 43-50 중량부, 산화알루미늄 8-10 중량부, 산화제이철 0.05-0.2 중량부, 산화칼슘 0.1-0.4 중량부, 산화마그네슘 0.05-0.4 중량부, 산화칼륨 2-3 중량부, 산화나트륨 3-5 중량부, 염화나트륨 5-15 중량부 및 물 20-30 중량부를 함유한다. 보다 바람직하게는, 본 발명의 조성물은 이산화규소 43.9 중량부, 산화알루미늄 9.3 중량부, 산화제이철 0.1 중량부, 산화칼슘 0.2 중량부, 산화마그네슘 0.1 중량부, 산화칼륨 2.3 중량부, 산화나트륨 4.1 중량부, 염화나트륨 10 중량부 및 물 30 중량부를 함유한다. 본 발명에 따른 조성물의 일 성분인 염화나트륨은 잠열축열재에서 수산화나트륨, 초산, Na2CO3·10H20, 염화칼륨, 염화암모늄, 염화칼슘 등과 배합되어 사용된 바 있으나, 본 발명의 조성물에 함유된 이산화규소, 산화알루미늄, 산화제이철, 산화칼슘, 산화마그네슘, 산화칼륨, 산화나트륨과 배합되어 사용된 적은 없었다.The present invention relates to a heat storage material composition obtained by mixing a specific kind of inorganic material with water at a specific ratio. That is, the composition of the present invention is 43-50 parts by weight of silicon dioxide, 8-10 parts by weight of aluminum oxide, 0.05-0.2 parts by weight of ferric oxide, 0.1-0.4 parts by weight of calcium oxide, 0.05-0.4 parts by weight of magnesium oxide, potassium oxide 2 -3 parts by weight, 3-5 parts by weight sodium oxide, 5-15 parts by weight sodium chloride and 20-30 parts by weight water. More preferably, the composition of the present invention is 43.9 parts by weight of silicon dioxide, 9.3 parts by weight of aluminum oxide, 0.1 parts by weight of ferric oxide, 0.2 parts by weight of magnesium oxide, 0.1 parts by weight of magnesium oxide, 2.3 parts by weight of potassium oxide, 4.1 parts by weight of sodium oxide Part, 10 parts by weight of sodium chloride and 30 parts by weight of water. Sodium chloride, a component of the composition according to the present invention, has been used in combination with sodium hydroxide, acetic acid, Na 2 CO 3 · 10H 2 0, potassium chloride, ammonium chloride, calcium chloride, etc. in the latent heat storage material, It has never been used in combination with silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide, potassium oxide or sodium oxide.

본 발명자들은 상기 특정 종류의 무기물과 물을 상기 특정 비율로 배합한 경우, 기존에 개발된 어떠한 축열재 보다 우수한 흡열 및 축열량을 가질 뿐만 아니라, 독성이나 인화성이 없고, 화학적으로 안정하고 부식성이 없으며, 경제성도 충족시킴을 확인하였다. 이와 같이, 본 발명에 따른 조성물은 우수한 흡열 및 축열량을 가짐과 동시에, 축열재가 갖추어야할 제반요건을 충족시키므로, 축열재가 적용될 수 있는 모든 용도에 적용될 수 있는 바, 예를 들면, 심야전력을 이용한 축열 (보일러, 온수기, 온풍기 등), 축냉 (빙축열 냉방, 저온 PCM 축냉식 냉장 및 냉동 등), 냉각, 가열, 히트펌프, 히트파이프, 열회수 시스템, 태양열을 이용한 열에너지 변환·축적·이용, 레저용 선박, 수산업, 주방용품, 특수 의복, 농·수·축산물의 생산·저장·유통, 자동차·우주항공, 첨단무기, 전자·계측·통신기기(TEM)의 히트싱크, 핵융합로 냉각, 생물·생화학물질의 보관·운반 또는 물리치료 의학기기에 활용될 수 있다.The present inventors, when combined with the specific type of inorganic material and water in the specific ratio, not only has a superior endotherm and heat storage amount than any conventionally developed heat storage material, but also has no toxicity or flammability, and is chemically stable and noncorrosive. In addition, it confirmed that it meets economic feasibility. As such, the composition according to the present invention has an excellent endothermic amount and heat storage amount, and satisfies all the requirements of the heat storage material, and thus can be applied to all applications to which the heat storage material can be applied. Heat storage (boiler, water heater, hot air heater, etc.), cold storage (ice heat storage cooling, low temperature PCM cold storage refrigeration and freezing, etc.), cooling, heating, heat pump, heat pipe, heat recovery system, thermal energy conversion, accumulation and utilization using solar heat, leisure vessel , Fisheries, kitchen utensils, special clothing, production, storage and distribution of agricultural, aquatic and livestock products, heat sinks for automobiles, aerospace, advanced weapons, electronics, instrumentation and communication equipment (TEM), cooling fusion furnaces, biological and biochemicals It can be used for storage, transportation or physical therapy medical devices.

본 발명에 따른 조성물은 이산화규소, 산화알루미늄, 산화제이철, 산화칼슘, 산화마그네슘, 산화칼륨, 산화나트륨 및 염화나트륨의 혼합물을 물에 넣고 교반하여 슬러리화함으로써 수득될 수 있는 바, 균질한 슬러리를 얻을 수 있는 한, 사용되는 교반수단에 특별한 제한이 있는 것은 아니다.The composition according to the present invention can be obtained by putting a mixture of silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxide and sodium chloride into water and slurrying to obtain a homogeneous slurry. As far as possible, there is no particular limitation on the stirring means used.

이하, 본 발명을 하기 실시예에 의해 보다 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐 본 발명의 범위를 어떤 식으로든 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are intended to aid the understanding of the present invention but are not intended to limit the scope of the present invention in any way.

실시예 1: 본 발명의 축열재 조성물의 제조Example 1: Preparation of the heat storage material composition of the present invention

분말 상태의 이산화규소 43.9 g, 산화알루미늄 9.3 g, 산화제이철 0.1 g, 산화칼슘 0.2 g, 산화마그네슘 0.1 g, 산화칼륨 2.3 g, 산화나트륨 4.1 g 및 염화나트륨 10 g을 균질하게 혼합하였다. 상기 혼합물을 물 30 g에 가하고 교반기로 교반하여 균질한 슬러리로 제조하여, 100 g의 축열재를 얻었다.43.9 g of powdered silicon dioxide, 9.3 g of aluminum oxide, 0.1 g of ferric oxide, 0.2 g of calcium oxide, 0.1 g of magnesium oxide, 2.3 g of potassium oxide, 4.1 g of sodium oxide, and 10 g of sodium chloride were mixed homogeneously. The mixture was added to 30 g of water, stirred with a stirrer to prepare a homogeneous slurry, and 100 g of heat storage material was obtained.

실험예 1: 본 발명의 축열재 조성물의 흡열량 측정Experimental Example 1: Measurement of the endothermic amount of the heat storage material composition of the present invention

상기 실시예 1에 따라 제조된 축열재의 잠열량을 시차주사열량법(Differential Scanning Calorimeter, DSC)을 이용하여 측정하였다. 그 결과를 도 1에 나타내었다. 도 1에 나타낸 바와 같이, 본 발명의 축열재는 377 ㎉/㎏, 1,585 J/g의 잠열량을 나타내었다. 이러한 잠열량은 한국특허등록 제420,008호에 기재되어 있는 축열물질의 잠열량 253 ㎉/㎏, 1,063 J/g (도 2: 한국특허등록 제420,008호의 도 1)에 비해 약 1.5배나 높은 것으로서, 본 발명의 축열재 조성물이 현저히 우수한 잠열량을 가짐을 확인할 수 있었다.The latent heat amount of the heat storage material prepared according to Example 1 was measured using a differential scanning calorimeter (DSC). The results are shown in FIG. As shown in Fig. 1, the heat storage material of the present invention showed a latent heat amount of 377 dl / kg and 1,585 J / g. This latent heat amount is about 1.5 times higher than the latent heat amount of the heat storage material described in Korean Patent Registration No. 420,008, 253 ㎉ / kg, 1,063 J / g (Fig. 2: Fig. 1 of Korean Patent Registration No. 420,008). It was confirmed that the heat storage material composition of the invention has a remarkably excellent latent heat amount.

실험예 2: 본 발명의 축열재 조성물의 에너지비용 절감효과 평가Experimental Example 2: Evaluation of the energy cost reduction effect of the heat storage material composition of the present invention

본 발명의 축열재 조성물의 현장에서의 에너지비용 절감효과를 평가하기 위하여, 경유 보일러를 사용하는 아스콘 제조공장에 본 발명의 축열재를 적용한 전기보일러를 설치하고, 에너지비용을 산정하였다. 그 결과, 년간 97,500,000원 소요되던 경유 보일러의 유지비용이 본 발명의 축열재를 적용한 전기보일러로 대체한 후 25,500,000원 소요되어, 74%의 에너지비용 절감효과를 거둔 것으로 나타났다.In order to evaluate the energy cost reduction effect in the field of the heat storage material composition of the present invention, an electric boiler to which the heat storage material of the present invention was applied was installed in an asphalt concrete manufacturing plant using a diesel boiler, and the energy cost was calculated. As a result, the maintenance cost of the diesel oil boiler, which was 97,500,000 won per year, was 25,500,000 won after replacing the electric boiler applying the heat storage material of the present invention, and the energy cost reduction of 74% was found.

또한, 야자수 분양농장에 적용 시 년간 (가동일 12월∼익년 3월, 4개월) 2,500,000원/월 소요되던 난방비용이 500,000원/월 소요되어, 약 80%에 달하는 난방에너지비용 절감효과를 거둔 것으로 나타났다. In addition, heating costs of 2,500,000 won / month (from December to March of the next year, 4 months) are 500,000 won / month, which is about 80% reduction in heating energy costs. Appeared.

상기한 바와 같이, 본 발명에 따른 축열재 조성물은 현저히 우수한 흡열 및 축열량을 가짐과 동시에, 독성이나 인화성이 없고, 화학적으로 안정하고 부식성이 없으며, 경제성도 충족시키는 등 축열재가 갖추어야할 제반요건을 충족시키므로, 심야전력을 이용한 축열 (보일러, 온수기, 온풍기 등), 축냉 (빙축열 냉방, 저온 PCM 축냉식 냉장 및 냉동 등) 및 각종 산업분야에서의 냉각, 가열과정 등의 에너지이용 합리화분야, 히트펌프, 히트파이프, 열회수 시스템과 연계한 에너지이용효율 극대화분야, 태양열을 이용한 열에너지 변환·축적·이용 등의 자연에너지이용분야, 레저용 선박, 수산업, 주방용품, 특수 의복 등의 생활산업분야, 농·수·축산물의 생산·저장·유통 등의 식량산업분야, 자동차·우주항공, 첨단무기, 전자·계측·통신기기(TEM)의 히트싱크, 핵융합로 냉각, 생물·생화학물질의 보관·운반 및 물리치료 의학기기 등의 첨단산업분야 등에 적용될 수 있다.As described above, the heat storage material composition according to the present invention has a remarkably excellent endotherm and heat storage amount, and is not toxic or flammable, chemically stable and non-corrosive, and satisfies all the requirements that the heat storage material has to meet. Energy consumption rationalization field such as heat storage, heat pump, heat storage (boiler, water heater, hot air heater, etc.), cold storage (ice heat storage cooling, low temperature PCM cold storage refrigeration and freezing, etc.) and cooling and heating processes in various industries. Maximization of energy utilization efficiency in connection with heat pipes and heat recovery systems, natural energy use fields such as heat energy conversion, accumulation and utilization using solar heat, living industry fields such as leisure vessels, fisheries, kitchen utensils, special clothing, agriculture, water and Food industry, such as production, storage and distribution of livestock products, heat sinks for automobiles, aerospace, advanced weapons, electronics, instrumentation and communication equipment (TEM), It can be applied to high-tech industries such as fusion reactor cooling, storage and transportation of biological and biochemical materials, and physiotherapy medical devices.

Claims (3)

이산화규소 (SiO2) 43-50 중량부, 산화알루미늄 (Al2O3) 8-10 중량부, 산화제이철 (Fe2O3) 0.05-0.2 중량부, 산화칼슘 (CaO) 0.1-0.4 중량부, 산화마그네슘 (MgO) 0.05-0.4 중량부, 산화칼륨 (K2O) 2-3 중량부, 산화나트륨 (Na2O) 3-5 중량부, 염화나트륨 (NaCl) 5-15 중량부 및 물 (H2O) 20-30 중량부를 함유하는 축열재 조성물.43-50 parts by weight of silicon dioxide (SiO 2 ), 8-10 parts by weight of aluminum oxide (Al 2 O 3 ), 0.05-0.2 parts by weight of ferric oxide (Fe 2 O 3 ), 0.1-0.4 parts by weight of calcium oxide (CaO) , 0.05-0.4 parts by weight of magnesium oxide (MgO), 2-3 parts by weight of potassium oxide (K 2 O), 3-5 parts by weight of sodium oxide (Na 2 O), 5-15 parts by weight of sodium chloride (NaCl) and water ( H 2 O) A heat storage material composition containing 20-30 parts by weight. 제1항에 있어서, 이산화규소 43.9 중량부, 산화알루미늄 9.3 중량부, 산화제이철 0.1 중량부, 산화칼슘 0.2 중량부, 산화마그네슘 0.1 중량부, 산화칼륨 2.3 중량부, 산화나트륨 4.1 중량부, 염화나트륨 10 중량부 및 물 30 중량부를 함유하는 축열재 조성물.According to claim 1, 43.9 parts by weight of silicon dioxide, 9.3 parts by weight of aluminum oxide, 0.1 parts by weight of ferric oxide, 0.2 parts by weight of calcium oxide, 0.1 parts by weight of magnesium oxide, 2.3 parts by weight of potassium oxide, 4.1 parts by weight of sodium oxide, sodium chloride 10 A heat storage material composition containing parts by weight and 30 parts by weight of water. 이산화규소, 산화알루미늄, 산화제이철, 산화칼슘, 산화마그네슘, 산화칼륨, 산화나트륨 및 염화나트륨의 혼합물을 물에 넣고 교반하여 슬러리화하는 단계를 포함하는, 제1항 또는 제2항에 따른 축열재 조성물의 제조방법.The heat storage material composition according to claim 1 or 2, comprising the step of slurrying a mixture of silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxide and sodium chloride in water and stirring. Manufacturing method.
KR1020060063128A 2006-07-05 2006-07-05 Composition for heat storage and preparation method thereof KR100614173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060063128A KR100614173B1 (en) 2006-07-05 2006-07-05 Composition for heat storage and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060063128A KR100614173B1 (en) 2006-07-05 2006-07-05 Composition for heat storage and preparation method thereof

Publications (1)

Publication Number Publication Date
KR100614173B1 true KR100614173B1 (en) 2006-08-22

Family

ID=37602850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060063128A KR100614173B1 (en) 2006-07-05 2006-07-05 Composition for heat storage and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100614173B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185088B1 (en) 2011-10-20 2012-09-21 최재혁 Heat storage material energy storage style
KR101666169B1 (en) * 2015-08-19 2016-10-13 롯데케미칼 주식회사 Latent heat storage material and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185088B1 (en) 2011-10-20 2012-09-21 최재혁 Heat storage material energy storage style
KR101666169B1 (en) * 2015-08-19 2016-10-13 롯데케미칼 주식회사 Latent heat storage material and method thereof

Similar Documents

Publication Publication Date Title
Lin et al. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
Salunkhe Investigations on latent heat storage materials for solar water and space heating applications
Elias et al. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage
Huang et al. Advances and applications of phase change materials (PCMs) and PCMs-based technologies
Fopah-Lele et al. A review on the use of SrBr2· 6H2O as a potential material for low temperature energy storage systems and building applications
Nagano et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat
Noël et al. Phase change materials
Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques
Ali et al. An overview: Applications of thermal energy storage using phase change materials
Sharma et al. Solar water heating system with phase change materials
Tang et al. A practical ranking system for evaluation of industry viable phase change materials for use in concrete
Tamme et al. Thermal energy storage
Jain et al. Thermal energy storage for solar energy
US10865335B2 (en) Quartz sand/graphite composite molten salt heat transfer and heat storage medium and preparation method thereof
KR100614173B1 (en) Composition for heat storage and preparation method thereof
CN100595253C (en) Phase-change heat-storing material and preparation thereof
CN101254447A (en) Method for producing gas hydrated compound and device
CN103374334A (en) Inorganic phase-change material (PCM-17) with phase-change temperature of 17 DEG C
Furbo Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle
CN101974313A (en) Phase change thermal storage material and manufacturing method thereof
CN102838968A (en) inorganic phase-change material (PCM-40) with phase transition temperature of 40DEG C
CN109096999A (en) 76-degree phase change energy storage material and preparation method thereof
CN103937462A (en) Composite low-temperature phase-change anticorrosive material and preparation method thereof
KaKac et al. Storage of solar thermal energy

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120809

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee