KR100604038B1 - A heavy chain expression vector - Google Patents

A heavy chain expression vector Download PDF

Info

Publication number
KR100604038B1
KR100604038B1 KR1020020045765A KR20020045765A KR100604038B1 KR 100604038 B1 KR100604038 B1 KR 100604038B1 KR 1020020045765 A KR1020020045765 A KR 1020020045765A KR 20020045765 A KR20020045765 A KR 20020045765A KR 100604038 B1 KR100604038 B1 KR 100604038B1
Authority
KR
South Korea
Prior art keywords
expression vector
heavy chain
gene
antibody
ser
Prior art date
Application number
KR1020020045765A
Other languages
Korean (ko)
Other versions
KR20040012266A (en
Inventor
이종욱
고인영
송무영
김창석
이재선
유태형
김지민
박상구
Original Assignee
주식회사유한양행
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사유한양행 filed Critical 주식회사유한양행
Priority to KR1020020045765A priority Critical patent/KR100604038B1/en
Priority to AU2003253447A priority patent/AU2003253447A1/en
Priority to PCT/KR2003/001555 priority patent/WO2004013278A2/en
Publication of KR20040012266A publication Critical patent/KR20040012266A/en
Application granted granted Critical
Publication of KR100604038B1 publication Critical patent/KR100604038B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies

Abstract

본 발명은 항체의 중쇄 발현 벡터에 관한 것으로, 더욱 상세하게는 항체의 가변영역을 코딩하는 유전자의 연결지역(joining region)에 공통적으로 존재하는 제한효소 부위(restriction site) 및 항체의 불변영역을 코딩하는 유전자를 포함하는 발현 벡터에 관한 것이다. 상기 발현 벡터는 다양한 가변영역을 코딩하는 유전자를 직접 카세트 형식으로 삽입하여 중쇄 전체 유전자를 발현시킬 수 있어, 다양한 치료용 항체 개발에 유용하게 사용된다.The present invention relates to a heavy chain expression vector of an antibody, and more particularly to encoding a restriction site and a constant region of an antibody which are commonly present in a joining region of a gene encoding a variable region of an antibody. It relates to an expression vector containing the gene to be. The expression vector is capable of expressing the entire heavy chain gene by inserting genes encoding various variable regions in a direct cassette format, which is useful for developing various therapeutic antibodies.

치료용 항체, 발현 벡터, 가변영역, 불변영역, 제한효소, 중쇄Therapeutic antibody, expression vector, variable region, constant region, restriction enzyme, heavy chain

Description

항체 중쇄 발현벡터 {A HEAVY CHAIN EXPRESSION VECTOR}Antibody heavy chain expression vector {A HEAVY CHAIN EXPRESSION VECTOR}

도 1은 본 발명의 발현벡터의 유전자 지도를 나타낸 것이다.Figure 1 shows a genetic map of the expression vector of the present invention.

도 2는 본 발명의 발현벡터의 제조과정을 도식적으로 나타낸 것이다.Figure 2 schematically shows the manufacturing process of the expression vector of the present invention.

본 발명은 항체의 중쇄 발현 벡터에 관한 것으로, 더욱 상세하게는 항체의 가변영역을 코딩하는 유전자의 연결지역(joining region)에 공통적으로 존재하는 제한효소 부위(restriction site) 및 항체의 불변영역을 코딩하는 유전자를 포함하는 발현 벡터에 관한 것이다. The present invention relates to a heavy chain expression vector of an antibody, and more particularly to encoding a restriction site and a constant region of an antibody which are commonly present in a joining region of a gene encoding a variable region of an antibody. It relates to an expression vector containing the gene to be.

치료용 항체의 개발은 전 세계적으로 여러 분야에서 이루어지고 있으며, 수많은 질병에 대한 치료용으로 항체를 개발하고 있다(Reichmann, L., Clark, M., et al. Nature 322, 323-327(1988); Paul Carter and H. Michael Shepard. Proc. Natl. Acad. Sci. U.S.A. 89, 4285-4289(1992); John Hakimi, and William P. Schneider. J. Immunology 151, 1075-1085(1993)).The development of therapeutic antibodies has been made in many fields around the world, and antibodies have been developed for the treatment of numerous diseases (Reichmann, L., Clark, M., et al. Nature 322, 323-327 (1988). Paul Carter and H. Michael Shepard. Proc. Natl. Acad. Sci. USA 89, 4285-4289 (1992); John Hakimi, and William P. Schneider. J. Immunology 151, 1075-1085 (1993).

현재 인간화 항체 및 키메라항체를 개발하기 위해서는 마우스 항체의 가변지역 유전자를 인간의 불변유전자와 유전자 재조합 방식으로 클로닝하여 인간화 항체를 만든 다음, 동물세포발현벡터로 클로닝하여 동물세포로 형질전환시킨 후 발현여부를 분석하는 방법을 사용하고 있다.To develop humanized antibodies and chimeric antibodies, cloned the variable region genes of mouse antibodies into human constant genes by genetic recombination to make humanized antibodies, and then cloned them into animal cell expression vectors to transform them into animal cells and then express them. I'm using the method of analysis.

이와 같이, 항체 발현벡터의 경우 특정한 벡터 시스템이 존재하는 것이 아니라 기존에 사용되어온 동물세포발현벡터를 이용하여 항체유전자를 발현시키고 있으며, 현재 동물세포발현벡터로서 많이 사용되는 시스템은 pCDNA(인비트로젠사, 미국)벡터시스템으로서 각종 단백질 유전자를 클로닝하여 동물세포에서 발현시키고 있다. 그러나, 상기의 pCDNA 벡터시스템(인비트로젠사, 미국)의 경우 여러 단계의 클로닝을 거치고, 항체 유전자의 증폭을 위한 dhfr 유전자를 경쇄 또는 중쇄 발현벡터 내에 삽입시켜야 하는 문제점을 갖고 있다.As such, in the case of the antibody expression vector, a specific vector system is not present, but the antibody gene is expressed by using an animal cell expression vector that has been used previously, and a system that is widely used as an animal cell expression vector is pCDNA (Invitrogen). Inc., USA) As a vector system, various protein genes are cloned and expressed in animal cells. However, the above-described pCDNA vector system (Invitrogen, USA) has a problem of inserting the dhfr gene into the light chain or heavy chain expression vector after several steps of cloning and amplifying the antibody gene.

또한, 동물세포발현벡터를 이용하여 항체 유전자를 발현시키기 위해서는 경쇄 및 중쇄 유전자를 각각 발현시키기 위한 2종류의 발현벡터가 필요하며, 생명공학연구소에서 개발한 발현벡터 pKCdhfr의 경우, 항체유전자의 증폭에 필요한 dhfr 유전자를 경쇄가 포함된 발현벡터에 삽입하여 제조하고, 또한 경쇄와 dhfr 유전자만 제외하면 동일하게 구성되어 있는 중쇄가 삽입된 발현벡터를 제조(J. Medical Virology 52:226-233, 1997)하였다.In addition, in order to express antibody genes using animal cell expression vectors, two kinds of expression vectors for expressing light and heavy chain genes are required.In the case of the expression vector pKCdhfr developed by the Biotechnology Research Institute, amplification of antibody genes is required. The required dhfr gene is inserted into an expression vector containing a light chain, and a heavy chain-inserted expression vector is constructed except for the light and dhfr genes ( J. Medical Virology 52: 226-233, 1997). It was.

그러나, 상기의 pKCdhfr 경쇄 발현벡터의 경우, 동일한 벡터 내에 SV40프로 모터 및 벡터복제를 위한 복제기점(origin of replication, ORI), 그리고 전사의 종료를 위하여 사용되는 폴리에이(폴리아데닌, polyadenylation, poly A) 서열을 삽입하기 위해 동일한 SV40 바이러스의 유전자를 사용하여야 하는데, 이는 벡터내에서 자체적으로 재조합 등이 발생할 수 있는 단점을 갖고 있다.However, in the case of the pKCdhfr light chain expression vector described above, an origin of replication (ORI) for the SV40 promoter and vector replication in the same vector, and a polya (polyadenine, polyadenylation, poly A) used for termination of transcription ) The same SV40 virus gene should be used to insert the sequence, which has a disadvantage in that recombination may occur in a vector.

최근 개발된 동물세포발현벡터 pMG(인비보젠사, 미국)는 동일 벡터 내에 2개의 다클로닝 염기서열(multi cloning site, MCS)을 포함하고 있어 항체 등과 같이 2개 이상의 단위체(subunit)로 구성된 단백질의 발현에 적합한 벡터시스템이다. 그러나, 이러한 벡터시스템을 이용하여 항체 유전자를 클로닝할 경우, 새로운 치료용 항체 개발에 있어서 클로닝 작업에 장기간의 연구기간이 소요되며, 항체 유전자의 증폭을 위해서는 dhfr 유전자를 외부벡터로부터 삽입하여야 하는 단점을 내포하고 있다.The recently developed animal cell expression vector pMG (Invivogen, USA) contains two multicloning sequences (MCS) in the same vector, which is a protein composed of two or more subunits such as antibodies. It is a vector system suitable for expression. However, cloning the antibody gene using such a vector system requires a long research period for cloning work in developing a new therapeutic antibody, and in order to amplify the antibody gene, the dhfr gene must be inserted from an external vector. It is implicated.

따라서, 다양한 치료용 항체 개발을 위하여 다양한 가변영역 유전자 후보군을 벡터에 직접 삽입하여 가변영역-불변영역이 연결된 전체 유전자를 효율적으로 발현시킬 수 있는 새로운 발현벡터 시스템의 개발이 필요하다.Therefore, in order to develop various therapeutic antibodies, it is necessary to develop a new expression vector system capable of efficiently expressing all genes linked with variable region-constant regions by inserting various variable region gene candidate groups directly into a vector.

이에 본 발명자들은 상기 문제점을 해결하고자 연구를 거듭한 결과, 중쇄 가변영역을 코딩하는 유전자의 연결지역(joining region)에 공통적으로 존재하는 제한효소 부위(restriction site) 및 중쇄 불변영역을 코딩하는 유전자를 포함하는 발현벡터를 개발하였으며, 본 발명의 발현벡터는 가변영역을 코딩하는 유전자를 직접 카세트 형식으로 클로닝하여 중쇄 전체 유전자를 생산할 수 있으므로 다양한 치료용 항체 개발에 유용하게 사용될 수 있다.
따라서, 본 발명의 목적은 서열번호 3의 염기서열을 프로모터의 하위에 가지는 발현 벡터를 제공하는 것이다.
또한, 본 발명의 목적은 상기 발현 벡터로 형질전환된 숙주세포를 제공하는 것이다.
Accordingly, the present inventors have conducted studies to solve the above problems, and as a result, the inventors have identified genes encoding restriction chains and heavy chain constant regions that are commonly present in the joining region of the gene encoding the heavy chain variable region. The expression vector of the present invention was developed, and since the expression vector of the present invention can produce the entire heavy chain gene by directly cloning the gene encoding the variable region in a cassette format, it can be usefully used for developing various therapeutic antibodies.
Accordingly, it is an object of the present invention to provide an expression vector having the nucleotide sequence of SEQ ID NO: 3 under the promoter.
It is also an object of the present invention to provide a host cell transformed with the expression vector.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명은 중쇄 가변영역을 코딩하는 유전자의 연결지역(joining region)에 공통적으로 존재하는 제한효소 부위(restriction site) 및 중쇄 불변영역을 코딩하는 유전자를 포함하는 발현 벡터에 관한 것이다.The present invention relates to an expression vector comprising a restriction region and a gene encoding a heavy chain constant region, which are commonly present in a joining region of a gene encoding a heavy chain variable region.

본 발명자들은 다양한 인간 항체의 가변영역을 코딩하는 유전자 및 불변영역을 코딩하는 유전자를 분석하였다. 그 결과, 중쇄의 경우 그 가변영역을 코딩하는 유전자 말단의 연결지역(joining region, JR)이 제한효소 Sac I 인지서열(GAGCTC) 을 공통적으로 포함하고 있으며, 불변지역 시작위치가 제한효소 인지서열(GGGCCC)인 Apa I을 공통적으로 포함하는 것을 발견하였다.We analyzed genes encoding variable regions and genes encoding constant regions of various human antibodies. As a result, in the case of the heavy chain, the joining region (JR) at the end of the gene encoding the variable region contains the restriction enzyme Sac I recognition sequence (GAGCTC) in common, and the starting position of the constant region is the restriction enzyme recognition sequence ( GGGCCC) was found to include Apa I in common.

따라서, 본 발명의 일 태양에 따라, 서열번호 3의 염기서열을 프로모터의 하위에 포함하는 발현 벡터가 제공되며, 바람직하게는 도 1의 유전자 지도를 가지는 발현 벡터가 제공된다. 본 발명의 발현 벡터는 Sac I 또는 Apa I 제한효소 부위(restriction site)에 항체의 중쇄 가변영역을 코딩하는 유전자가 효과적으로 도입될 수 있다.
본 발명에 따른 발현 벡터는 pCDNA(인비트로젠사, 미국)로부터 제한효소 Apa I 부위를 제거하고, 여기에 서열번호 3의 염기서열을 도입하여 제조할 수 있다. 상기 발현 벡터는 프로모터로서 씨엠브이(CMV) 프로모터를 상위(upstream)에 포함하며, 비지에치 폴리에이((BGH 폴리아데닌, BGH polyadenylation, BGH poly A)를 하위(downstream)에 포함한다.
Thus, according to one aspect of the invention, there is provided an expression vector comprising the nucleotide sequence of SEQ ID NO: 3 below the promoter, preferably an expression vector having the genetic map of FIG. In the expression vector of the present invention, a gene encoding a heavy chain variable region of the antibody can be effectively introduced into a Sac I or Apa I restriction site.
The expression vector according to the present invention can be prepared by removing the restriction enzyme Apa I site from pCDNA (Invitrogen, USA), and introducing the nucleotide sequence of SEQ ID NO. The expression vector includes a CMV promoter upstream as a promoter and a BZ polyadenyse (BGH polyadenine, BGH polyadenylation, BGH poly A) downstream.

본 발명의 다른 태양에 따라, 상기 발현 벡터로 형질전환된 숙주세포가 제공되며, 바람직하게는 E.coli XL1-Blue/pHAB-HC (수탁번호 : KCTC 10229BP)인 숙주세포가 제공된다.
상기 본 발명에 따른 발현벡터는 중쇄 가변영역을 코딩하는 유전자를 상기 제한효소 부위에 직접 카세트 형식으로 삽입(클로닝)하므로서 가변영역 유전자와 불변영역 유전자가 연결된 중쇄 전체 유전자를 생산할 수 있다.
According to another aspect of the present invention, a host cell transformed with the expression vector is provided, and preferably, a host cell which is E. coli XL1-Blue / pHAB-HC (Accession Number: KCTC 10229BP) is provided.
The expression vector according to the present invention can produce the entire heavy chain gene in which the variable region gene and the constant region gene are linked by inserting (cloning) the gene encoding the heavy chain variable region into the restriction enzyme region directly.

본 발명에 따른 발현벡터에 삽입될 수 있는 가변영역 유전자는 인간, 마우스 또는 인간화된 가변영역 유전자를 포함한다.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 이것이 본 발명을 제한하는 것은 아니다.
Variable region genes that can be inserted into the expression vector according to the present invention includes a human, mouse or humanized variable region gene.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, this does not limit the present invention.

삭제delete

삭제delete

삭제delete

실시예Example

실시예 1. 인간 항체 중쇄 염기서열 분석Example 1 Human Antibody Heavy Chain Sequencing

인간 항체 중쇄 아미노산 및 염기서열을 분석한 결과( NIH 91, 3242, 1991), 표 1과 같이 모든 가변유전자말단의 연결지역(joining region, JR)에 공통적으로 존재하는 제한효소 인지서열 Sac I (GAGCTC)과 불변지역시작위치에 존재하는 제한효소 인지서열 Apa I (GGGCCC)이 공통적으로 발견되었다. As a result of analyzing human antibody heavy chain amino acid and nucleotide sequence ( NIH 91, 3242, 1991), restriction enzyme recognition sequence Sac I (GAGCTC) which is common in all joining regions (JR) of all variable gene ends as shown in Table 1 ) And the restriction enzyme Apa I (GGGCCC) at the start of the constant region were commonly found.

중쇄 가변영역을 코딩하는 유전자 말단의 연결지역(JH) 및 불변영역을 코딩하는 시작위치(CH)The junction region (JH) at the end of the gene encoding the heavy chain variable region and the starting position (CH) encoding the constant region 아미노산 서열Amino acid sequence 염기 서열Base sequence JH1/CH1JH1 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA JH2/CH1JH2 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA JH3/CH1JH3 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA JH4/CH1JH4 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA JH5/CH1JH5 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA JH6/CH1JH6 / CH1 --VSSASTKGP--VSSASTKGP ---GTG AGC TCT GCC TCC ACC AAG GGC CCA--- GTG AGC TCT GCC TCC ACC AAG GGC CCA

실시예 2. 중쇄 연결 프라이머의 합성Example 2. Synthesis of Heavy Chain Linked Primer

상기 실시예 1에서 발견한 제한효소 인지서열을 이용하기 위하여 표 2와 같은 프라이머(primer)들을 합성하였다. 프라이머의 합성은 ABI DNA/RNA 합성기(synthesizer)를 이용하여 합성하였다.In order to use the restriction enzyme recognition sequence found in Example 1, primers as shown in Table 2 were synthesized. Synthesis of the primer was synthesized using an ABI DNA / RNA synthesizer.

합성 프라이머Synthetic primer 서열번호SEQ ID NO: 프라이머명Primer Name 위치location 염기서열Sequence 1One FH365FH365 중쇄시작Heavy chain start GTG AGC TCT GCC TCC ACC AAG GGC CCA TCG GTC TTC CGT G AGC TC T GCC TCC ACC AA G GGC CC A TCG GTC TTC C 22 HCTHCT 중쇄종결Heavy chain termination C TCA TTT ACC CGG GGA CAG GGA GAG GCT CC TCA TTT ACC CGG GGA CAG GGA GAG GCT C

실시예 3. 중쇄 불변유전자의 클로닝Example 3 Cloning of Heavy Chain Constants

단계1. 전체 mRNA 추출Step 1. Full mRNA extraction

정상 사람 혈액을 원심분리하여 림프구들을 회수하고, 패스트트랙 (FastTrack) 2.0 mRNA 아이솔레이션 키트(isolation kit, 인비트로젠사, 미국)를 이용하여 회수된 림프구로부터 mRNA를 획득하였다. mRNA의 정량은 분광측광기 (spectrophotometer)를 사용하였으며, 260nm에서 흡광도를 측정하여 mRNA를 정량하였다.Lymphocytes were recovered by centrifugation of normal human blood and mRNA was obtained from recovered lymphocytes using a FastTrack 2.0 mRNA isolation kit (Invitrogen, USA). Quantitative mRNA was measured using a spectrophotometer, and mRNA was quantified by measuring absorbance at 260 nm.

단계2. 전체 cDNA 의 합성Step 2. Synthesis of Whole cDNA

전체 cDNA의 합성은 써모트랜스크립트 키트(Thermotranscript Kit, GibcoBRL사, 미국)를 사용하였다. 우선, 0.5㎍ mRNA를 올리고 디티(oligo dT) 또는 유전자특이 프라이머(Gene specific primer)인 서열번호 2(HCT)와 함께 섞은 후(이때, 전체부피는 10㎕이다.) 65℃에서 약 5분간 변성(denaturation)시키고 프라이머 어닐링(primer annealing) 시킨다. cDNA 합성은 역전사 효소(reverse transcriptase, 1㎕)를 이용하여 완충액(5㎕), 디티티(DTT, 0.1M, 2.5㎕), 디엔티피(dNTP, 2.5㎕), RNA 분해효소 억제제(RNase inhibitor, 1㎕), 및 멸균2차증류수 사용 조건하(이때, 전체 부피는 25㎕이다.)에서 50℃에서 1시간 동안 반응시킨 후, 95℃에서 5분간 불활성화 시켰다.Synthesis of whole cDNA was performed using a Thermotranscript Kit (GibcoBRL, USA). First, 0.5 μg mRNA was mixed with oligo dT or Gene specific primer, SEQ ID NO: 2 (HCT) (the total volume is 10 μl), and denatured at 65 ° C. for about 5 minutes. (denaturation) and primer annealing (primer annealing). cDNA synthesis was performed using reverse transcriptase (1 μl) in buffer (5 μl), Diti (DTT, 0.1M, 2.5 μl), DNTP (2.5 μl), RNA degrading enzyme inhibitor (RNase inhibitor, 1 μl), and sterile secondary distilled water (wherein, the total volume is 25 μl) was reacted at 50 ° C. for 1 hour, and then inactivated at 95 ° C. for 5 minutes.

단계3. 중쇄 불변유전자의 PCR 증폭Step 3. PCR amplification of heavy chain constant genes

cDNA를 이용하여 항체 불변유전자를 증폭하기 위하여 3㎕ cDNA와 표 2의 프라이머(primer)들을 이용하여 PCR(polymerase chain reaction)을 수행하였으며, 첫번째 단계에서는 95℃에서 5분동안 1회 수행하였고, 두번째 단계에서는 94℃에서 2분, 55℃ 2분, 72℃ 3분의 반응조건으로 30회를 수행하였으며, 세번째 단계에서는 94℃에서 2분, 55℃ 2분, 72℃ 10분의 조건으로 1회 실행하여 약 1,000bp의 중쇄 불변 유전자 단편이 증폭된 것을 아가로즈 전기영동 및 에티듐 브로마이드 (ethidium bromide; EtBr) 염색을 통하여 확인하였다.In order to amplify the antibody constant gene using cDNA, PCR (polymerase chain reaction) was performed using 3 μl cDNA and the primers of Table 2, and the first step was performed once at 95 ° C. for 5 minutes. In the step, 30 times were carried out under reaction conditions of 2 minutes at 55 ° C, 2 minutes at 55 ° C, and 3 minutes at 72 ° C. In the third step, once at the conditions of 2 minutes at 55 ° C, 2 minutes at 55 ° C and 10 minutes at 72 ° C. The amplification of the heavy chain constant gene fragment of about 1,000bp was confirmed by agarose electrophoresis and ethidium bromide (EtBr) staining.

단계4. 중쇄 불변유전자의 PCR 벡터로의 클로닝Step 4. Cloning of Heavy Chain Constants into PCR Vectors

1.5% 아가로스 젤 전기영동을 수행한 후 QIAgen 익스트렉션 키트(extraction kit, Qiagen사, 미국)를 이용하여 회수한 1,000bp 중쇄 유전자 단편에 페놀(200㎕) 및 클로로포름(200㎕)을 가하여 불순물을 제거하고, 에탄올(2.5ml)을 가하여 정제하였다. 정제된 유전자 단편을 pCRII 벡터(인비트로젠사, 미국)에 서브클로닝한 후, 대장균 XL1-Blue를 형질전환시켜 (Cohen, S. N. et al,. Proc. Natl. Acad. Sci. 69, 2110, 1972) 형질전환체를 얻었다. 얻어진 형질전환체를 100㎍/㎖의 암피실린이 함유된 엘비(luria-bertani, LB)배지에서 하룻밤 배양한 뒤 플라스미드를 회수한 다음, 제한효소 EcoR I (바이오렙사, 미국)으로 절단하여 상기 유전자 단편이 존재함을 확인하였다. 또한, 서열분석 결과 서열번호 3의 염기서열 및 서열번호 4의 아미노산 서열을 가짐을 확인하였다. 상기에서 얻은 플라스미드를 pCR-HC로 명명하였다.After performing 1.5% agarose gel electrophoresis, phenol (200 μl) and chloroform (200 μl) were added to the 1,000 bp heavy chain gene fragment recovered using a QIAgen extraction kit (Qiagen, USA). Was removed and purified by the addition of ethanol (2.5 ml). The purified gene fragment was subcloned into a pCRII vector (Invitrogen, USA) and then transformed into E. coli XL1-Blue (Cohen, SN et al, Proc. Natl. Acad. Sci. 69, 2110, 1972). ) Transformants were obtained. The resulting transformant was incubated overnight in a Luria-bertani (LB) medium containing 100 μg / ml of ampicillin, and then the plasmid was recovered. Then, the gene fragment was cut by restriction enzyme EcoR I (Biorepsa, USA). It was confirmed that this exists. In addition, it was confirmed that the sequence analysis had the nucleotide sequence of SEQ ID NO: 3 and the amino acid sequence of SEQ ID NO: 4. The plasmid obtained above was named pCR-HC.

실시예 4. 중쇄 발현벡터의 클로닝Example 4 Cloning of Heavy Chain Expression Vectors

단계1. Apa I이 제거된 pCDNA3.1A 벡터의 개발Step 1. Development of pCDNA3.1A Vector Without Apa I

pCDNA3.1A 벡터(인비트로젠사, 미국)를 제한효소 Apa I으로 37℃에서 2시간동안 반응시켜 절단하고, 클리노우(Klenow) 효소 1 unit와 dNTP를 첨가하여 30℃에서 1시간동안 반응시키고, Apa I 제한효소로 절단하여 노출되어 있는 단일 뉴클레오티드를 이중 뉴클레오티드로 채웠다. 반응이 끝난 뒤 상기의 실시예 3의 단계4와 동일한 방법으로 유전자 단편을 회수하였다. 회수된 유전자 단편을 셀프-라이게이션(self-ligation) 하기 위하여, 회수된 유전자 단편에 T4-DNA 리가아제(ligase) 1 unit을 넣고 16℃에서 하룻밤 방치하여 잘려진 벡터 말단을 연결시킨후, 상기 실시예 3의 단계4와 동일한 방법으로 대장균 XL1-Blue를 형질전환하여 형질전환체를 얻었다. 얻어진 형질전환체를 100㎍/㎖의 암피실린이 함유된 엘비(luria-bertani, LB)배지에서 하룻밤 배양한 뒤 플라스미드를 회수하였다. 회수된 플라스미드를 제한효소 Apa I(바이오렙사, 미국)으로 반응시킨 결과, 상기 회수된 플라스미드가 절단되지 않음을 전기영동을 통하여 확인하였다. 상기에서 회수된 플라스미드를 pHAB 벡터로 명명하였다.The pCDNA3.1A vector (Invitrogen, USA) was digested with restriction enzyme Apa I for 2 hours at 37 ° C, and 1 unit of Klenow enzyme and dNTP were added for 1 hour at 30 ° C. The single nucleotide exposed by cleavage with Apa I restriction enzyme was filled with double nucleotides. After the reaction, the gene fragment was recovered in the same manner as in Step 4 of Example 3. In order to self-ligation of the recovered gene fragment, 1 unit of T4-DNA ligase is added to the recovered gene fragment, which is left overnight at 16 ° C., and the cut vector ends are connected. E. coli XL1-Blue was transformed in the same manner as in Step 4 of Example 3 to obtain a transformant. The resulting transformants were incubated overnight in a Luria-bertani (LB) medium containing 100 μg / ml of ampicillin to recover the plasmid. As a result of reacting the recovered plasmid with restriction enzyme Apa I (Biorep, USA), it was confirmed by electrophoresis that the recovered plasmid was not cleaved. The plasmid recovered above was named pHAB vector.

단계2. pHAB-HC 발현벡터의 개발Step 2. Development of pHAB-HC Expression Vector

단계1에서 얻은 벡터 pHAB를 제한효소 HindIII/NotI(바이오렙스, 미국)으로 절단하였다. 또한, 중쇄 불변유전자가 삽입된 벡터 pCR-HC를 HindIII/NotI으로 절단하여 약 1Kb 의 유전자 단편을 상기 벡터 pHAB의 HindIII/NotI 제한효소 인지서열로 삽입하였다. 상기 실시예 3의 단계 4와 동일한 방법으로 대장균 XL1-Blue를 형질전환하여 형질전환체를 얻었다. 얻어진 형질전환체로부터 플라스미드를 회수하여, 제한효소 HindIII/NotI으로 절단한 후 전기영동을 통하여 서열번호 3의 제한효소 부위를 포함하는 중쇄 불변영역을 코딩하는 유전자가 삽입되었음을 확인하였고, 상기 얻어진 형질전환체를 2002년 4월 18일자로 한국생명공학연구원 유전자은행에 E. coli XL1-Blue/pHAB-HC (수탁번호 : KCTC10229BP)로 기탁하였다.The vector pHAB obtained in step 1 was digested with restriction enzyme HindIII / NotI (Bioreps, USA). In addition, the vector pCR-HC containing the heavy chain constant gene was digested with HindIII / NotI, and a gene fragment of about 1 Kb was inserted into the HindIII / NotI restriction enzyme recognition sequence of the vector pHAB. E. coli XL1-Blue was transformed in the same manner as in Step 4 of Example 3 to obtain a transformant. The plasmid was recovered from the obtained transformant, digested with restriction enzyme HindIII / NotI, and confirmed by electrophoresis that the gene encoding the heavy chain constant region containing the restriction enzyme site of SEQ ID NO: 3 was inserted. The sieve was deposited as E. coli XL1-Blue / pHAB-HC (Accession No .: KCTC10229BP) with the Korea Biotechnology Research Institute on April 18, 2002.

본 발명에 따른 발현벡터는 다양한 항체의 중쇄 가변영역 유전자를 직접 카세트 형식으로 삽입하여 중쇄 전체 유전자를 효율적으로 생산할 수 있다. 따라서, 본 발명에 따른 발현벡터는 다양한 치료용 항체 개발에 유용하게 사용될 수 있다.The expression vector according to the present invention can efficiently produce the entire heavy chain gene by inserting the heavy chain variable region genes of various antibodies in a direct cassette format. Therefore, the expression vector according to the present invention can be usefully used for the development of various therapeutic antibodies.

<110> YUHAN CORPORATION <120> THE HEAVY CHAIN EXPRESSION VECTOR FOR DEVELOPING THERAPEUTIC ANTIBODY <130> YU200205 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gtgagctctg cctccaccaa gggcccatcg gtcttcc 37 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ctcatttacc cggggacagg gagaggctc 29 <210> 3 <211> 1002 <212> DNA <213> Homo sapiens <400> 3 gtgagctctg cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc 60 acctctgggg gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg 120 acggtgtcgt ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta 180 cagtcctcag gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc 240 acccagacct acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaaa 300 gttgagccca aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc 360 ctggggggac cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc 420 cggacccctg aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag 480 ttcaactggt acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag 540 cagtacaaca gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg 600 aatggcaagg agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa 660 accatctcca aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc 720 cgggatgagc tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc 780 agcgacatcg ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg 840 cctcccgtgc tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag 900 agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac 960 cactacacgc agaagagcct ctccctgtct ccgggtaaat ga 1002 <210> 4 <211> 333 <212> PRT <213> Homo sapiens <400> 4 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 1 5 10 15 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val 20 25 30 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 35 40 45 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 50 55 60 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly 65 70 75 80 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 85 90 95 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 100 105 110 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 115 120 125 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 130 135 140 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 145 150 155 160 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 165 170 175 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 180 185 190 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 195 200 205 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 210 215 220 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 245 250 255 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 260 265 270 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 275 280 285 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 290 295 300 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 <110> YUHAN CORPORATION <120> THE HEAVY CHAIN EXPRESSION VECTOR FOR DEVELOPING THERAPEUTIC          ANTIBODY <130> YU200205 <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gtgagctctg cctccaccaa gggcccatcg gtcttcc 37 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ctcatttacc cggggacagg gagaggctc 29 <210> 3 <211> 1002 <212> DNA <213> Homo sapiens <400> 3 gtgagctctg cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc 60 acctctgggg gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg 120 acggtgtcgt ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta 180 cagtcctcag gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc 240 acccagacct acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaaa 300 gttgagccca aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc 360 ctggggggac cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc 420 cggacccctg aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag 480 ttcaactggt acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag 540 cagtacaaca gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg 600 aatggcaagg agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa 660 accatctcca aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc 720 cgggatgagc tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc 780 agcgacatcg ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg 840 cctcccgtgc tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag 900 agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac 960 cactacacgc agaagagcct ctccctgtct ccgggtaaat ga 1002 <210> 4 <211> 333 <212> PRT <213> Homo sapiens <400> 4 Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro   1 5 10 15 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val              20 25 30 Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala          35 40 45 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly      50 55 60 Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly  65 70 75 80 Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys                  85 90 95 Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys             100 105 110 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu         115 120 125 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu     130 135 140 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 145 150 155 160 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys                 165 170 175 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu             180 185 190 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys         195 200 205 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys     210 215 220 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 225 230 235 240 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys                 245 250 255 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln             260 265 270 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly         275 280 285 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln     290 295 300 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 305 310 315 320 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys                 325 330

Claims (8)

항체 발현벡터에 있어서, 서열번호 3의 염기서열을 프로모터의 하위에 가지는 발현 벡터.The expression vector of an antibody expression vector which has the base sequence of SEQ ID NO: 3 under a promoter. 제1항에 있어서, 도 1의 유전자 지도를 가지는 발현 벡터.The expression vector of claim 1 having the gene map of FIG. 1. 제1항 또는 제2항에 따른 발현 벡터로 형질전환된 숙주세포.A host cell transformed with the expression vector according to claim 1. 제3항에 있어서, E.coli XL1-Blue/pHAB-HC (수탁번호 : KCTC 10229BP)인 숙주세포.The host cell according to claim 3, which is E. coli XL1-Blue / pHAB-HC (Accession Number: KCTC 10229BP). 삭제delete 삭제delete 삭제delete 삭제delete
KR1020020045765A 2002-08-02 2002-08-02 A heavy chain expression vector KR100604038B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020020045765A KR100604038B1 (en) 2002-08-02 2002-08-02 A heavy chain expression vector
AU2003253447A AU2003253447A1 (en) 2002-08-02 2003-08-01 Expression vectors
PCT/KR2003/001555 WO2004013278A2 (en) 2002-08-02 2003-08-01 Expression vectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020045765A KR100604038B1 (en) 2002-08-02 2002-08-02 A heavy chain expression vector

Publications (2)

Publication Number Publication Date
KR20040012266A KR20040012266A (en) 2004-02-11
KR100604038B1 true KR100604038B1 (en) 2006-07-24

Family

ID=37320268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020045765A KR100604038B1 (en) 2002-08-02 2002-08-02 A heavy chain expression vector

Country Status (1)

Country Link
KR (1) KR100604038B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840298A (en) * 1995-06-07 1998-11-24 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof
US5840479A (en) * 1990-02-01 1998-11-24 Behring Diagnostics Gmbh Preparation and use of gene banks of synthetic human antibodies ("synthetic human-antibody libraries")
US6214613B1 (en) * 1993-12-03 2001-04-10 Ashai Kasei Kogyo Kabushiki Kaisha Expression screening vector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840479A (en) * 1990-02-01 1998-11-24 Behring Diagnostics Gmbh Preparation and use of gene banks of synthetic human antibodies ("synthetic human-antibody libraries")
US6214613B1 (en) * 1993-12-03 2001-04-10 Ashai Kasei Kogyo Kabushiki Kaisha Expression screening vector
US5840298A (en) * 1995-06-07 1998-11-24 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nucleic Acids Res. 1993 Jun 25;21(12):2921-9 *

Also Published As

Publication number Publication date
KR20040012266A (en) 2004-02-11

Similar Documents

Publication Publication Date Title
CN111939250B (en) Vaccine for preventing COVID-19 and preparation method thereof
CA2409748C (en) Soluble ctla4 mutant molecules and uses thereof
KR101204229B1 (en) Optimized TACI-Fc Fusion Proteins
CN111533809A (en) Subunit vaccine for novel coronavirus and application
CN106380521B (en) Interleukin-15 fusion protein for tumor targeted therapy
KR100895552B1 (en) Methods for Treating Rheumatic Diseases Using a Soluble CTLA4 Molecule
CN112125973B (en) Specific antibodies or antigen-binding fragments thereof for coronaviruses
CN109336980B (en) Muc 1-targeted chimeric antigen receptor modified T cell and application thereof
KR20200103774A (en) Monoclonal antibody and its use method
CN113150132B (en) anti-SARS-CoV-2 recombinant antibody and its application
KR20160145789A (en) Use of ctla4 compound for achieving drug-free remission in subjects with early ra
KR100604038B1 (en) A heavy chain expression vector
WO2020139175A2 (en) Humanized antibodies against the beta chain region of the trbv9 family of human tcr and methods for the use thereof
CN108060137B (en) IL7 and IL21 modified NK92 cell, preparation method and application thereof
CN101747440B (en) TNFR-Fc fusion protein and usage thereof
CN111434682B (en) anti-H7N 9 fully human monoclonal antibody 7T33, and preparation method and application thereof
KR101625112B1 (en) Pharmaceutical use of ik factor and nucleic acids encoding ik factor
CN111100202B (en) Human monoclonal antibodies to protein tag Streptactin
CN113121685A (en) anti-interleukin-17A antibody, preparation method and application thereof
CN111100875B (en) TGF-beta receptor II isoforms, fusion peptides, methods of treatment and in vitro methods
DK1536234T3 (en) SOLUBLE MUTANT CTLA4 MOLECULES AND APPLICATIONS THEREOF
KR20060084082A (en) Soluble tlr2-fc fusion protein and a polynucleotide encoding therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100114

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee