KR100609000B1 - An apparatus and the method for hydrogen and methane production by using waste activated sludge - Google Patents

An apparatus and the method for hydrogen and methane production by using waste activated sludge Download PDF

Info

Publication number
KR100609000B1
KR100609000B1 KR1020050007194A KR20050007194A KR100609000B1 KR 100609000 B1 KR100609000 B1 KR 100609000B1 KR 1020050007194 A KR1020050007194 A KR 1020050007194A KR 20050007194 A KR20050007194 A KR 20050007194A KR 100609000 B1 KR100609000 B1 KR 100609000B1
Authority
KR
South Korea
Prior art keywords
hydrogen
activated sludge
methane
waste activated
reactor
Prior art date
Application number
KR1020050007194A
Other languages
Korean (ko)
Other versions
KR20060086202A (en
Inventor
김동건
박대원
김지성
상병인
박호일
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020050007194A priority Critical patent/KR100609000B1/en
Publication of KR20060086202A publication Critical patent/KR20060086202A/en
Application granted granted Critical
Publication of KR100609000B1 publication Critical patent/KR100609000B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/04Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/04Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing
    • E05C17/12Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of a single rod
    • E05C17/24Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of a single rod pivoted at one end, and with the other end running along a guide member
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/04Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing
    • E05C17/32Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means with a movable bar or equivalent member extending between frame and wing consisting of two or more pivoted rods
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F11/00Man-operated mechanisms for operating wings, including those which also operate the fastening
    • E05F11/02Man-operated mechanisms for operating wings, including those which also operate the fastening for wings in general, e.g. fanlights
    • E05F11/32Man-operated mechanisms for operating wings, including those which also operate the fastening for wings in general, e.g. fanlights with rotary bars guided in the frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법에 관한 것으로서 더욱 상세하게는, 폐활성 슬러지를 전처리한 후, 수소 생성시에는 수소 생성균의 생육에 적합한 조건을 가하고, 메탄 생성시에는 메탄 생성균의 생육에 적합한 조건을 가하여 폐활성 슬러지의 처리를 극대화하면서 수소 및 메탄을 생성할 수 있는 것을 특징으로 한다. 본 발명에 따르면, 유기 폐기물인 폐활성 슬러지를 이용하여 수소 및 메탄을 생성함으로써, 유기 폐기물 처리 및 처분 문제를 해결함과 동시에 생물학적 방법으로 대체 에너지인 수소 및 메탄을 효율적으로 생산하는 효과가 있다. The present invention relates to an apparatus for producing hydrogen and methane using waste activated sludge, and more particularly, to pre-treatment of waste activated sludge, and upon the generation of hydrogen, conditions suitable for the growth of hydrogen producing bacteria are added. It is characterized by being able to produce hydrogen and methane while maximizing the treatment of waste activated sludge by adding conditions suitable for the growth of methane producing bacteria. According to the present invention, by generating hydrogen and methane using waste activated sludge which is an organic waste, it is possible to solve the problem of disposal and disposal of organic waste and to efficiently produce hydrogen and methane, which are alternative energy, by a biological method.

폐활성 슬러지, 수소, 메탄, 전처리, pH 조절Waste activated sludge, hydrogen, methane, pretreatment, pH control

Description

폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법{An apparatus and the method for hydrogen and methane production by using waste activated sludge} An apparatus and the method for hydrogen and methane production by using waste activated sludge}             

도 1은 본 발명에 따른 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법의 처리 공정을 개략적으로 나타낸 도면, 1 is a view schematically showing an apparatus for producing hydrogen and methane using waste activated sludge and a treatment process of the method according to the present invention;

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10: 전처리 반응조 20: 가수분해 반응조 10: pretreatment reactor 20: hydrolysis reactor

30: 수소생성 반응조 40: pH 조절을 위한 반응조 30: hydrogenation reactor 40: reactor for pH adjustment

50: 메탄생성 반응조  50: methane production reactor

11: 유입펌프 12: 반송펌프 11: inflow pump 12: return pump

13: 교반장치 14: 가열장치 13: stirring device 14: heating device

본 발명은 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법에 관한 것으로서 더욱 상세하게는, 폐활성 슬러지를 전처리한 후, 수소 생성시에는 수소 생성균의 생육에 적합한 조건을 가하고, 메탄 생성시에는 메탄 생성균의 생육에 적합한 조건을 가하여 폐활성 슬러지의 처리를 극대화하면서 수소 및 메탄을 생성할 수 있는 것을 특징으로 한다. The present invention relates to an apparatus for producing hydrogen and methane using waste activated sludge, and more particularly, to pre-treatment of waste activated sludge, and upon the generation of hydrogen, conditions suitable for the growth of hydrogen producing bacteria are added. It is characterized by being able to produce hydrogen and methane while maximizing the treatment of waste activated sludge by adding conditions suitable for the growth of methane producing bacteria.

최근 인구증가와 산업의 발달로 인하여 하수처리장이 수적으로 증가함과 함께 각 하수처리장에서 발생하는 폐기물인 폐활성 슬러지의 양도 매년 급격하게 증가하는 추세에 있다. 예컨대, 국내의 경우 2003년 말 기준으로, 하루에 약 6.210 톤의 폐활성 슬러지가 발생하고 있는 실정이다.Recently, with the increase of population and the development of industry, the sewage treatment plant has increased in number, and the amount of waste activated sludge, which is a waste generated in each sewage treatment plant, is increasing rapidly every year. For example, in Korea, as of the end of 2003, about 6.210 tons of waste activated sludge are generated per day.

도시의 하수처리장을 운전하는데 있어서 직면하는 가장 큰 문제 중 하나는 폐활성 슬러지의 처리 및 처분으로, 이에 대한 비용이 하수처리장 전체 운전비용의 약 50% 이상을 차지하고 있는 것으로 보고되고 있다(2003년 환경부 하수도통계).One of the biggest problems facing urban sewage treatment plants is the treatment and disposal of waste activated sludge, which is reported to account for more than 50% of the total operating cost of sewage treatment plants (2003, Ministry of Environment). Sewage statistics).

국내에서는 폐활성 슬러지의 최종 처리 및 처분을 대부분 육상매립 방법과 해양배출 방법에 의존하여 왔으나, 현재 육상매립이 전면적으로 금지되어 있는 상황이며, 아울러 런던협약 이후 국제적으로 해양배출 금지에 대한 규제가 점차 강화되고 있다. In Korea, most of the final treatment and disposal of waste activated sludge has been reliant on landfill and marine discharge methods, but landfilling is currently banned entirely. It is strengthening.

따라서, 폐활성 슬러지를 재활용하고자 하는 연구가 진행 중에 있다. 이러한 현실을 감안할 때 이제는 폐활성 슬러지를 폐기물로 간주하기 보다는 자원으로서 재이용이 가능한 상품으로 인식하고, 자원화와 더불어 효과적인 감량화를 위한 처리 및 처분기술의 개발이 시급한 실정이다.Therefore, research is underway to recycle waste activated sludge. Given this reality, it is now urgent to recognize waste activated sludge as a product that can be reused as a resource rather than as a waste, and to develop treatment and disposal technologies for effective reduction and reduction of resources.

한편, 수소 에너지는 연소하는 경우 온실 가스의 원인 물질인 이산화탄소를 배출하지 않아 청정하고, 재생 가능하며, 석유에 비해 높은 에너지 효율을 나타내므로, 기존의 주요 에너지원인 화석 연료를 대체할 수 있는 가능성이 있는 에너지로써 그 중요성이 인식되기 시작하였다. 수소 에너지는 최근 지구 온난화와 여러 가지 환경문제를 근본적으로 해결할 수 있는 청정에너지로 각광받고 있다. On the other hand, since hydrogen energy does not emit carbon dioxide, which is the source of greenhouse gases, when it is burned, it is clean, renewable, and shows higher energy efficiency than petroleum, so it is possible to replace fossil fuel, which is a major energy source. Its importance began to be recognized as energy. Hydrogen energy is recently spotlighted as clean energy that can fundamentally solve global warming and various environmental problems.

그런데, 수소를 생성하기 위하여 종래에 알려진 방법들로는, 나프타 개질을 통한 열분해, 물의 전기분해 등이 있는데, 이러한 방법들은 반응 물질을 화석 연료에서 얻거나, 운전 조건이 고온 · 고압이거나, 운전 비용이 과다한 단점이 있다. However, conventionally known methods for generating hydrogen include pyrolysis through naphtha reforming, electrolysis of water, etc. These methods obtain reactive materials from fossil fuels, high or high operating conditions, or excessive operating costs. There are disadvantages.

다른 수소 생성 방법으로서, 화석 연료, 바이오메스 및 화학적 공정 또는 생물학적 공정을 통해 수소를 생성할 수 있는데, 그 중에서도 생물학적 수소 생성 공정은 폐기물의 감량화와 함께 에너지의 생산이라는 점에서 매우 경제적이며 이상적인 방법이라 할 수 있다(Das D, Veziroglu T.N., J. Hydrogen Energy, 21, pp13-28, 2001). As another method of hydrogen generation, hydrogen can be produced through fossil fuels, biomass and chemical or biological processes, among which biological hydrogen production is a very economical and ideal method of producing energy with reduction of waste. (Das D, Veziroglu TN, J. Hydrogen Energy , 21 , pp 13-28, 2001).

상기와 같은 생물학적 수소 생성 공정으로 고농도의 폐수, 고형 폐기물, 당밀, 글루코스, 결정화된 셀룰로스 등과 같은 수중에 존재하는 유기물을 이용하여 수소를 생성하는 연구가 진행 중에 있다(Lay JJ, et al., Water res, 33(11), pp2579-2586, 1999). 특히, 오니 슬러지와 같은 폐기물을 유기원으로 이용하여 수소를 생성하는 혐기성 기술은 유기성 폐기물 처리/감량화 및 바이오 에너지의 회수율 향상은 물론, 미래의 에너지로 각광받는 수소 생성 기술을 확보할 수 있다는 측면에서 핵심적으로 개발되어야할 기술이다. 그러나, 오니 슬러지를 이용한 수소 생 성에 관하여 해외에서 몇 몇 연구가 진행되어 왔지만, 거의 대부분 회분식 등의 간단한 연구가 진행되고 있는 실정으로서, 처리 효율이나 운전상 어려움 등으로 결과는 거의 전무한 실정이다. As a biological hydrogen production process, research is being conducted to generate hydrogen using organic materials in water such as high concentrations of wastewater, solid waste, molasses, glucose, and crystallized cellulose (Lay JJ, et al., Water res , 33 (11), pp 2579-2586, 1999). In particular, anaerobic technology that generates hydrogen by using waste, such as sludge sludge, as an organic source, can improve the recovery rate of organic waste, improve the recovery rate of bioenergy, and secure hydrogen generation technology that is spotlighted as future energy. This is a key technology that needs to be developed. However, although several studies have been conducted overseas on the generation of hydrogen using sludge sludge, most of them are simple studies such as batch type, and the results are almost unknown due to treatment efficiency and operational difficulties.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 유기 폐기물 처리 및 처분 문제를 해결함과 동시에 생물학적 방법으로 대체 에너지인 수소 및 메탄을 안정적이고 지속적으로 생성할 수 있는 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the above problems, the present invention solves the problem of disposal and disposal of organic waste and at the same time provide a method capable of stably and continuously generating hydrogen and methane as alternative energy in a biological method. It aims to do it.

즉, 본 발명은 폐활성 슬러지를 수소 및 메탄 생성의 기질로 효과적으로 이용하기 위해 전처리하고, 수소 생성시에는 수소 생성균의 생육에 적합한 조건을 가하고, 메탄 생성시에는 메탄 생성균의 생육에 적합한 조건을 가하여 폐활성 슬러지의 처리를 극대화하면서 수소 및 메탄을 생성할 수 있는 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법을 제공하는 것을 목적으로 한다.
That is, the present invention is pre-treated to effectively use the waste activated sludge as a substrate for hydrogen and methane production, and when the hydrogen is generated, conditions suitable for the growth of hydrogen-producing bacteria are added, and conditions for the growth of methane-producing bacteria are added to the methane production It is an object of the present invention to provide an apparatus and method for producing hydrogen and methane using waste activated sludge which can generate hydrogen and methane while maximizing the treatment of waste activated sludge.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 의한 폐활성 슬러지를 이용한 수소 및 메탄 생성 장치는, pH1 내지 pH2 또는 pH12 내지 pH14로 조절하여 폐활성 슬러지내의 유기물을 파괴하여 외부로 유출되도록 전처리하는 전처리 반응조; 반응조 조건이 수소 생성균 생육 조건을 위하여 pH가 5 내지 6의 범위에 맞추어지고, 상기 전처리 반응조에 의하여 전처리된 폐활성 슬러지로부터 수소를 생성 시키는 수소생성 반응조; 및 반응조 조건이 메탄 생성균 생육 조건을 위해 pH가 중성에 맞추어지고, 상기 수소생성 반응조에 의하여 처리된 폐활성 슬러지로부터 메탄을 생성시키는 메탄생성 반응조를 포함하는 것을 특징으로 한다. Hydrogen and methane generating apparatus using waste activated sludge according to the present invention for achieving the above object is, pretreatment to pre-treat to discharge to the outside by destroying organic matter in the waste activated sludge by adjusting to pH1 to pH2 or pH12 to pH14 Reactor; Reaction tank conditions are adjusted to a pH range of 5 to 6 for hydrogen producing bacteria growth conditions, the hydrogen production reactor for producing hydrogen from the waste activated sludge pretreated by the pretreatment reactor; And a methane generating reactor in which the pH of the reactor is adjusted to neutral for methane producing bacteria growing conditions, and methane is generated from the waste activated sludge treated by the hydrogen generating reactor.

또한, 본 발명에 의한 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법은, pH1 내지 pH2 또는 pH12 내지 pH14로 조절하여 폐활성 슬러지를 전처리하는 단계; 수소 생성균 생육 조건을 위하여 pH를 5 내지 6의 범위에 맞추어서, 상기 단계에서 전처리된 폐활성 슬러지로부터 수소를 생성시키는 단계; 및 메탄 생성균 생육 조건을 위하여 pH를 중성에 맞추어서, 상기 수소 생성 단계를 거친 폐활성 슬러지로부터 메탄을 생성시키는 단계를 포함하는 것을 특징으로 한다. In addition, the hydrogen and methane production method using waste activated sludge according to the present invention, the step of controlling the waste activated sludge by adjusting to pH1 to pH2 or pH12 to pH14; Generating hydrogen from the waste activated sludge pretreated in this step, adjusting the pH to a range of 5 to 6 for hydrogen producing bacteria growth conditions; And producing methane from waste activated sludge which has undergone the hydrogen generation step by adjusting the pH to neutral for methane producing bacteria growth conditions.

이하에서 첨부된 도면을 참조하면서 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치 및 그 방법의 처리 공정을 개략적으로 나타낸 도면이다. 1 is a view schematically showing an apparatus for producing hydrogen and methane using waste activated sludge and a treatment process of the method according to the present invention.

본 발명에서 이용되는 폐활성 슬러지는 하수처리장에서 폐기물을 생물학적 처리공정으로 처리한 결과 발생하는 슬러지로서 대부분의 성분이 미생물로 되어 있는 고농도의 유기물이다.Waste activated sludge used in the present invention is a sludge produced as a result of treatment of waste in a sewage treatment plant by a biological treatment process, and is a high concentration of organic material in which most components are microorganisms.

폐활성 슬러지는 유입 펌프(11)를 통하여 먼저 전처리 반응조(10)로 유입된다. 전처리 반응조(10)에서는 강산성 상태(pH 1 내지 2) 또는 강염기성 상태(pH 12 내지 14)가 되도록 pH를 조절함으로써, 폐활성 슬러지의 성분인 미생물의 세포벽과 세포막을 파괴하여 내부의 유기물이 외부로 용이하게 유출되도록 한다. Waste activated sludge is first introduced into the pretreatment reactor 10 through the inlet pump 11. In the pretreatment reactor 10, the pH is adjusted to be in a strongly acidic state (pH 1 to 2) or a strong basic state (pH 12 to 14), thereby destroying the cell walls and cell membranes of microorganisms, which are components of waste activated sludge, so that the organic matter inside So that it can easily flow out.

전처리 반응조(10)에서 pH 조절을 위하여, 강산성 용액(농염산) 또는 강염기 성 용액(10N 수산화나트륨 용액)을 전처리 반응조(10) 내에 주입한다. 전처리 반응조(10)에 설치된 pH 센서(미도시)를 통하여 pH를 모니터링하면서 강산성 용액 또는 강염기성 용액의 주입량을 조절하여 희망하는 pH가 유지되도록 한다. 전처리 반응조(10)의 바람직한 pH는 강산성 조건인 경우 pH 1 내지 2, 강염기성 조건인 경우 pH 12 내지 14이다. In order to adjust the pH in the pretreatment reactor 10, a strong acid solution (concentrated hydrochloric acid) or a strong base solution (10N sodium hydroxide solution) is injected into the pretreatment reactor 10. The pH is monitored through a pH sensor (not shown) installed in the pretreatment reactor 10 to adjust the injection amount of the strong acid solution or the strong base solution to maintain the desired pH. Preferred pH of the pretreatment reactor 10 is pH 1 to 2 for strong acidic conditions, and pH 12 to 14 for strong basic conditions.

전처리 반응조(10)에서 강산성 상태 또는 강염기성 상태로 전처리된 폐활성 슬러지는 가수분해 반응조(20)로 이동된다. 가수분해 반응조(20)에서는 그 다음 단계인 수소생성 반응조에서 pH가 급격하게 변화하는 것을 방지하기 위하여 전처리된 폐활성 슬러지의 pH를 6 내지 7 범위로 조절하는 작용을 한다. In the pretreatment reactor 10, waste activated sludge pretreated in a strongly acidic state or a strong basic state is transferred to the hydrolysis reaction tank 20. In the hydrolysis reaction tank 20, the pH of the pretreated waste activated sludge is adjusted to a range of 6 to 7 in order to prevent the pH from being rapidly changed in the next step of the hydrogen production reactor.

전처리 반응조(10)에서 강산성 상태로 전처리된 폐활성 슬러지의 경우, 10N 수산화나트륨 용액과 같은 강염기성 용액을 가수분해 반응조(20)에 직접 주입하여 pH가 6 내지 7의 범위가 되도록 조절하고, 전처리 반응조(10)에서 강염기성 상태로 전처리된 폐활성 슬러지의 경우 농염산 용액과 같은 강산성 용액을 가수분해 반응조(20)에 직접 주입하여 pH가 6 내지 7의 범위가 되도록 조절한다. 가수분해 반응조(20)에 설치된 pH 센서(미도시)를 통하여 pH를 모니터링하면서 강염기성 용액 또는 강산성 용액의 주입량을 조절하여 희망하는 pH가 유지되도록 한다. 가수분해 반응조(20)에서 pH가 6 내지 7의 범위로 조절된 폐활성 슬러지는 수소생성 반응조(30)로 이송된다. In the case of waste activated sludge pretreated in a strongly acidic state in the pretreatment reactor 10, a strong base solution such as 10N sodium hydroxide solution is directly injected into the hydrolysis reactor 20 to adjust the pH to be in the range of 6 to 7, and pretreatment. In the case of waste activated sludge pretreated in a strong basic state in the reactor 10, a strong acid solution such as a concentrated hydrochloric acid solution is directly injected into the hydrolysis reactor 20 to adjust the pH to be in the range of 6 to 7. While monitoring the pH through a pH sensor (not shown) installed in the hydrolysis reaction tank 20 to adjust the injection amount of a strong basic solution or a strong acid solution to maintain the desired pH. In the hydrolysis reaction tank 20, waste activated sludge whose pH is adjusted in the range of 6 to 7 is transferred to the hydrogenation reaction tank 30.

본 발명에서 가수분해 반응조(20)는 전처리 반응조(10)와 수소생성 반응조(30) 사이에 pH가 급격하게 변화하는 것을 방지하기 위한 부가적인 구성요소이다. 따라서, 가수분해 반응조(20)가 구비되지 않은 경우, 즉 폐활성 슬러지가 전처리 반응조(10)에서 바로 수소생성 반응조(30)로 이송되어 pH 조절되는 경우에도 본 발명의 목적 및 효과를 달성하는 데에 문제가 없다. In the present invention, the hydrolysis reactor 20 is an additional component for preventing the pH from changing rapidly between the pretreatment reactor 10 and the hydrogen production reactor 30. Therefore, even when the hydrolysis reaction tank 20 is not provided, that is, waste activated sludge is transferred directly from the pretreatment reaction tank 10 to the hydrogenation reaction tank 30 to adjust the pH to achieve the object and effect of the present invention. There is no problem.

수소생성 반응조(30)에서는 수소 생성균에 의하여 수소가 생성되는 반응조로서, 수소 생성균의 생육에 적합하도록 pH를 5 내지 6의 범위로 조절한다. pH가 6를 초과하는 경우 메탄 생성균의 활성도가 높아지므로 바람직하지 않고, pH가 5 미만인 경우에는 수소 생성균 자체의 활성도가 저하되므로 역시 바람직하지 않다. In the hydrogen generation reactor 30, the hydrogen is generated by the hydrogen producing bacteria, and the pH is adjusted to a range of 5 to 6 so as to be suitable for the growth of the hydrogen producing bacteria. If the pH is greater than 6, the activity of the methane producing bacteria is not preferable, and if the pH is less than 5, the activity of the hydrogen producing bacteria itself is lowered.

수소 생성균은, 운전이 시작되는 초기에 일반적인 하수 처리장의 혐기성 소화조의 미생물을 80℃ 이상에서 20분 동안 열처리한 후 접종하여 사용한다. 본 발명에서는 수소 생성균을 순수 배양하여 사용하지 아니하고, 일반적인 하수 처리장의 혐기성 미생물을 이용하므로 초기 접종이 용이하고 상용화하기에도 용이하다. Hydrogen-generating bacteria are inoculated after heat treatment for 20 minutes at 80 ° C. or higher in the anaerobic digester of a general sewage treatment plant at the beginning of operation. In the present invention, since the hydrogen-producing bacteria are not purely cultured and used, anaerobic microorganisms of a general sewage treatment plant are used, so that initial inoculation is easy and commercialized.

수소생성 반응조(30)에서의 pH 조절을 위하여, 1N의 염산과 같은 산성 용액 또는 1N의 수산화나트륨 용액과 같은 염기성 용액을 수소생성 반응조(30) 내에 주입한다. 수소생성 반응조(30)에 설치된 pH 센서(미도시)를 통하여 pH를 모니터링하면서 산성 용액 또는 염기성 용액의 주입량을 조절하여 희망하는 pH가 유지되도록 한다. 또한, 수소생성 반응조(30)에서, pH 5 내지 pH 6의 완충 용액을 첨가하여 pH가 급격히 변화되지 않고 일정하게 유지되도록 할 수도 있다. For pH adjustment in the hydrogen production reactor 30, an acidic solution such as 1 N hydrochloric acid or a basic solution such as 1 N sodium hydroxide solution is injected into the hydrogen production reactor 30. The pH is monitored through a pH sensor (not shown) installed in the hydrogen generation reactor 30 to adjust the injection amount of the acidic solution or the basic solution to maintain the desired pH. In addition, in the hydrogen generation reactor 30, a pH 5 to pH 6 buffer solution may be added so that the pH does not change rapidly and remains constant.

수소생성 반응조(30)에는 내부에 격벽(baffle)이 설치되어 수소 생성균의 유실을 최소화하고, 수소생성 반응조(30) 내에 유입된 고형물 형태의 폐활성 슬러지가 체류하는 동안 수소생성 반응이 독립적으로 일어나도록 한다. Baffles are installed inside the hydrogen generation reactor 30 to minimize the loss of hydrogen producing bacteria, and hydrogen generation reactions occur independently while the waste activated sludge in solid form flows into the hydrogen generation reactor 30. To do that.

메탄 1몰이 생성되는 데에 수소 2몰이 필요하므로 수소생성 반응조(30)에서는 메탄생성 반응이 일어나지 않도록 하는 것이 매우 중요하다. 이를 위하여, 본 발명에서는 수소생성 반응조(30) 내의 pH를 수소 생성균의 생육에 적합하도록 조절하는 것뿐만 아니라, 반송 펌프(12) 및 가열장치(14)를 부가하여 수소생성 반응조(30) 후단의 폐활성 슬러지를 열처리하여 메탄 생성균의 생육을 억제시킨 후 수소생성 반응조(30) 상단으로 반송하는 구성을 더 구비할 수 있다. Since 2 mol of hydrogen is required to generate 1 mol of methane, it is very important that the hydrogen generating reactor 30 does not generate a methane generating reaction. To this end, in the present invention, not only the pH in the hydrogen production reactor 30 is adjusted to be suitable for the growth of hydrogen producing bacteria, but also the transfer pump 12 and the heating device 14 are added to the rear end of the hydrogen production reactor 30. The waste activated sludge may be further heat-treated to suppress the growth of methane-producing bacteria and then returned to the top of the hydrogen production reactor 30.

메탄 생성균은 열에 매우 약한 것에 반하여 수소 생성균은 포자 형성균으로서 열에 노출되면 포자를 형성하여 높은 온도에서도 생존할 수 있으므로, 가열 장치(14)에 의하여 반송되는 폐활성 슬러지 내의 메탄 생성균은 활성이 저하되고 수소 생성균은 생존하게 됨으로써 수소생산 효율을 극대화시킬 수 있게 된다. Methane-producing bacteria are very weak to heat, whereas hydrogen-producing bacteria are spore-forming bacteria that, when exposed to heat, can form spores and survive at high temperatures. Therefore, methane-producing bacteria in waste activated sludge returned by the heating device 14 are deactivated. Hydrogen-producing bacteria can survive to maximize hydrogen production efficiency.

가열 장치(14)에 의한 가열 온도는, 80℃ 내지 100℃, 바람직하게는 90℃ 내지 100℃가 되도록 가열하고, 가열 장치 내에 폐활성 슬러지가 체류하여 가열되는 시간은 15분 내지 20분 정도로 하는 것이 바람직하다. 이때 가열 온도가 낮으면 체류 시간을 상대적으로 길게 하고, 가열 온도가 높으면 체류 시간을 상대적으로 짧게 한다. The heating temperature by the heating apparatus 14 is heated so that it may be 80 degreeC-100 degreeC, Preferably it is 90 degreeC-100 degreeC, and the time for which waste activated sludge stays and heats in a heating apparatus is about 15 to 20 minutes. It is preferable. At this time, if the heating temperature is low, the residence time is relatively long, and if the heating temperature is high, the residence time is relatively short.

수소생성 반응조(30)를 거친 폐활성 슬러지는 메탄생성 반응조(50)로 이송되고, 메탄생성 반응조(50)에서는 메탄 생성균의 생육에 적합하도록 pH를 중성으로 조절하여 메탄 생성균에 의하여 메탄이 생성되도록 한다. Waste activated sludge which passed through the hydrogen production reactor 30 is transferred to the methane production reactor 50, and in the methane production reactor 50, methane is produced by the methane producing bacteria by adjusting the pH to be suitable for the growth of methane producing bacteria. do.

메탄 생성균은, 운전이 시작되는 초기에 일반적인 하수 처리장의 혐기성 소화조의 미생물을 접종하여 사용한다. 본 발명에서는 메탄 생성균을 순수 배양하여 사용하지 아니하고, 일반적인 하수 처리장의 혐기성 미생물을 이용하므로 초기 접종이 용이하고 상용화하기에도 용이하다. Methane producing bacteria are used by inoculating microorganisms in an anaerobic digester of a general sewage treatment plant at the beginning of operation. In the present invention, since the methane producing bacteria are not purely cultured and used, anaerobic microorganisms of a general sewage treatment plant are used, so that initial inoculation is easy and commercialized.

메탄생성 반응조(50)에서의 pH 조절을 위하여, 별도의 pH 조절을 위한 반응조(40)에서 1N의 염산 용액과 같은 산성 용액, 1N의 수산화나트륨 용액과 같은 염기성 용액을 주입하여 pH를 중성으로 조절한 후 메탄생성 반응조(50)로 이송될 수도 있다. In order to adjust the pH in the methane production reactor 50, the pH is adjusted to neutral by injecting an acidic solution such as 1N hydrochloric acid solution and 1N sodium hydroxide solution in a reactor 40 for separate pH adjustment. It may then be transferred to the methane production reactor (50).

아래의 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 이에 의하여 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the following examples are merely illustrative of the present invention and the present invention is not limited thereto.

<실시예 1><Example 1>

본 실시예 1에서는 본 발명의 폐활성 슬러지를 이용한 수소 및 메탄의 생성방법에서, 전처리 방법으로 가장 효과적인 것을 알아보기 위하여 하기와 같은 실험을 수행하였다.In Example 1, in order to produce hydrogen and methane using the waste activated sludge of the present invention, the following experiment was performed to find the most effective as a pretreatment method.

먼저, 폐활성 슬러지를 실험실 규모의 전처리 반응조(10)에서 화학적 방법(pH 조절, 오존처리), 물리적 방법(분쇄처리, 가열처리, 초음파 처리, 전기분해 처리), 생물학적 방법(가수분해 처리)을 각각 적용하여 전처리한 다음, 슬러지 탄소원인(SCODcr)의 변화값을 측정하였다. 상기 화학적 방법 중 pH 조절은 pH 12의 강염기성 상태로 조절하였다. 그 결과는 아래의 표 1에 나타내었다.First, the waste activated sludge is treated in a laboratory scale pretreatment tank 10 with chemical methods (pH control, ozone treatment), physical methods (crushing, heat treatment, sonication, electrolysis treatment) and biological methods (hydrolysis treatment). After each pretreatment, the change value of the sludge carbon source (SCODcr) was measured. PH control of the chemical method was adjusted to a strongly basic state of pH 12. The results are shown in Table 1 below.

Figure 112005004691638-pat00001
Figure 112005004691638-pat00001

그 결과, 상기 표 1에 나타낸 바와 같이, pH 조절을 하는 경우 슬러지탄소원인(SCODcr) 수치가 가장 높은 값을 나타내었으며, 이의 증가율은 원수와 비교시 14.6%였다. As a result, as shown in Table 1, when adjusting the pH, the sludge carbon source (SCODcr) value showed the highest value, the rate of increase was 14.6% compared to raw water.

이를 통해, pH를 조절함으로써, 폐활성 슬러지 중 미생물의 세포벽과 세포막이 파괴되어 내부의 유기물이 용출되어 SCODcr 수치가 상승되었음을 알 수 있다.Through this, it can be seen that by adjusting the pH, the cell wall and the cell membrane of the microorganisms in the waste activated sludge are destroyed and the organic matters are eluted to increase the SCODcr level.

<실시예 2><Example 2>

본 실시예 2에서는 상기 실시예 1에서 전처리된 각각의 폐활성 슬러지를 대상으로 수소생성 효율을 알아보기 위하여 하기와 같은 실험을 수행하였다.In Example 2, the following experiment was carried out to determine the efficiency of hydrogen generation for each waste activated sludge pretreated in Example 1.

먼저, 수소생성 반응조(30)로 각 160 ㎖ 시험병을 이용하였으며, 상기 각 시험병에 J 하수처리장(상기 실시예 1에서 폐활성 슬러지를 입수한 곳)의 혐기성 소화조 내 미생물을 90~100℃에서 약 20분간 가열한 후 수득한 미생물을 20 ㎖씩 접종하고, 상기 실시예 1에서 각 방법으로 전처리된 폐활성 슬러지 100 ㎖를 넣고, 완충용액으로 MES(C6H13NO4S·H2O)를 3 M이 되도록 약 5 ㎖씩 주입하여 운전기간동안 pH의 급격한 변화를 막아 상기 시험병 내 pH가 pH 5.5로 유지되도록 하였으며, 소 량의 영양 염류를 주입하였다. 그 다음, 상기 각 시험병에 질소가스를 충분히 주입하여 혐기성 조건으로 만든 후, 교반배양기에 넣고 온도 30℃를 유지하면서 교반하여, 시험병 안에서 혼합이 잘 이루어지도록 하여 배양하였다. First, each 160 ml test bottle was used as a hydrogen production reactor 30, and each test bottle was subjected to 90-100 ° C of microorganisms in the anaerobic digester of the J sewage treatment plant (where waste activated sludge was obtained in Example 1). 20 ml of the obtained microorganisms were inoculated by heating for about 20 minutes at 100 ml, and 100 ml of waste activated sludge pretreated by each method was added in Example 1, and MES (C 6 H 13 NO 4 S.H 2 ) was added as a buffer solution. About 5 ml of O) was injected at 3 M to prevent a sudden change in pH during the operation period so that the pH in the test bottle was maintained at pH 5.5, and a small amount of nutrients was injected. Then, nitrogen gas was sufficiently injected into each of the test bottles to make the anaerobic condition, and the mixture was stirred in a stirring incubator while maintaining a temperature of 30 ° C., and then cultured in a test bottle so as to mix well.

또한, 배양 시간에 따른 각각의 수소 발생량은 주사기(syringe)를 이용하여 측정함과 동시에, 발생 가스 내의 수소의 함량을 GC(Hewlett Packard 5880A)를 이용하여 측정함으로서 수소만의 발생량을 측정하였다. 그 결과는 하기 표 2에 나타내었다. In addition, the amount of hydrogen generated according to the culture time was measured using a syringe, and the amount of hydrogen generated was measured by measuring the content of hydrogen in the generated gas using GC (Hewlett Packard 5880A). The results are shown in Table 2 below.

Figure 112005004691638-pat00002
Figure 112005004691638-pat00002

<실시예 3><Example 3>

본 실시예 3에서는 전처리된 폐활성 슬러지를 열처리 하지 않은 경우와 열처리 한 경우, 발생하는 가스의 성상을 알아보기 위하여 하기와 같은 실험을 수행하였다.In Example 3, the following experiment was carried out to determine the properties of the gas generated when the pretreated waste activated sludge was not heat treated and when heat treated.

이 때, 도 1에 도시된 바와 같은 수소생성 반응조(30)를 이용하였으며, 상기 실시예 1에서 pH 조절된 폐활성 슬러지를 농축하여 TSS(Total Suspended Solid; 총 부유물질)의 농도가 약 25,000~30,000 mg/L가 되도록 하여, 하루 1 L의 양으로 정 량 펌프를 이용하여 상기 반응조(30)에 주입하였다. 또한 수소생성 반응조(30)의 내부 용적은 3 L가 되어, 체류시간이 3 일이 되도록 하였으며, 수소생성 반응조(30)는 pH 전극이 설치되어 pH가 5 내지 5.5의 범위로 유지되도록 산(1N HCl)과 염기(1N NaOH)를 자동으로 투입하도록 하였다. 한편, 생성된 가스는 가스 포집관에 모여지도록 하여 생성된 가스의 양을 측정하였으며, 생성된 가스는 GC(Hewlett Packard 5880A)를 이용하여 측정하였다. At this time, the hydrogen production reactor 30 as shown in FIG. 1 was used, and the concentration of TSS (Total Suspended Solid; total suspended solids) was concentrated by adjusting the pH-activated waste activated sludge in Example 1. 30,000 mg / L was injected into the reactor 30 using a metering pump in an amount of 1 L per day. In addition, the internal volume of the hydrogen generation reactor 30 is 3 L, so that the residence time is 3 days, the hydrogen generation reactor 30 is acid (1N) so that the pH electrode is installed to maintain the pH in the range of 5 to 5.5 HCl) and base (1N NaOH) were added automatically. Meanwhile, the generated gas was collected in the gas collecting tube to measure the amount of generated gas, and the generated gas was measured using GC (Hewlett Packard 5880A).

초기 운전하는 경우는 반응조(30) 내 폐활성 슬러지를 가열장치가 설치되지 않은 조건으로 운전하였으며, 일정 기간이 지난 후, 보다 안정된 수소발생을 위하여 반응기 후단에서 앞단으로 폐활성 슬러지를 반송하면서 가열장치가 부착된 스텐레스 재질의 관속을 통과시켜 폐활성 슬러지가 가열되도록 하였다. 폐활성 슬러지는 관속 체류시간이 약 10~20분 정도가 되도록 펌프의 속도를 조절하였고, 스텐레스는 가열테이프로 감아 온도가 약 100℃가 유지되도록 하였다. In the initial operation, the waste activated sludge in the reaction tank 30 was operated under a condition that no heating device was installed, and after a certain period of time, the waste activated sludge was conveyed from the rear end to the front end of the reactor for more stable hydrogen generation. The waste activated sludge was heated by passing through a stainless steel tube. The waste activated sludge was controlled by the pump so that the residence time of the tube was about 10-20 minutes, and the stainless steel was wound with a heating tape to maintain the temperature of about 100 ° C.

