KR100609590B1 - 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법 - Google Patents

니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법 Download PDF

Info

Publication number
KR100609590B1
KR100609590B1 KR1020050020271A KR20050020271A KR100609590B1 KR 100609590 B1 KR100609590 B1 KR 100609590B1 KR 1020050020271 A KR1020050020271 A KR 1020050020271A KR 20050020271 A KR20050020271 A KR 20050020271A KR 100609590 B1 KR100609590 B1 KR 100609590B1
Authority
KR
South Korea
Prior art keywords
corrosion
stress corrosion
steam generator
corrosion cracking
secondary side
Prior art date
Application number
KR1020050020271A
Other languages
English (en)
Inventor
이용선
김홍표
김정수
Original Assignee
한국원자력연구소
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구소, 한국수력원자력 주식회사 filed Critical 한국원자력연구소
Priority to KR1020050020271A priority Critical patent/KR100609590B1/ko
Priority to US11/283,247 priority patent/US20060215804A1/en
Application granted granted Critical
Publication of KR100609590B1 publication Critical patent/KR100609590B1/ko
Priority to US12/212,734 priority patent/US20090010377A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/182Sulfur, boron or silicon containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

본 발명은 니켈보라이드(NiB)를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제제 및 억제 방법에 관한 것이다.
보다 상세하게는, 본 발명의 니켈보라이드는 고염기성 조건에서 기준용액보다 원자력발전소 증기발생기 전열관을 모사한 시험판의 응력부식균열의 발생을 감소시키며, 부식전류밀도 및 산화피막 두께를 감소시켜 부식저항성을 증가시키므로 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제하는 데 효과적으로 이용될 수 있다.
니켈보라이드, 부식, 응력부식균열

Description

니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제제 및 억제 방법 { An Inhibitor of the Corrosion and Stress Corrosion Cracking Containing Nickel Boride(NiB) in the Secondary Side of Steam Generator Tubes in Nuclear Power Plants and Inhibiting Method Using the Same }
도 1은 분극곡선에서 얻어진 부식전류밀도에 미치는 니켈보라이드의 부식억제 효과를 나타낸 도이다.
도 2는 기준용액 암모니아(pH 9.5) 용액과 세륨보라이드, 니켈보라이드를 각각 첨가한 용액에서 저변형율인장시험(SSRT) 시험 후 시험판 표면의 산화피막 두께를 나타낸 도이다.
도 3은 기준용액 40% 수산화나트륨 용액과 세륨보라이드, 니켈보라이드를 각각 첨가한 용액에서 저변형율인장시험(SSRT) 시험 후 시험판 옆면의 주사전자현미경(SEM) 사진을 나타낸 도이다.
도 4는 기준용액 암모니아(pH 9.5) 용액과 세륨보라이드, 니켈보라이드를 각각 첨가한 용액에서 저변형율인장시험(SSRT) 시험 후 시험판 옆면의 주사전자현미경(SEM) 사진을 나타낸 도이다.
본 발명은 니켈보라이드(NiB)를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제하는 방법 및 이러한 목적 하에 2차 급수에 공급되는 부식 억제제에 관한 것이다.
현재 전세계적으로 가동되고 있는 상용 원자로는 미국에서 개발한 가압경수로와 비등경수로가 있으며, 영국에서 개발한 고온가스 냉각로, 캐나다에서 개발한 가압중수로 등 크게 4종류로 나눌 수 있다. 우리나라는 월성원자력발전소를 제외한 모든 원자력발전소가 가압경수형으로, 가압경수형 원자로(Pressurized Water Reactor: PWR)는 우라늄-235의 함유율이 2∼5%정도 되는 저농축 우라늄을 연료로 사용하고, 냉각재와 감속재로는 물(경수)을 사용한다. 원자로계통을 약 150 기압으로 가압함으로써 원자로 내에서 물이 끓지 못하도록 하고 있으며, 고온으로 가열된 물은 증기발생기로 보내져 2차측의 물과 열교환을 통해 증기로 만들어진다. 열교환을 거친 1차측의 물은 다시 원자로내로 순환되어 가열된 후 증기발생기로 보내지는 과정을 반복한다.
상기의 가압경수형 원자력발전소에서 종종 발생되는 안전사고 중 하나가 증기발생기 전열관 누출이다. 증기발생기에서 전열관 누출의 원인은 2개 이상이 있는 것으로 사료된다. 이들 누출의 한 원인은 관의 두께가 얇아지는 것이다. 전열관을 와 전류(渦電流)를 검사한 결과 관 판에 축적된 철 산화물과 구리 혼합물로 이루어진 슬러지의 양이 많은 관 판 부근에서 관의 두께가 얇아짐이 발견되었다. 슬러지의 축적양은 슬러지에 있는 자철광에 민감한 저주파 신호의 와전류 테스트에 의해 추측할 수 있다. 슬러지 양과 관벽의 얇아지는 위치 사이의 상호 관계는 슬러지 침전물이 전열관 벽에 인산액이나 다른 부식제(腐蝕劑)의 농축처를 제공하여 결과적으로 관의 두께가 얇아지는 것이다. 이러한 슬러지를 제거하기 위한 한 공지된 방법은 슬러지 랜스(lance)-흡입 방법으로 일컬어진다(대한민국 공개특허 제1981-0000034호).
전열관 누출의 다른 원인은 전열관의 공급수 측의 화학적 환경에 관련되는 것으로 생각된다. 누출이 일어나는 가동 증기발생기에서 취한 전열관 샘플의 분석 결과 이들 누출이 입자 내부의 부식으로부터의 관의 결함에 의한 것으로 나타났다. 가동 증기발생기에서 추출한 전열관 재료의 균열 부근에서 발견된 높은 부식성 물질의 양과 제어된 실험실 조건하에서 부식에 의해 발생한 이들 균열과 부식성 물질의 유사성이 입자 내의 부식(입계 부식)의 원인으로 인식되며 따라서 전열관 균열의 원인이 된다.
때문에 전열관 균열에 있어 전열관 재료가 중요한 인자가 되며, 현재 주로 Ni기를 포함하는 인코넬 600 합금(alloy)를 원자력발전소 증기발생기 전열관의 재료로 쓰고 있다. 인코넬 600 합금(alloy)은 기계적 성질, 부식 저항성 등이 뛰어나, 가압경수로형 원자력발전소 증기발생기 전열관 재료로 사용되어 왔으나, 증기발생기 1차측과 2차측 고온수, 고염기 환경 하에서 응력부식균열(stress corrosion cracking)에 취약하여 염기성 조건에서 입계 부식(intergranula corrosion) 및 응력부식균열(stress corrosion cracking)이 빈번히 발생하고 있으며, 특히 현재 전세계적으로 가동 중인 가압경수로형 원자력발전소 증기발생기 2차측 전열관 재료에서는 더욱 그러하다.
상기에서 입계 부식(intergranular corrosion)이란 다음을 의미한다. 오스테나이트계 스텐레스강을 500∼800℃로 가열시키면 결정입계에 탄화물(Cr23C6)가 생성하고 인접부분의 크롬(Cr)량은 감소하여 크롬 결핍증(Cr depleted area)이 형성되는데, 이러한 상태를 만드는 것을 예민화 처리(Sensitization treatment)라 한다. 이렇게 처리된 강을 산성 용액중에 침지하면 크롬 결핍층이 현저히 부식되어 떨어져 나가는데, 이러한 현상을 입계 부식이라 한다.
상기의 응력부식균열(stress corrosion cracking)은 인장 응력 하에 있는 금속재료가 재료와 부식 환경이 특징적인 조합 하에서 취성적으로 파괴되는 현상으로 재료, 환경, 응력 3 가지 조건이 특정조건을 만족하는 경우에만 발생한다. 일반적으로 내식성이 우수한 재료는 표면에 부동태 막이 형성되어 있지만 그 피막이 외적 요인에 의해 국부적으로 파괴되어 공식(pitting) 또는 응력부식균열의 기점으로 된다. 국부적으로 응력 집중이 증대되어 내부의 용액은 응력부식균열 전파에 기여하여 균열이 진전하여 간다. 이처럼 피막의 생성과 파괴가 어떠한 조건하에서만 생겨 균열이 진행되고, 표면 피막의 보호성이 불충분하면 전문부식으로 되어 응력부식 균열은 발생하지 않는다. 따라서 응력부식균열은 내식성이 좋은 재료에만 발생한다. 어떠한 환경에서 균열저항성이 큰 재료라도 다른 환경에서는 응력부식균열이 발생 할 가능성이 충분히 있다. 즉, 어떠한 재료라도 응력부식균열을 일으킬 수 있는 환경이 존재한다.
이러한 증기발생기 전열관의 입계 부식 및 응력부식균열의 발생은 1차측 냉각수의 유출 사고, 발전소의 가동 중지를 일으킬 뿐만 아니라 파손된 전열관의 보수, 증기발생기 자체의 교체 등의 직접적인 요인이 되기 때문에, 그로 인한 경제적 손실이 적지 않다.
따라서, 원자력발전소 증기발생기 전열관의 부식 및 응력부식균열로 인한 안전사고 및 손실을 줄이기 위하여 전열관에 발생하는 결함을 사전에 예측할 수 있는 시스템을 개발하거나, 증기발생기 2차측에서 냉각수가 통과하는 각 부품들의 다양한 재료에서 발생하는 열화현상(deterioration)들을 줄이기 위하여 대체 합금의 개발, 적절한 수화학 처리(2차측 수처리) 및 증기발생기 가공 공정의 개선 등의 연구가 수행되어왔다. 특히, 2차측 부식 및 응력부식균열을 방지할 목적으로 부식 억제제의 개발 및 적용에 관한 연구가 최근 활발히 진행되고 있다.
예를 들면, 대체 개발된 합금으로 인코넬 690 합금이 있다. 인코넬 690 합금은 기존의 인코넬 600합금 보다 고온조건에선 건전성은 강하나 열전달율이 떨어져 같은 온도에서 보다 많은 열전달 면적을 필요 하게 되는 단점이 있다. 기존의 수처리 방법으로는 2차측 냉각수의 pH와 용존산소의 농도를 적정선으로 유지하기 위하여 암모니아, 하이드라이진(일본 공개특허 제61-149501호) 등을 주입하는 방법이 있다. 또한, 현재 가동 중인 여러 원전에서는 증기발생기 전열관의 2차측 응력부식 균열을 억제하기 위해 2차 계통 급수에 부식 억제제로 붕산을 첨가하여 수처리를 하고 있으나, 그럼에도 불구하고 응력부식균열이 계속 발생하고 있는 실정이다.
최근에는 부식 억제제로 티타늄 산화물을 첨가하여 고온 염기성 환경에서 응력부식균열을 억제하는 방법이 보고된 바 있고, 실제 현장적용 경험을 가지고 있으나 원자력발전소 현장에서 억제성능이 있는지는 정량적으로 확인되지 않았다. 또한, 증기발생기 2차측에 포함된 납산화물, 납염화물, 납황화물과 같은 납성분이 입계 부식 및 응력부식균열을 가속시키는 사례가 증가하고 있으나 이를 대처하기 위한 부식 억제제는 전혀 개발되지 않고 있다. 최근에는 응력부식균열에 대한 새로운 억제제로서 세륨 보라이드(CeB6)와 란타늄 보라이드(LaB6)를 개발하였으며, 2차측 냉각수 중에 첨가하여 전열관의 표면을 부식 환경으로부터 강력하게 보호하는 크롬 농축 피막을 형성시킴으로써 응력부식 균열을 획기적으로 억제할 수 있다고 밝혔다. 이 기술을 적용할 경우, 억제처리를 하지 않았을 때 보다 10배 이상, 외국에서 개발된 타이타늄 산화물(TiO2)을 첨가하는 경우보다 5배 이상의 응력부식균열 억제 효과가 있는 것으로 나타났다(대한민국 등록특허 제415265호). 그러나 세륨보라이드와 란타늄 보라이드는 현장에 적용된 바 없어 현장 적용 시 억제 성능을 보장할 추가적인 실험 또는 현장적용 결과가 필요하다.
이에 본 발명자들은 현장에 적용할 수 있고 원자력발전소 증기발생기 2차측의 부식 및 응력부식균열을 효과적으로 억제할 수 있는 억제제와 방법을 연구하던 중 니켈 보라이드가 부식전류밀도 및 산화피막두께를 감소시켜 부식저항성을 증가시키며, 증기발생기 전열관을 모사한 시험판의 응력부식균열의 발생을 감소시키므로 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제하는 데 효과적으로 이용될 수 있음을 밝힘으로써 본 발명을 완성하였다.
본 발명의 목적은 니켈보라이드(NiB)를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제제를 제공하는 것이다.
또한, 본 발명의 목적은 2차측 급수 계통에 니켈보라이드를 부식 및 응력부식균열 억제제로 공급하는 단계를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제하는 방법을 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명은 니켈보라이드(NiB)를 포함하는 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제제를 제공한다.
보다 바람직하게는, 상기 부식 및 응력부식균열 억제제의 2차측 급수에의 사용량이 10 ppb~2000 ppm인 것을 특징으로 하는 부식 및 응력부식균열 억제제를 제공한다.
본 발명의 니켈보라이드가 부식억제 효과가 있는지를 측정하기 위하여 통상적으로 금속에 대한 부식실험을 실시할 때 사용하는 시험판을 제조한다.
시험판 원 재료의 일부를 절단 채취하며, 시험판의 채취방향 및 위치는 실험에 따라 다를 수 있다. 본 발명에 따른 시험판의 원 재료는 원자력발전소 증기발생기 전열관의 재료로 쓰이는 금속으로 하며, 가장 바람직하게는 600 합금으로 한다. 시험판의 크기는 보통 피검면을 10~25 mm의 각 또는 환형으로 하여 시험판 높이가 단면 크기의 반 정도가 적당하며, 본 발명에서는 인장부의 길이 25 mm, 폭 4 mm, 두께 1.07 mm의 크기로 제조한다. 절단한 시험판은 다루기 쉽도록 시험판 주위에 폴리머 등의 재료로 단단하게 고정시키는 마운팅을 할 수 있다. 피검면은 거칠게 긁힌 자국이 없는 완전한 평면이 되도록 연마하여 제조한다.
본 발명의 니켈보라이드는 전열관 재료 표면의 산화피막의 두께를 감소시킨다. 특히, 고염기 조건이나 정상 운전의 2차측 수화학 조건을 모사한 고온, 염기 조건에서 니켈보라이드를 첨가하면 이를 첨가하지 않은 기준 용액에 비해 표면 산화 피막의 두께를 감소시켜 부식 저항성을 증가시킨다(도 1).
또한, 본 발명의 니켈보라이드는 전열관 재료 부식전류밀도(corrosion current density) 값을 감소시켜 부식 저항성을 증가시킨다. 특히, 고염기 조건이나 정상 운전의 2차측 수화학 조건을 모사한 고온, 염기 조건에서 니켈보라이드를 첨가하면 이를 첨가하지 않은 기준 용액에 비해 부식전류밀도 값을 감소시켜 이에 비례해 부식 속도를 감소시킨다(도 2).
또한, 본 발명의 니켈보라이드는 전열관 재료에 응력부식균열의 발생을 감소시킨다. 특히, 고염기 조건이나 정상 운전의 2차측 수화학 조건을 모사한 고온, 염기 조건에서 니켈보라이드를 첨가하면 이를 첨가하지 않은 기준 용액에 비해 응력부식균열의 발생이 현저히 감소한다(도 3, 4)
상기의 응력부식균열 발생 정도는 저변형율인장시험(SSRT)를 이용하여 측정하는데 이 때 변형 속도가 중요하게 작용한다. 변형 속도가 너무 빠르면 균열이 진행되지 않으므로 적절한 변형 속도를 적용하며, 균열의 평가는 인장 시험판을 일정한 변형 속도로 시험하여 응력-변형곡선을 구하여 변형량의 비, 최대 응력의 비, 응력부식균열 파멸율 등을 구할 수 있다.
본 발명의 니켈보라이드는 10 ppb~2000 ppm의 농도에서 상기의 효과들을 나타낸다. 상기의 니켈보라이드 사용량은 종래에 개발된 세륨보라이드 및 란타늄보라이드를 포함하는 부식억제제의 적정 사용량인 50 ppb~5000 ppm보다 적은 양으로도 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제할 수 있다.
또한, 세륨보라이드나 란타늄보라이드는 수산화나트륨(NaOH) 조건 하에서만 부식억제 효과가 입증되어 실제 가동 중인 원자력발전소 증기발생기에서의 사용 가능 여부가 확실하지 않지만 니켈보라이드는 수산화나트륨 조건 뿐 아니라 원자력발전소 정상 수화학 조건하에서의 부식억제 효과를 입증하였기 때문에 실제 원자력발전소 현장에 즉시 적용할 수 있다.
따라서, 본 발명의 니켈보라이드는 전열관 재료의 부식 및 부식응력균열에 미치는 고염기성의 2차측 균열 발생 영역에서 전열관 재료의 표면 산화 피막의 두께를 감소시키고 부식전류밀도를 감소시켜 부식 저항성을 증가시키고, 응력부식균열 발생을 억제시키므로 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제제로 사용할 수 있다.
또한, 본 발명은 원자력발전소 증기발생기 전열관의 2차측의 부식 및 응력부식균열을 억제하는 방법에 있어서, 상기 방법이 2차측 급수 계통에 니켈보라이드를 부식 및 응력부식균열 억제제로 공급하는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다.
상기에서 부식 및 응력부식균열 억제제의 2차측 급수에의 사용량이 10 ppb~2000 ppm인 것을 특징으로 하는 부식 및 응력부식균열 억제 방법을 제공한다.
또한, 상기 급수의 pH가 상온에서 7.0 이상이고, 더욱 바람직하게는 9.0~10.0인 것을 특징으로 하는 부식 및 응력부식균열 억제 방법을 제공한다.
본 발명의 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열 억제 방법은 2차측 급수 처리의 한 방법으로서, 니켈보라이드를 급수에 주입하는 단계를 포함하는 것을 특징으로 하고, 전열관의 부식저항성을 향상시킴으로써 결과적으로 부식과 응력부식균열에 대한 저항성을 향상시킨다. 상기에서 급수는 원자로 안에서 발생한 열을 증기발생기를 통해 전달 받아 터빈으로 동력을 전달하는 냉각수를 의미한다.
보다 상세하게, 상기 부식 및 응력부식균열 억제 방법은 상온에서 pH 7.0 이상, 보다 바람직하게는 pH 9.0~10.0의 2차측 냉각수에 10 ppb~2000 ppm 농도의 니켈보라이드를 주입하는 단계를 포함하는 것을 특징으로 하며, 원자력발전소 증기발생기 2차측의 조건을 모사한 고염기 조건에서 전열관 재료의 부식을 현저히 감소시키 고, 그에 따라 응력부식균열에 대한 저항성이 높아진다.
따라서, 원자력발전소 증기발생기 2차측이 상온에서 pH 9.5 정도로 유지되며, 응력부식균열이 집중적으로 발생하는 전열관과 지지구조물사이의 틈새는 그보다 더 높은 pH 값을 갖는 것으로 알려져 있기 때문에, 본 발명의 상기 부식 및 응력부식균열 억제 방법은 니켈보라이드의 첨가로 원자력발전소 2차측 전열관의 부식과 응력부식균열 저항성을 현저히 증가시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 전열관 재료의 부식 및 부식응력균열에 미치는 니켈보라이드의 효과
전열관 재료의 부식 및 부식응력균열에 미치는 니켈보라이드의 효과를 측정하기 위하여 영광 3호기 및 4호기에 설치된 증기발생기 전열관과 같은 600 합금으로 만들어진 증기발생기 전열관으로부터 인장부의 길이 25 mm, 폭 4 mm, 두께 1.07 mm의 시험판을 가공하여 시험에 이용하였다.
또한, 2차측 균열 발생 영역에서 가장 혹독한 환경으로 생각되는 40% 수산화나트륨(NaOH) 용액과 정상 운전의 2차측 수화학 조건을 모사한 상온, pH 9.5의 암모니아(NH3) 용액 중에서 평가하였다.
1-1. 분극 측정
부식특성평가를 위하여 시험판을 이용하여 40% 수산화나트륨 용액 조건에서 분극측정을 실시하였다. 분극측정은 Ni-80으로 만든 1 리터 용량의 비순환형 (static) 고압증기멸균기(autoclave)에서 실시되었다. 실험에 사용된 기준 전극 (reference electrode)은 Ag/AgCl (포화 KCl)였고, 고압증기멸균기 자체를 상대전극 (counter electrode)로 사용하였다. 315°C 40% 수산화나트륨 용액을 기준 용액으로 하였고 측정 전, 24시간 동안 고순도 질소로 탈기를 실시하여 용존산소를 제거하였다. 분극측정에는 EG&G 사 일정전위기(potentiostat, Model 273A)를 사용하였고, -1.5 V (과전류에 대비(vs. OCP), 부식전위)에서 30분간 처리하여, 공기 중 생성된 표면 산화피막을 제거하였다. 측정은 -1.5 V (과전류 대비(vs. OCP))에서 +1.5 V (과전류 대비(vs. OCP))까지 1 mV/sec의 속도로 실시하였다.
분극측정에서 얻어진 분극곡선을 4점법(Four point method)를 이용하여 분석하였다. 4점법은 잔코우스키(Jankowski)와 주크니위츠(Juchniewicz)에 의해 제안된 방법으로서 부식전위 근처에서 얻어진 전류밀도값들을 이용하여 부식전류밀도를 결정하는 방법이다. 이 분석에서 얻어진 자연전극전위(natural potential, open circuit potential)에서의 전류밀도값을 도 1에 나타내었다. 2g/ℓ의 세륨보라이드와 2g/ℓ의 니켈보라이드를 각각 첨가하였을 때, 기준용액에서보다 부식전류밀도가 현저히 감소하였으며, 니켈보라이드 첨가시, 세륨보라이드 첨가 용액에서보다 약 2배 부식전류밀도가 감소하여 부식저항성이 약 2배 증가하였음을 확인할 수 있 었다.
1-2. 산화피막 두께 측정
도 2에 pH 9.5의 암모니아(NH3) 용액 중에서 나타난 표면 산화 피막을 오제 분석법 (Auger electron microscopy)로 분석하여 얻어진 산화피막 두께를 나타내었다.
오제분석에는 PHI 680 오제 나노프로브(Auger nanoprobe)를 이용하였고, 1차 빔에너지는 5 kV, 전자전류는 15 - 20 nA였다. 두께 측정을 위하여 심도(Depth) 1-4 keV 아르곤 이온을 사용되었다. 분당 27 nm 정도의 속도로 표면을 깎아가면서 깊이 방향의 조성을 측정하였고 산소농도를 기준으로 표면 산화막 두께를 추정하였다.
2g/ℓ의 니켈보라이드 첨가시, 기준용액(NaOH)이나 2g/ℓ의 세륨보라이드 첨가시보다 산화피막두께가 현저히 감소하는 것을 볼 수 있다. 이는 암모니아 용액에서도 니켈보라이드 첨가에 의해 전열관 재료의 부식저항성이 증가하는 것을 의미한다.
1-3. 저변형율인장시험(Slow Strain Rate Test, SSRT)
응력부식균열 평가시험은 625 합금으로 제작된 약 1.8 ℓ 비순환형(static) 고압증기멸균기(autoclave, 미국 CorTest사)에서 실시하였다. 시험기의 최대 하중은 2722 kgf (6000 lbf), 인장 속도 범위는 3.53 × 10-7 ~ 2.64 ×10-3 mm/s 이다. 응력부식균열 발생 정도를 측정하기 위해 온도는 315℃, 변형율 속도는 수산화나트륨 용액과 암모니아 용액에서 각각 1×10-6과 3×10-7(s-1)로 하여 저변형율인장시험을 실시하였다. 수산화나트륨 용액은 시험 전 용존 산소를 제거하기 위하여 24시간 동안 질소로 탈기하였고, 암모니아 용액은 응력부식균열의 가속을 위하여 탈기하지 않고 시험하였다. 실제 발전소 상황을 모사하기 위하여 두 가지 용액 조건 모두에서 시험판에 전위를 가하지 않고 부식전위(corrosion potential)에서 시험을 수행하였다.
도 3은 315℃, 40% 수산화나트륨 용액 중에서 저변형율인장시험 후 시험판의 옆면을 주사전자현미경(SEM)으로 촬영한 사진으로, 기준 용액(가)에서 상당량의 입계응력부식에 의한 균열이 보이는 반면, 2g/ℓ의 세륨보라이드(나)와 2g/ℓ의 니켈보라이드(다)를 첨가한 40% 수산화나트륨 용액에서는 입계응력부식균열이 발생하지 않은 것을 보여주었다. 또한, 세륨보라이드보다 니켈보라이드를 첨가한 조건에서 입계응력부식균열이 덜 발생한 것으로 나타났다.
또한, 도 4는 315℃, 암모니아용액 중 (pH 9.5) 저변형율인장시험 후 시험판의 옆면을 주사전자현미경(SEM)으로 촬영한 사진으로, (가)는 암모니아 용액에서 입계응력부식균열이 발생한 것을 보여주고 있으며, (나)와 (다)에서 각각 2g/ℓ의 세륨보라이드와 2g/ℓ의 니켈보라이드 첨가시 응력부식균열이 억제되는 것을 보여주고 있다. 또한, 40% 수산화나트륨 용액 조건에서와 마찬가지로 세륨보라이드보다 니켈보라이드를 첨가했을 때 입계응력부식균열이 덜 발생한 것으로 나타났다.
따라서, 증기발생기 가동의 고염기성 조건에서 니켈보라이드를 첨가했을 때 응력부식균열이 억제됨을 확인하였다.
상기에서 살펴본 바와 같이, 본 발명의 고온, 고염기성 조건에서 분극측정 및 산화피막 두께 측정을 통해 니켈보라이드(NiB)를 첨가했을 때 전열관 재료의 부식저항성을 증가시킴을 확인하였고, 저변형율인장시험을 통해 니켈보라이드가 시험판에 응력부식균열의 발생을 감소시킴을 확인하였다. 따라서, 상온에서 pH 9.5 정도로 유지되는 원자력발전소 증기발생기 2차측과 더 높은 pH 값을 갖는 것으로 알려진 응력부식균열이 집중적으로 발생하는 전열관과 지지구조물 사이의 틈새의 조건에서 니켈보라이드는 원자력발전소 2차측 전열관의 부식과 응력부식균열 저항성을 현저히 증가시키는 부식 및 응력부식균열 억제제로 사용될 수 있다.

Claims (6)

  1. 원자력발전소 증기발생기 전열관 2차측의 부식 및 응력부식균열을 억제하기 위해 2차측 급수에 공급되는 부식 억제제에 있어서, 상기 억제제가 니켈보라이드를 포함하는 것을 특징으로 하는 부식 및 응력부식균열 억제제.
  2. 제 1항에 있어서, 상기 부식 및 응력부식균열 억제제의 2차측 급수에의 사용량이 10 ppb~2000 ppm인 것을 특징으로 하는 부식 및 응력부식균열 억제제.
  3. 원자력발전소 증기발생기 전열관의 2차측의 부식 및 응력부식균열을 억제하는 방법에 있어서, 상기 방법이 2차측 급수 계통에 니켈보라이드를 부식 및 응력부식균열 억제제로 공급하는 단계를 포함하는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서, 상기 부식 및 응력부식균열 억제제의 2차측 급수에의 사용량이 10 ppb~2000 ppm인 것을 특징으로 하는 방법.
  5. 제 3항에 있어서, 상기 급수의 pH가 상온에서 7.0 이상인 것을 특징으로 하는 방법.
  6. 제 3항에 있어서, 상기 급수의 pH가 상온에서 9.0~10.0인 것을 특징으로 하는 방법.
KR1020050020271A 2005-03-10 2005-03-10 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법 KR100609590B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020050020271A KR100609590B1 (ko) 2005-03-10 2005-03-10 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법
US11/283,247 US20060215804A1 (en) 2005-03-10 2005-11-17 Inhibitor of corrosion and stress corrosion cracking containing nickel boride (NiB) in the secondary side of steam generator tubes in a nuclear power plant and inhibiting method using the same
US12/212,734 US20090010377A1 (en) 2005-03-10 2008-09-18 INHIBITOR OF CORROSION AND STRESS CORROSION CRACKING CONTAINING NICKEL BORIDE (NiB) IN THE SECONDARY SIDE OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT AND INHIBITING METHOD USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050020271A KR100609590B1 (ko) 2005-03-10 2005-03-10 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법

Publications (1)

Publication Number Publication Date
KR100609590B1 true KR100609590B1 (ko) 2006-08-08

Family

ID=37035169

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050020271A KR100609590B1 (ko) 2005-03-10 2005-03-10 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법

Country Status (2)

Country Link
US (2) US20060215804A1 (ko)
KR (1) KR100609590B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834290B1 (ko) * 2006-10-19 2008-05-30 한국원자력연구원 니켈보라이드를 포함하는 원자력발전소 증기발생기전열관의 2차측 납유기 응력부식균열 억제제 및 이의억제방법
WO2010065092A3 (en) * 2008-12-01 2010-09-02 Electric Power Research Institute, Inc. Crystal habit modifiers for nuclear power water chemistry control of fuel deposits and steam generator crud
US8075957B2 (en) 2008-04-08 2011-12-13 Korea Atomic Energy Research Institute Method of preventing corrosion degradation using Ni or Ni-alloy plating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678510A (en) * 1985-12-24 1987-07-07 General Motors Corporation Wear resistant iron powder article
US4886637A (en) * 1989-04-17 1989-12-12 General Motors Corporation Presinter treatment for iron powder article formed with boride additive
DE4003038C1 (ko) * 1990-02-02 1990-08-09 Mtu Muenchen Gmbh
US5231959A (en) * 1992-12-16 1993-08-03 Moog Controls, Inc. Intake or exhaust valve actuator
US5673297A (en) * 1994-04-08 1997-09-30 General Electric Company Method of mitigating stress corrosion cracking of metals in high-temperature water by control of crack tip pH
US5637297A (en) * 1994-12-08 1997-06-10 Shiseido Co., Ltd. Reducing agents for permanent waving of hair
US6714618B1 (en) * 1997-11-28 2004-03-30 General Electric Company Temperature-based method for controlling the amount of metal applied to metal oxide surfaces to reduce corrosion and stress corrosion cracking
US7262240B1 (en) * 1998-12-22 2007-08-28 Kennametal Inc. Process for making wear-resistant coatings
US6793883B2 (en) * 2001-07-05 2004-09-21 General Electric Company Application of catalytic nanoparticles to high temperature water systems to reduce stress corrosion cracking
US7264770B2 (en) * 2005-05-02 2007-09-04 General Electric Company Mitigation of stress corrosion cracking of structural materials exposed to a high temperature water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834290B1 (ko) * 2006-10-19 2008-05-30 한국원자력연구원 니켈보라이드를 포함하는 원자력발전소 증기발생기전열관의 2차측 납유기 응력부식균열 억제제 및 이의억제방법
US7782994B2 (en) 2006-10-19 2010-08-24 Korea Atomic Energy Research Institute Inhibitor of lead-induced stress corrosion cracking comprising nickel boride in secondary side of steam generator tubes in nuclear power plants and inhibition method using the same
US8075957B2 (en) 2008-04-08 2011-12-13 Korea Atomic Energy Research Institute Method of preventing corrosion degradation using Ni or Ni-alloy plating
WO2010065092A3 (en) * 2008-12-01 2010-09-02 Electric Power Research Institute, Inc. Crystal habit modifiers for nuclear power water chemistry control of fuel deposits and steam generator crud
US8433030B2 (en) 2008-12-01 2013-04-30 Electric Power Research Institute, Inc. Crystal habit modifiers for nuclear power water chemistry control of fuel deposits and steam generator crud

Also Published As

Publication number Publication date
US20060215804A1 (en) 2006-09-28
US20090010377A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
Parkins Environment sensitive fracture and its prevention
Rajaguru et al. Effect of machined surface integrity on the stress corrosion cracking behaviour of super duplex stainless steel
Scenini et al. Stress corrosion cracking of sensitized type 304 stainless steel in high-temperature water with anionic impurities contamination
KR100609590B1 (ko) 니켈보라이드를 포함하는 원자력발전소 증기발생기 전열관2차측의 부식 및 응력부식균열 억제제 및 억제 방법
Garcia et al. Stress corrosion cracking behavior of cold-worked and sensitized type 304 stainless steel using the slow strain rate test
Espinoza-Medina et al. Predicting susceptibility to intergranular stress corrosion cracking of Alloy 690
US7782994B2 (en) Inhibitor of lead-induced stress corrosion cracking comprising nickel boride in secondary side of steam generator tubes in nuclear power plants and inhibition method using the same
Chalfoun et al. Sulfide Stress Cracking of Low Alloy Steels for Oil and Gas Production: Revisiting the Effect of Ni as an Alloying Element
Kim et al. Investigation of oxide property on Alloy 600 with the immersion time in a high-temperature leaded alkaline solution
Hwang et al. Degradation of alloy 600 steam generator tubes in operating pressurized water reactor nuclear power plants
Szklarska-Smialowska et al. Comparative studies of SCC in two austenitic stainless steels and alloy 600 on exposure to lithiated water at 350 C
Kim et al. Stress corrosion cracking of alloy 600 in an aqueous solution containing lead oxide
De Bouvier et al. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen
Kim et al. Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature
Antunes et al. Stress corrosion cracking of structural nuclear materials: Influencing factors and materials selection
Saji A Study on Root Cause of Flow Accelerated Corrosion or Erosion-Corrosion Phenomena in PWR/VVER Plants
Lucan et al. The Synergistic Impurities Effect on the Candu Steam Generator Corrosion
Newman et al. Evaluation of SCC test methods for Inconel 600 in low-temperature aqueous solutions
Kawamura et al. Inhibitory effect of boric acid on intergranular attack and stress corrosion cracking of mill-annealed alloy 600 in high-temperature water
Kirilina et al. Water Treatment Upgrade of Steam Drum Boilers Based on a VTIAMIN Reagent
Zhou et al. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water
Bruemmer et al. Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors, Parts 1 and 2
Lu et al. Hydrogen-Enhanced Stress Corrosion Cracking in Stainless Steel
Xu Failure Analysis for Evaporator Fin-Tubes of HRSG in CCGT
Zuo et al. Effects of stress on cracking velocity and critical pH value inside stress corrosion cracks

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 13