폐활성 슬러지를 반송시키면서 가열하는 것은 연속으로 장시간 운전하다 보면 운전기간 동안 동적 시스템에 의하여 혐기성 미생물 중 환경조건에 매우 민감한 수소 생성균은 감소하고 메탄 생성균이 증대될 수 있으므로, 열처리를 함으로써 열에 약한 메탄 생성균의 활동을 저해시키는 반면, 열에 강한 수소 생성균만 존재하도록 하기 위해서이다. 그 결과를 각 기체의 생성율을 하기 표 3에 나타내었다.The heating of waste activated sludge is continuously performed for a long time. As a result, the dynamic system can reduce the hydrogen producing bacteria which are very sensitive to the environmental conditions and increase the methane producing bacteria. In order to inhibit the activity of, but to ensure the presence of heat-producing hydrogen bacteria. The results are shown in Table 3, below, for the production rate of each gas.

열처리를 하지 않은 경우If not heat treated 열처리를 한 경우When heat treated H2 H 2 2.1%2.1% 34.7%34.7% N2 N 2 10.5%10.5% 11.6%11.6% CH4 CH 4 35.7%35.7% 12.7%12.7% CO2 CO 2 51.8%51.8% 41.1%41.1%

그 결과, 상기 표 3에 나타낸 바와 같이, 수소 생성율이 열처리를 한 경우 전체 가스성분 중 34.7%인 반면, 열처리를 하지 않은 경우는 2.1%에 불과하였다. 또한, 메탄 생성율은 열처리를 한 경우 전체 가스성분 중 12.7%인 반면, 열처리를 하지 않은 경우는 35.7%로 높았다.As a result, as shown in Table 3, the hydrogen production rate was 34.7% of the total gas components when the heat treatment was performed, while only 2.1% when the heat treatment was not performed. In addition, the methane production rate was 12.7% of the total gas components when the heat treatment, while 35.7% was not the heat treatment.

이를 통해, 수소생성 반응조(30) 내에서 수소 생성시, 열처리를 병용함으로써 수소 생성율을 증가시킬 수 있음을 알 수 있다. Through this, it can be seen that when generating hydrogen in the hydrogen generating reactor 30, the hydrogen production rate can be increased by using heat treatment in combination.

비록 상기에서 본 발명은 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 본 발명자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Although the invention has been described in detail above, it will be apparent to the inventors that various modifications and changes are possible within the scope and spirit of the invention, and it is obvious that such modifications and modifications fall within the scope of the appended claims.

이상에서 설명한 바와 같이, 본 발명에 따르면, 유기 폐기물인 폐활성 슬러지를 이용하여 수소 및 메탄을 생성함으로써, 유기 폐기물 처리 및 처분 문제를 해결함과 동시에 생물학적 방법으로 대체 에너지인 수소 및 메탄을 효율적으로 생산 하는 효과가 있다. As described above, according to the present invention, by generating hydrogen and methane using waste activated sludge, which is an organic waste, it is possible to solve the problem of disposal and disposal of organic waste and to efficiently replace hydrogen and methane, which are alternative energy, by a biological method. Has the effect of producing.

Claims (19)

pH1 내지 pH2 또는 pH12 내지 pH14로 조절하여 폐활성 슬러지내의 유기물을 파괴하여 외부로 유출되도록 전처리하는 전처리 반응조;a pretreatment reactor for adjusting the pH to pH 2 or pH 12 to pH 14 to pretreat the organic matter in the waste activated sludge to be discharged to the outside; 반응조 조건이 수소 생성균 생육 조건을 위하여 pH가 5 내지 6의 범위에 맞추어지고, 상기 전처리 반응조에 의하여 전처리된 폐활성 슬러지로부터 수소를 생성시키는 수소생성 반응조; 및Reaction tank conditions are adjusted to a pH range of 5 to 6 for hydrogen producing bacteria growth conditions, the hydrogen production reactor for producing hydrogen from the waste activated sludge pretreated by the pretreatment reactor; And 반응조 조건이 메탄 생성균 생육 조건을 위해 pH가 중성에 맞추어지고, 상기 수소생성 반응조에 의하여 처리된 폐활성 슬러지로부터 메탄을 생성시키는 메탄생성 반응조를 포함하는 것을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치. Reaction tank conditions are hydrogen and methane using waste activated sludge, characterized in that the pH is set to neutral for methane production bacteria growth conditions, and includes a methane production reactor for generating methane from the waste activated sludge treated by the hydrogen production reactor Generation device. 제1항에 있어서, 상기 수소생성 반응조에 의하여 처리된 폐활성 슬러지의 일부를 80℃ 내지 100℃로 가열하여 반송하는 가열 반송 수단을 더 구비하는 것임을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치. The hydrogen and methane using waste activated sludge according to claim 1, further comprising a heating conveying means for heating and transporting a part of the waste activated sludge treated by the hydrogen generation reactor to 80 ° C to 100 ° C. Generating device. 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 전처리 반응조의 후단과 상기 수소생성 반응조의 상단에 설치되어, 전처리된 폐활성 슬러지의 pH를 6 내지 7의 범위로 조절하는 가수분해 반응조를 더 포함하는 것을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 장치. The waste tank according to claim 1, further comprising a hydrolysis reaction tank installed at a rear end of the pretreatment reaction tank and an upper end of the hydrogen production reactor to adjust the pH of the pretreated waste activated sludge in the range of 6 to 7. Hydrogen and methane generator using activated sludge. 삭제delete 제1항에 있어서, 상기 수소생성 반응조에는 격벽이 설치되어 있는 것임을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄의 생성 장치. The apparatus for producing hydrogen and methane using waste activated sludge according to claim 1, wherein the hydrogen generation reactor is provided with a partition wall. 삭제delete pH1 내지 pH2 또는 pH12 내지 pH14로 조절하여 폐활성 슬러지를 전처리하는 단계;pretreatment of waste activated sludge by adjusting to pH1 to pH2 or pH12 to pH14; 수소 생성균 생육 조건을 위하여 pH를 5 내지 6의 범위에 맞추어서, 상기 단계에서 전처리된 폐활성 슬러지로부터 수소를 생성시키는 단계; 및Generating hydrogen from the waste activated sludge pretreated in this step, adjusting the pH to a range of 5 to 6 for hydrogen producing bacteria growth conditions; And 메탄 생성균 생육 조건을 위하여 pH를 중성에 맞추어서, 상기 수소 생성 단계를 거친 폐활성 슬러지로부터 메탄을 생성시키는 단계를 포함하는 것을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법. The method for producing hydrogen and methane using waste activated sludge, comprising the step of generating methane from the waste activated sludge which has been subjected to the hydrogen generation step by adjusting the pH to neutral for methane producing bacteria growth conditions. 제10항에 있어서, 상기 수소 생성 단계에서의 수소 생성균은, 운전 초기에 하수 처리장의 혐기성 소화조의 미생물을 열처리하여 접종하여 사용하는 것임을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법. 11. The method of claim 10, wherein the hydrogen generating bacteria in the hydrogen generation step, hydrogen and methane production method using waste activated sludge, characterized in that the inoculation of the microorganisms of the anaerobic digestion tank of the sewage treatment plant is used to inoculate. 제10항에 있어서, 상기 메탄 생성 단계에서의 메탄 생성균은, 운전 초기에 하수 처리장의 혐기서 소화조의 미생물을 접종하여 사용하는 것임을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법. The method of claim 10, wherein the methane generating bacteria in the methane production step, hydrogen and methane production method using waste activated sludge, characterized in that the inoculation of the microorganisms of the anaerobic digestion tank of the sewage treatment plant in the initial operation. 제10항에 있어서, 상기 수소 생성 단계를 거친 폐활성 슬러지의 일부를 80℃ 내지 100℃로 가열하여 15분 내지 20분 정도 체류하도록하며 반송하는 단계를 더 포함하는 것을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법. The waste activated sludge according to claim 10, further comprising the step of returning a portion of the waste activated sludge that has undergone the hydrogen generation step to be heated at 80 ° C to 100 ° C for 15 minutes to 20 minutes, and being returned. Hydrogen and methane generation method using. 삭제delete 삭제delete 삭제delete 제10항에 있어서, 상기 전처리 단계를 거친 폐활성 슬러지의 pH를 6 내지 7의 범위로 조절하는 가수분해 반응 단계를 더 포함하는 것임을 특징으로 하는 폐활성 슬러지를 이용한 수소 및 메탄 생성 방법. The method of claim 10, further comprising a hydrolysis reaction step of adjusting the pH of the waste activated sludge passed through the pretreatment in the range of 6 to 7. 삭제delete 삭제delete
KR1020050007194A 2005-01-26 2005-01-26 An apparatus and the method for hydrogen and methane production by using waste activated sludge KR100609000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050007194A KR100609000B1 (en) 2005-01-26 2005-01-26 An apparatus and the method for hydrogen and methane production by using waste activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050007194A KR100609000B1 (en) 2005-01-26 2005-01-26 An apparatus and the method for hydrogen and methane production by using waste activated sludge

Publications (2)

Publication Number Publication Date
KR20060086202A KR20060086202A (en) 2006-07-31
KR100609000B1 true KR100609000B1 (en) 2006-08-09

Family

ID=37175614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050007194A KR100609000B1 (en) 2005-01-26 2005-01-26 An apparatus and the method for hydrogen and methane production by using waste activated sludge

Country Status (1)

Country Link
KR (1) KR100609000B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985374B1 (en) 2008-12-23 2010-10-04 주식회사 포스코 Method and apparatus for the production of hydrogen and methane from organic wastes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063091A1 (en) * 2007-12-28 2009-07-02 Right-Way-Technologies Gmbh & Co. Kg Method and device to produce biogas with high methane rate, by dosingly supplying hydrogen-producing bacteria, which are cultured in hydrogen and methane fermenter, and dosingly introducing gaseous hydrogen into methane fermenter
PL386330A1 (en) 2008-10-22 2010-04-26 Politechnika Lubelska Method and the device for intensification of obtaining of biogas from the municipal sewage sludge

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1020030085424 *
13038378 *
14336898 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985374B1 (en) 2008-12-23 2010-10-04 주식회사 포스코 Method and apparatus for the production of hydrogen and methane from organic wastes

Also Published As

Publication number Publication date
KR20060086202A (en) 2006-07-31

Similar Documents

Publication Publication Date Title
Wu et al. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control
Kim et al. Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation
Kumar et al. Cultivation of microalgal biomass using swine manure for biohydrogen production: Impact of dilution ratio and pretreatment
Tulun et al. Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment
Cheng et al. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed
BRPI1007417B1 (en) apparatus and method for continuously producing hydrogen or hydrogen and methane from organic waste
US20150111273A1 (en) Biohydrogen production method and reactor
Lee et al. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors
US7901916B2 (en) Method for producing hydrogen from organic wastes
Ahmed et al. Anaerobic degradation of digestate based hydrothermal carbonization products in a continuous hybrid fixed bed anaerobic filter
Safari et al. Biohydrogen production from diluted-acid hydrolysate of rice straw in a continuous anaerobic packed bed biofilm reactor
Sasidhar et al. A critical review on the effects of pneumatic mixing in anaerobic digestion process
Lindeboom et al. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure
KR100609000B1 (en) An apparatus and the method for hydrogen and methane production by using waste activated sludge
Chu et al. Enhancement of biohydrogen production by employing a packed-filter bioreactor (PFBR) utilizing sulfite-rich organic effluent obtained from a washing process of beverage manufactures
JP2006314920A (en) Method for recovering energy from biomass
Hangri et al. Combining pretreatments and co-fermentation as successful approach to improve biohydrogen production from dairy cow manure
KR101300951B1 (en) Membrance coupled anaerobic digester system by using alternate and cross flow type and method for reating organic waste for thereof
Danko et al. Effect of methanogenic inhibitors, inocula type, and temperature on biohydrogen production from food components
Luo et al. Salinity impact on the metabolic and taxonomic profiles of acid and alkali treated inoculum for hydrogen production from food waste
KR101286072B1 (en) Two-phase anaerobic digestion apparatus
WO2021193453A1 (en) Methane generating device
Kumar et al. Batch and continuous biogenic hydrogen fermentation of acid pretreated de-oiled jatropha waste (DJW) hydrolysate
KR100990167B1 (en) Method and apparatus for Bio-hydrogen gas production from organic waste by using inhibitor for methane producing microorganisms and gas purging under low pH condition
KR20090099915A (en) Method and apparatus for bio-hydrogen gas production from organic waste by using inhibitor for methane producing microorganisms and gas purging

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090701

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee