KR100601236B1 - Alkali-proof glass fiber net and method for preparing the same - Google Patents

Alkali-proof glass fiber net and method for preparing the same Download PDF

Info

Publication number
KR100601236B1
KR100601236B1 KR1020040116811A KR20040116811A KR100601236B1 KR 100601236 B1 KR100601236 B1 KR 100601236B1 KR 1020040116811 A KR1020040116811 A KR 1020040116811A KR 20040116811 A KR20040116811 A KR 20040116811A KR 100601236 B1 KR100601236 B1 KR 100601236B1
Authority
KR
South Korea
Prior art keywords
glass fiber
alkali
mesh
resistant
net
Prior art date
Application number
KR1020040116811A
Other languages
Korean (ko)
Other versions
KR20060078120A (en
Inventor
김현배
Original Assignee
주식회사 알인텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알인텍 filed Critical 주식회사 알인텍
Priority to KR1020040116811A priority Critical patent/KR100601236B1/en
Publication of KR20060078120A publication Critical patent/KR20060078120A/en
Application granted granted Critical
Publication of KR100601236B1 publication Critical patent/KR100601236B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04GMAKING NETS BY KNOTTING OF FILAMENTARY MATERIAL; MAKING KNOTTED CARPETS OR TAPESTRIES; KNOTTING NOT OTHERWISE PROVIDED FOR
    • D04G1/00Making nets by knotting of filamentary material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 내알칼리성 유리섬유 망과 이의 제조방법에 관한 것으로서, 보다 상세하게는 외경이 0.2∼1.0mm 범위이고, 경사와 위사의 굵기를 같은 E-유리섬유로 직조하여 20∼40메쉬의 유리섬유 망에 에틸렌비닐아세테이트와 멜라민을 혼합시킨 내알칼리성 폴리머가 코팅된 내알칼리성이 우수한 유리섬유 망 및 이를 경제적으로 제조하는 방법에 관한 것이다.The present invention relates to an alkali-resistant glass fiber net and a method for manufacturing the same, and more specifically, the outer diameter is in the range of 0.2 ~ 1.0mm, weaved with E-glass fiber with the same thickness of warp and weft, 20-40 mesh glass fiber The present invention relates to an alkali-resistant glass fiber net coated with an alkali-resistant polymer obtained by mixing ethylene vinyl acetate and melamine in a mesh and a method of economically manufacturing the same.

유리섬유, 망, EVA, 멜라민, 디핑, 코팅Fiberglass, mesh, EVA, melamine, dipping, coating

Description

내알칼리성 유리섬유 망 및 이의 제조방법{Alkali-proof glass fiber net and method for preparing the same}Alkali-proof glass fiber net and method for preparing the same}

도 1은 본 발명의 실시예 1에 따라 36 메쉬로 제조된 유리섬유 망의 조직을 간단하게 나타낸 개략도이다.Figure 1 is a schematic diagram showing a simple structure of the glass fiber network made of 36 mesh in accordance with Example 1 of the present invention.

도 2는 본 발명의 실시예 1에 따라 제조된 내알칼리성 유리섬유 망이 내알칼리성 폴리머로 코팅된 조직을 간단하게 나타낸 개략도이다.Figure 2 is a schematic diagram showing the structure of the alkali-resistant glass fiber network prepared according to Example 1 of the present invention coated with an alkali-resistant polymer.

본 발명은 내알칼리성 유리섬유 망과 이의 제조방법에 관한 것으로서, 보다 상세하게는 염가의 E-유리섬유로 소정 범위의 메쉬 망으로 유리섬유 망을 직조한 다음 내알칼리성 폴리머에 디핑한 후 건조 및 경화시킴으로써, 유리섬유가 알칼리에서 침식되어 인장강도, 탄성 및 기타 물성이 저하되던 문제점을 간단하면서도 경제적인 방법으로 해결하고자 한 내알칼리성 유리섬유 망과 이의 제조방법에 관한 것이다.The present invention relates to an alkali-resistant glass fiber net and a method for manufacturing the same, and more particularly, to fabricate a glass fiber net with a range of mesh nets with inexpensive E-glass fibers, and then dipped into an alkali-resistant polymer, followed by drying and curing. By doing so, the present invention relates to an alkali-resistant glass fiber net and a method for producing the same, which are intended to solve the problem that the glass fiber is eroded in alkali and lowers tensile strength, elasticity and other physical properties in a simple and economic way.

무기질인 유리섬유는 인장강도가 뛰어나고 높은 탄성을 갖고 있어 콘크리트 구조물이나 판상의 절연성 단열재의 보강재로 사용하고자 시도되고 있으나, 상기 콘크리트 구조물 또는 판상으로 절연성 단열재 등을 제조시 사용되는 시멘트 등과 함께 사용될 경우 상기 시멘트의 수화반응시에 강알칼리에 노출되기 때문에 유리섬유 자체의 강도저하가 극심하게 되고, 알칼리에 침식되어 보강재료로서의 특성을 살릴 수 없는 문제점이 있었다.Inorganic glass fiber has excellent tensile strength and high elasticity, so it is attempted to be used as a reinforcement for insulating insulation of concrete structures or plates, but when used together with cement used when manufacturing insulating insulation for concrete structures or plates, Due to exposure to strong alkalis during the hydration of cement, the glass fiber itself is severely deteriorated, and there is a problem in that it is not eroded by alkali, thereby making it impossible to utilize properties as a reinforcing material.

종래에는 상기와 같은 유리섬유의 뛰어난 인장강도와 높은 탄성의 특성을 살리기 위하여 유리섬유의 지르코니아(ZrO2) 함량을 증대시킨 유리조성물이 제안되었었다(미국특허 제3,861,926호, 영국공개특허 제1243972호 등). 그러나, 상기 특허에 따른 유리조성물은 지르코니아 함량이 높아 내알칼리성은 증대하지만 방사성이 급격히 약화되는 결점이 있고, 용융로의 재료소모가 극심하고 전기소모량이 증대되어 경제성이 없었다.Conventionally, glass compositions having increased zirconia (ZrO 2 ) content of glass fibers have been proposed in order to take advantage of the excellent tensile strength and high elasticity of the glass fibers as described above (US Pat. No. 3,861,926, British Patent Publication No. 1243972, etc.). ). However, the glass composition according to the above patent has a high zirconia content, which increases alkali resistance, but has a drawback in that the radioactivity is rapidly weakened, and the material consumption of the melting furnace is extremely high and the amount of electric consumption is increased.

또한, 한국 공고특허 제1981-00741호는 지르코니아 함량을 19∼23.5%로 조성 방사하여 내알칼리성 유리섬유를 얻는 방법이고, 한국 공개실용신안 제95-3929호나 한국 등록실용신안 제20-0207136호는 내알칼리성 유리섬유(ARG)를 이용하는 것으로 국내생산이 되지 않는 원료를 수입하기 때문에 경제성이 없다.In addition, Korean Patent Publication No. 1981-00741 is a method of obtaining an alkali-resistant glass fiber by composition spinning the zirconia content to 19 to 23.5%, Korean Utility Model Publication No. 95-3929 or Korean Registered Utility Model No. 20-0207136 Alkali-resistant glass fiber (ARG) is used to import raw materials that are not domestically produced.

또한, 유리섬유 망을 이용하는 일본 공개특허 제2003-13352호나 일본 공개특허 제2002-242447호 등이 있으나, 전부 내알칼리성 유리섬유를 이용하는 방법이며 한국 공고특허 제1981-00313호는 E-유리(E-Glass) 섬유에 화학적인 반응으로 첨가제로 코팅하여 시멘트의 보강섬유로 사용하는 방법이나 내알칼리성 유리섬유 망으로 제조된 것이 아니므로 역시 경제적인 문제점이 지적되고 있다.In addition, there are Japanese Patent Laid-Open Publication No. 2003-13352 and Japanese Patent Laid-Open Publication No. 2002-242447 using glass fiber nets, but all of them are methods using alkali-resistant glass fibers, and Korean Patent Publication No. 1981-00313 uses E-glass (E -Glass) It is economically pointed out because it is not made of alkali-resistant glass fiber net or coated with additives by chemical reaction to fiber and used as reinforcing fiber of cement.

한편, 에폭시 수지, 에폭시 수지의 경화제, 에폭시 실란을 함유하는 실란 커플링제, 비스페놀 A의 에틸렌 옥사이드 부가물 또는 폴리에틸렌글리콜 지방산 에스테르의 비이온계 계면활성제를 함유하는 집속제가 도포되어 내알칼리성이나 내산성 등의 내약품성이 우수하고, 습식부직포 초조시에 있어서 부산성이 우수한 유리섬유에 대한 기술이 한국 등록특허 제0404695에 개시되어 있으나, 상기 기술은 유리섬유의 절단물을 이용하여 유리섬유 부직포를 제조하는 것이다.On the other hand, an epoxy resin, a curing agent of an epoxy resin, a silane coupling agent containing an epoxy silane, an ethylene oxide adduct of bisphenol A, or a binding agent containing a nonionic surfactant of polyethylene glycol fatty acid ester is applied, such as alkali resistance or acid resistance. Although a technique for glass fibers having excellent chemical resistance and excellent by-product properties when wet nonwoven fabrics are disclosed in Korean Patent No.0404695, the technique is to prepare a glass fiber nonwoven fabric using a cut of the glass fibers. .

따라서, 유리섬유가 알칼리에 취약한 문제점을 해결하여 유리섬유의 우수한 인장강도 및 탄성을 그대로 적용하여 사용할 수 있음과 동시에 경제성을 만족시킬 수 있는 방법의 개발이 당 업계에 요구되고 있는 실정이다.Therefore, there is a need in the art to solve a problem in which glass fibers are vulnerable to alkali so that the excellent tensile strength and elasticity of glass fibers can be applied as they are, and at the same time, the development of a method capable of satisfying the economics.

이에 본 발명의 발명자는 상술한 문제점을 해결하기 위하여 연구 노력한 결과, 국내에서 손쉽게 구할 수 있는 염가의 E-유리섬유를 소정의 메쉬(mesh)를 갖는 망으로 직조하고, 이를 내알칼리성 폴리머에 디핑한 다음 건조 및 경화시키면, 다수의 유리섬유를 하나의 강한 유리섬유 존으로 결합시킬 수 있으며, 섬유망이 경사와 위사의 연결되는 점에서 아주 강하게 결합되어져서 콘크리트 구조물의 보강재로서 철근을 사용하는 것과 같은 최상의 기능을 제공할 수 있음을 확인하였고, 본 발명은 이에 기초하여 완성하였다.Accordingly, the inventors of the present invention have made research efforts to solve the above-mentioned problems. As a result, cheap E-glass fibers, which are easily obtained in Korea, are woven into a net having a predetermined mesh and dipped into alkali-resistant polymers. When dried and cured, multiple glass fibers can be combined into one strong glass fiber zone, and the fiber mesh is very strong at the point of connection between warp and weft yarns, such as using reinforcement as a reinforcement for concrete structures. It was confirmed that the best function can be provided, and the present invention was completed based on this.

따라서, 본 발명의 목적은 특정 구조의 유리섬유 망을 내알칼리성 폴리머로 코팅시켜 내알칼리성이 향상된 유리섬유 망을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a glass fiber net having improved alkali resistance by coating a glass fiber net having a specific structure with an alkali resistant polymer.

본 발명의 다른 목적은 상기 내알카리성 유리섬유 망을 간단하고 경제적인 방법으로 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing the alkali-resistant glass fiber network in a simple and economic way.

상기 목적을 달성하기 위한 본 발명의 내알카리성 유리섬유 망은 외경이 0.2∼1.0mm 범위이고, 경사와 위사의 굵기를 같은 E-유리섬유로 직조하여 20∼40메쉬의 유리섬유 망에 에틸렌비닐아세테이트(EVA)와 멜라민을 혼합시킨 내알칼리성 폴리머가 코팅된 것으로 구성된다.Alkali-resistant glass fiber net of the present invention for achieving the above object is in the range of 0.2 ~ 1.0mm outer diameter, woven from E-glass fiber with the same thickness of warp and weft yarn ethylene vinyl acetate in 20-40 mesh fiberglass net It consists of a coating of an alkali resistant polymer mixed with (EVA) and melamine.

본 발명의 다른 목적을 달성하기 위한 상기 내알카리성 유리섬유 망의 제조방법은 외경이 0.2∼1.0mm 범위이고, 경사와 위사의 굵기를 같은 유리섬유로 20∼40메쉬의 유리섬유 망을 직조하는 단계, 및 상기 유리섬유 망을 에틸렌비닐아세테이트와 멜라민을 혼합시킨 내알칼리성 폴리머에 디핑(Dipping)한 후, 건조 및 경화시키는 단계를 포함한다.The method of manufacturing the alkali-resistant glass fiber net for achieving another object of the present invention is the step of weaving a glass fiber net of 20 to 40 mesh with a glass fiber having an outer diameter in the range of 0.2 ~ 1.0mm, the same thickness of the warp and weft And dipping the glass fiber net into an alkali resistant polymer mixed with ethylene vinyl acetate and melamine, followed by drying and curing.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

본 발명은 염가의 E-유리섬유로 유리섬유 망의 굵기를 같게 하여 직조한 다음, 내알칼리성 폴리머에 디핑한 후 건조 및 경화시킴으로써, 유리섬유가 알칼리에서 침식되어 인장강도, 탄성 및 기타 물성이 저하되던 문제점을 간단하면서도 경제적인 방법으로 해결하고자 한 내알칼리성 유리섬유 망과 그의 제조방법에 관한 것이다.The present invention is woven by the same thickness of the glass fiber net with cheap E-glass fiber, then dipped in alkali-resistant polymer, dried and cured, the glass fiber is eroded in alkali, reducing tensile strength, elasticity and other physical properties The present invention relates to an alkali-resistant glass fiber net and a method for manufacturing the same, which are intended to solve the problem in a simple and economical manner.

본 발명의 내알칼리성 유리섬유 망의 제조방법을 중심으로 설명하면, 먼저, E-유리섬유로 유리섬유망을 직조하는 단계이다.Referring to the manufacturing method of the alkali-resistant glass fiber net of the present invention, first, the step of weaving the glass fiber network with E-glass fiber.

상기 E-유리섬유는 외경이 0.2∼1㎜ 범위인 것을 사용하는데, 이때 상기 E- 유리섬유의 외경이 0.2㎜ 미만이면 유리섬유 조직의 강도가 약하며, 1㎜를 초과하는 경우에는 유리섬유 조직 사이에 공극이 생겨서 유리섬유 망이 배합원료와의 결합력이 좋지 않은 문제점이 있다. 또한, 본 발명에서는 유리섬유 망의 위사와 경사의 굵기를 같게 하는데, 이는 균일한 조직과 강도를 같게 하기 위함이다.The E-glass fiber has an outer diameter ranging from 0.2 to 1 mm, wherein the outer diameter of the E-glass fiber is less than 0.2 mm, the strength of the glass fiber tissue is weak, and if the E-glass fiber exceeds 1 mm, the glass fiber tissue is between. There is a problem in that there is a gap in the glass fiber mesh is not good binding force with the blending raw material. In addition, in the present invention, the thickness of the warp yarn and the warp yarn of the glass fiber net is the same, in order to equalize the uniform structure and strength.

상기 유리섬유 망은 20∼40메쉬가 되도록 직조되는데, 보다 바람직하기로는 30∼36메쉬이고, 시멘트 혼합물과 적층하기에 가장 바람직하기로는 36메쉬이다. 이때, 직조방법은 평직으로 이루어지도록 하며, 유리섬유 망이 20 메쉬 미만으로 간격이 넓으면 유리섬유 망 자체의 보강 역할이 약화될 수 있고, 40 메쉬를 초과하여 간격이 좁으면 유리섬유 망이 적용된 배합제가 유리섬유 망 사이로 나와서 배합제의 결합력이 약화되는 문제점이 있다.The glass fiber mesh is woven to 20 to 40 mesh, more preferably 30 to 36 mesh, and most preferably 36 mesh to be laminated with the cement mixture. At this time, the weaving method is to be made of plain weave, if the glass fiber mesh is less than 20 mesh wide spacing may weaken the reinforcing role of the glass fiber network itself, if the gap is narrower than 40 mesh applied glass fiber mesh There is a problem in that the compounding agent weakens the bonding strength of the compounding agent comes out between the glass fiber net.

다음으로 상기 유리섬유 망을 내알칼리성 폴리머에 디핑한 후 건조 및 경화시키는 단계이다.Next, the glass fiber net is dipped in an alkali resistant polymer, followed by drying and curing.

본 발명에서 사용할 수 있는 내알칼리성 폴리머는 에틸렌비닐아세테이트와 멜라민의 혼합물을 사용할 수 있다. 상기 에틸렌비닐아세테이트(EVA)의 사용량은 80∼97중량%가 바람직하고, 80중량% 미만이면 내알칼리성이 저하되고 경화속도가 빨라 코팅할 수가 없다. 또한, 상기 멜라민의 사용량은 3∼20중량%가 바람직하며, 3중량% 미만이면 경화성이 좋지 않다.As the alkali resistant polymer that can be used in the present invention, a mixture of ethylene vinyl acetate and melamine may be used. The amount of the ethylene vinyl acetate (EVA) is preferably 80 to 97% by weight, and if it is less than 80% by weight, the alkali resistance is lowered and the curing rate is faster, so that the coating cannot be performed. In addition, the amount of the melamine used is preferably 3 to 20% by weight, and less than 3% by weight is not good curability.

유리섬유를 상기와 같은 내알칼리성 폴리머에 충분히 디핑한 후 건조 및 경화시키는데, 상기한 건조 및 경화는 50∼70℃에서 수행되도록 한다. 이때, 상기 건조 및 경화 온도가 50℃ 미만이면 많은 시간이 소요되고 충분한 경화가 이루어지지 않으며, 70℃를 초과하면 과한 가열로 인하여 탄화될 소지가 있다.The glass fiber is sufficiently dipped in the alkali resistant polymer as described above, followed by drying and curing, wherein the drying and curing are performed at 50 to 70 ° C. At this time, if the drying and curing temperature is less than 50 ℃ takes a lot of time and does not sufficiently cure, if it exceeds 70 ℃ may be carbonized due to excessive heating.

상기와 같은 본 발명의 방법에 의하면 다수의 유리섬유를 하나의 강한 유리섬유 존으로 결합시킬 수 있으며, 섬유망이 경사와 위사의 연결되는 점에서 아주 강하게 결합되어져서 콘크리트 구조물의 보강재로 적용될 경우 최상의 기능을 제공할 수 있다.According to the method of the present invention as described above it is possible to combine a plurality of glass fibers into one strong glass fiber zone, the fiber mesh is very strong in the point of connection between the warp and weft yarn is applied best when applied as a reinforcement of the concrete structure Can provide functionality.

즉, 열처리에 의하여 유리섬유 망에 코팅된 내알칼리성 폴리머가 건조 경화되면 알칼리 용액에서는 전혀 침식되지 않고, 내마찰력이 우수하여 콘크리트 타설과정이나 절연성 단열재의 적층 과정에서도 안심하고 사용할 수 있다. 본 발명에 따른 유리섬유 망은 절연성 단열재, 콘크리트 구조물의 보강재, 일반산업용 단열재의 보강재 등 다양한 섬유강화제품에 적용할 수 있다.That is, when the alkali-resistant polymer coated on the glass fiber net by heat treatment is dry cured, it is not eroded at all in an alkaline solution, and has excellent frictional resistance, so that it can be used safely in concrete pouring or lamination of insulating insulation. Glass fiber net according to the present invention can be applied to a variety of fiber reinforced products, such as insulating insulation, reinforcement of concrete structures, reinforcement of general industrial insulation.

특히 공업용으로 이용되는 절연성 단열재에 본 발명의 내알칼리성 유리섬유 망을 적용시킬 경우에는 사용되는 유리섬유 중 자철분이 다소 함유되었더라도 본 발명에 따라 내알카리성 폴리머의 코팅에 의하여 완전한 절연성 유리섬유로 이용될 수 있으며, 유리섬유의 외경은 0.3∼0.6㎜범위로 조절하고, 36 메쉬의 망으로 직조하여 보강재로서 사용하는 것이 좋다.In particular, in the case of applying the alkali-resistant glass fiber network of the present invention to an insulating insulating material used for industrial purposes, even if some of the magnetic iron contained in the glass fiber used, it can be used as a completely insulating glass fiber by coating the alkali-resistant polymer according to the present invention. The outer diameter of the glass fiber may be adjusted in the range of 0.3 to 0.6 mm, and woven into a mesh of 36 mesh to be used as a reinforcing material.

섬유강화제품의 두께가 10㎜이하로 얇을 경우에도 섬유강화제품의 양쪽 외벽 가까이에 본 발명의 내알칼리성 유리섬유 망을 배열하는 것이 좋으며, 섬유강화 제품의 두께가 40mm 이상으로 비교적 두꺼울 경우에는 제품의 양 외벽 근처로부터 5∼10㎜의 간격을 두고 두겹 이상의 다층으로 배열하는 것이 보다 효과적이어서, 콘크리트 구조물 등에 적용될 경우에는 상하 외각에 2∼3겹 배열하는 것이 더욱 효과 적이다.Even when the thickness of the fiber-reinforced product is less than 10 mm, it is better to arrange the alkali-resistant glass fiber network of the present invention near both outer walls of the fiber-reinforced product, and when the thickness of the fiber-reinforced product is relatively thick (40 mm or more), It is more effective to arrange two or more layers in multiple layers at intervals of 5 to 10 mm from both outer walls, and when applied to a concrete structure or the like, it is more effective to arrange two to three layers at the upper and lower outer shells.

콘크리트 구조물에 철근을 전혀 사용하지 않고 거푸집 내에 모르타르를 일정량 도포하여 균일하게 고른 후 그 위에 본 발명의 내알칼리성 유리섬유 망을 심고 다시 모르타르를 보충하여 고르는 방법을 반복하여 내알칼리성 유리섬유 망을 적층하는 방법으로 적용할 수 있다.Applying a certain amount of mortar in the formwork without using any steel reinforcement to the concrete structure, evenly planting the alkali-resistant glass fiber mesh of the present invention and replenishing the mortar by repeating the method of laminating the alkali-resistant glass fiber mesh It can be applied in a way.

상기 유리섬유 망의 적층은 콘크리트 구조물에 철근을 사용하지 않고도 외각에 여러 겹의 망을 적층하는 방법으로 최강의 강도와 구조물의 중량을 현격하게 줄일 수 있다. 또한 철근을 사용하는 다리 공사 등에 적용하는 경우 상하부층에 본 발명에 따른 내알칼리성 유리섬유 망을 설치하고 마감하면 표면의 강도가 향상되어 많은 하중에 효과적이다.In the lamination of the fiberglass net, the strength and the weight of the structure can be significantly reduced by stacking multiple layers of nets on the outer shell without using rebar. In addition, when applied to the bridge construction using reinforcing bar when the alkali-resistant glass fiber net according to the present invention in the upper and lower layers and finish the surface strength is improved and effective for many loads.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명하지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

실시예 1Example 1

EVA와 멜라민 혼합용액을 사용한 내알칼리성 유리섬유 망의 제조Preparation of Alkali-resistant Glass Fiber Mesh Using EVA and Melamine Mixtures

도 1에 도시한 바와 같은 굵기가 같은 약 0.26㎜인 E-유리섬유로 직조한 36메쉬의 유리섬유 망을 EVA 90 중량부와 멜라민 10중량부의 혼합물에 물 약 50중량%로 희석하여 이루어진 내알칼리성 폴리머 용액에 디핑(Dipping)한 다음, 약 50∼60℃로 열처리하여 건조 및 경화시켜서 도 2에 도시한 바와 같은 내알칼리성 유리섬유 망을 제조하였다.Alkali resistance made by diluting 36 mesh glass fiber mesh woven from E-glass fiber having the same thickness as shown in FIG. 1 to about 50% by weight of water in a mixture of 90 parts by weight of EVA and 10 parts by weight of melamine. After dipping in the polymer solution, heat-treated at about 50-60 ° C., dried and cured to prepare an alkali-resistant glass fiber network as shown in FIG. 2.

비교예 1Comparative Example 1

굵기가 약 0.26㎜인 E-유리섬유를 위사로 하고, 굵기가 약 0.26㎜인 E-유리섬유를 경사로 하여 36메쉬의 유리섬유 망을 직조하고, 일반적으로 적용되고 있는 아크릴 수지로 코팅하여 유리섬유 망을 제조하였다. 상기 망은 섬유의 결합 부분이 불량하여 조직이 강하지 못하고 강알칼리내의 수화반응시 전부 침식되어 버렸다.Weaving a 36 mesh glass fiber net with a weft of E-glass fiber with a thickness of about 0.26 mm, an E-glass fiber with a thickness of about 0.26 mm, and coating the glass fiber with a commonly applied acrylic resin. The net was prepared. The net was poor in the bonding portion of the fiber, the structure was not strong, and all eroded during the hydration reaction in the strong alkali.

비교예 2Comparative Example 2

알칼리성 용액으로 코팅한 유리섬유 망일지라도 실시예 1의 방법대로 하지 않고 경화제(멜라민 수지) 비율을 2%로 하여 코팅했을 경우 코팅막이 약하여 초기 양생 상태는 유리섬유가 보존하고 있는 것 같으나 잔유 양생이 진행하는 동안 서서히 침식되어 보강재로서 기능을 상실하게 된다.Even if the glass fiber network coated with alkaline solution is coated with a curing agent (melamine resin) ratio of 2% without using the method of Example 1, the coating film is weak, and the initial curing state seems to be preserved by the glass fiber, but the remaining cure proceeds. During this time, it erodes slowly and loses its function as a stiffener.

실험예 1Experimental Example 1

물성 측정Property measurement

상기 실시예 1과 비교예 1 및 2에서 제조한 유리섬유 망을 사용하여 물성을 다음과 같은 방법으로 측정하고, 그 결과를 하기 표 1에 나타내었다.The physical properties of the glass fiber nets prepared in Example 1 and Comparative Examples 1 and 2 were measured by the following methods, and the results are shown in Table 1 below.

구분division 실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 인장강도1) ㎏·f/25㎟Tensile Strength 1) ㎏f / 25㎡ 경사slope 116.7116.7 78.978.9 80.080.0 위사Weft 116.7116.7 79.879.8 80.180.1 내알카리성2) Alkali resistance 2) pH 14pH 14 이상없음clear 침식됨Eroded 서서히 침식Slowly eroding 내산성3) Acid resistance 3) pH 2pH 2 이상없음clear 이상없음clear 이상없음clear

1) 인장강도: 경사(Warp), 위사(Fill)1) Tensile Strength: Warp, Fill

2) 내알칼리성: pH 14내의 수화반응 10일 후2) Alkali resistance: After 10 days of hydration reaction at pH 14

3) 내산성: pH 2의 용액에 24시간동안 침지3) Acid Resistance: Soak in pH 2 solution for 24 hours

상기 표 1에 나타낸 바와 같이, 본 발명의 실시예 1에 의하여 제조된 내알칼리성 유리섬유 망은 비교예 1에 따라 제조된 내알칼리성 용액을 코팅하지 않은 유리섬유 망 보다 강알칼리에 전혀 침식되지 않고 최강의 특성을 나타났으며, 비교예 2에 따라 제조된 유리섬유 망은 실시예 1에 따른 유리섬유보다 내알카리성이 현격하게 차이가 나타남을 알 수 있다.As shown in Table 1, the alkali-resistant glass fiber network prepared according to Example 1 of the present invention is stronger than the strong alkali and no erosion at all than the glass fiber network without coating the alkali-resistant solution prepared according to Comparative Example 1 It showed that the characteristics, the glass fiber net prepared according to Comparative Example 2 can be seen that the difference in alkali resistance significantly than the glass fiber according to Example 1.

실시예 2 및 비교예 3∼5Example 2 and Comparative Examples 3 to 5

판상의 절연성 단열재 제조Manufacture of insulating insulation on plate

실시예 2Example 2

일정한 규격의 판상으로 성형하기 위하여 유압프레스하단에 금형을 설치하고 금형의 바닥에 탈수가 용이한 천을 설치한 다음, 포틀랜드 시멘트와 세피오라이트를 60 : 35 중량비로 건식 혼합한 후 혼합된 원료의 약 15 중량비의 EVA를 경화제 없이 적당량 물로 희석, 습식 혼합한 원료를 약 8㎜ 두께로 균일하게 도포하였다. 여기에 상기 실시예 1에서 제조한 내알칼리성 유리 망을 깔고 잘 문질러서 상기 배합된 원료를 약 8㎜ 두께로 균일하게 보충하여 도포하는 방법을 반복하여 절연성단열재 20㎜의 두께까지 적층한 다음, 가압 성형 양생하여 표면을 연마하여 판상의 절연성 단열재를 제조하였다.In order to form a plate of a certain size, a mold is installed at the bottom of the hydraulic press, a dewatering cloth is installed at the bottom of the mold, and dry mixing Portland cement and sepiolite at a weight ratio of 60:35 and then about 15 weight ratio of the mixed raw materials. The raw material of which EVA was diluted with an appropriate amount of water without a curing agent and wet mixed was uniformly applied to a thickness of about 8 mm. Here, the alkali-resistant glass net prepared in Example 1 was rubbed and rubbed well to repeat the method of uniformly replenishing the blended raw material with a thickness of about 8 mm and laminating it to a thickness of 20 mm of insulating insulating material, followed by pressure molding. After curing, the surface was polished to prepare a plate-shaped insulating insulating material.

비교예 3Comparative Example 3

비교예 3은 실시예 1의 내알칼리성 유리섬유 망을 전혀 사용하지 않은 일반 KSC 2346의 전기절연용 석면 시멘트 판의 물성치이고, 비교예 4는 일반적으로 시중 에 유통되고 있는 유리섬유 망을 보강재로 사용한 것이며 비교예 5는 비교예 2의 경화불량으로 제조된 절연성단열재의 물성치다.Comparative Example 3 is a physical property of asbestos cement plates for electrical insulation of general KSC 2346, which does not use the alkali-resistant glass fiber net of Example 1, and Comparative Example 4 is generally used as a reinforcing material glass fiber net in the market Comparative Example 5 is a physical property value of the insulating insulating material prepared by the poor curing of Comparative Example 2.

실험예 2Experimental Example 2

절연성 단열재의 물성 비교Comparison of Properties of Insulation Material

상기 실시예 2 및 비교예 3∼5에 따라 제조된 절연성 단열재의 물성을 다음과 같은 방법으로 측정하였으며, 그 결과는 하기 표 2에 나타내었다.The physical properties of the insulating insulating material prepared according to Example 2 and Comparative Examples 3 to 5 were measured by the following method, and the results are shown in Table 2 below.

1. 굴곡강도: KSC 2346Flexural Strength: KSC 2346

2. 내충격성: KSC 23462. Impact resistance: KSC 2346

3. 내알칼리성: pH 14의 수화반응 후 10일후 측정3. Alkali resistance: measured 10 days after hydration of pH 14

4. 유리섬유의 침식여부: pH 14내의 수화반응후 10일후 관찰4. Erosion of glass fiber: Observed 10 days after hydration reaction at pH 14.

5. 흡수율: KSC 23465. Absorption rate: KSC 2346

구분division 단위unit 실시예 2Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 굴곡강도Flexural strength ㎏·f/25㎟Kgf / 25mm2 6.06.0 2.82.8 2.82.8 33 내충격성Impact resistance ㎏·f/25㎟Kgf / 25mm2 4.84.8 22 22 2.12.1 내알카리성Alkali resistance pH 14내의 수화반응Hydration reaction at pH 14 침식없음No erosion 침식없음No erosion 침식corrosion 서서히 침식Slowly eroding 유리섬유망의 침식여부Whether the fiberglass network is eroded 양생후 관찰Post-curing observation 섬유조직 유지됨Fibrous tissue maintained 발암물질로 사용불가Can not be used as a carcinogen 섬유조직없음No fibrous tissue 섬유기능 상실Loss of fiber function 흡수율Water absorption %% 55 1818 2020 1515

상기 표 2에 나타낸 바와 같이, 본 발명의 실시예 2에 따라 제조된 판상의 절연성 단열재는 내알칼리성 폴리머로 유리섬유 망을 사용하고 혼합된 원료의 약 15 중량비의 EVA를 경화제 없이 적당량의 물로 희석하여 사용하면 유리 망에 코팅한 EVA와 호환성이 있어 유리 망과 원료와 결합성이 양호하며 공극의 극소화와 흡수율의 감소로 전기절연성 단열재의 좋은 제품이 된다. 따라서 실시예 2에 비하여 비교예 3∼5의 차이가 크고 코팅한 유리 망을 사용한 판상의 제품은 외부의 심한 충격에도 파손되어 떨어져 나가는 경우가 없기 때문에 반영구적으로 사용되며 경제성에도 이점이 있다.As shown in Table 2, the plate-shaped insulating heat insulating material prepared according to Example 2 of the present invention uses a glass fiber net as an alkali-resistant polymer, and diluted about 15 weight ratio of EVA of the mixed raw materials with an appropriate amount of water without a curing agent. When used, it is compatible with EVA coated on glass mesh, so it has good bond with glass mesh and raw material, and it is a good product of electrically insulating insulation material by minimizing voids and reducing water absorption. Therefore, compared with Example 2, the plate-shaped product using the coated glass net with a large difference in Comparative Examples 3 to 5 is used semi-permanently because it does not break off even under severe external shocks, and it is also advantageous in economics.

전술한 바와 같이, 본 발명에 의하면, 시중에서 쉽게 구입할 수 있으며 염가의 E-유리섬유를 사용하여 유리섬유 망을 직조한 후 EVA의 내알칼리성 폴리머로 코팅하는 간단하고 경제적인 방법으로 내알칼리성 유리섬유 망을 제조할 수 있으며, 이렇게 제조된 내알칼리성 유리섬유 망은 알칼리에 침식되지 않고 굴곡강도, 파괴강도, 내알칼리성 등의 물성이 우수하여 판상의 절연성 단열재 등에 적용되어 깨여지지 않는 우수한 섬유강화제품용 보강재료로서 효과적이다. 뿐만 아니라 콘크리트 구조물에 철근 대용으로 사용했을 경우 최강의 구조물로 내진용이나 교량·고층건물의 경량화용으로 사용될 수 있다.As described above, according to the present invention, commercially available alkali-resistant glass fibers in a simple and economical way of woven glass fiber net using cheap E-glass fiber and then coated with an alkali-resistant polymer of EVA. Alkali-resistant glass fiber net can be manufactured, and it is not eroded by alkali and has excellent physical properties such as flexural strength, breaking strength, alkali resistance, etc. Effective as a reinforcing material. In addition, when used as a substitute for reinforcing concrete structures, it is the strongest structure and can be used for earthquake resistance or lightening of bridges and high-rise buildings.

또한, 국내에 유리섬유는 대량 생산되고 있으나 물성이 우수한 내알칼리성 유리섬유는 경제적인 측면의 문제점을 해결하지 못하여 전혀 생산되지 않고 있으나 본 발명에 의하면 값싸고 간단하게 제조할 수 있어 상술한 경제적인 문제를 해소하여 우수한 내알칼리성을 가지는 유리섬유 제품을 생산하여 사용할 수 있는 효과를 부가할 수 있다.In addition, the glass fiber is produced in large quantities in Korea, but the alkali-resistant glass fiber with excellent physical properties is not produced at all because it does not solve the problem of economic aspects, but according to the present invention, it is possible to manufacture cheaper and simpler as described above. By eliminating the effect can be used to produce and use a glass fiber product having excellent alkali resistance.

Claims (6)

외경이 0.2∼1.0mm 범위이고, 경사와 위사의 굵기를 같은 E-유리섬유로 직조하여 20∼40메쉬의 유리섬유 망에 에틸렌비닐아세테이트와 멜라민을 혼합시킨 내알칼리성 폴리머가 코팅된 것을 특징으로 하는 내알칼리성 유리섬유 망.The outer diameter is in the range of 0.2 ~ 1.0mm, woven with E-glass fiber of the same thickness as the warp and weft yarn, characterized in that the alkali-resistant polymer coated with ethylene vinyl acetate and melamine in a glass fiber mesh of 20 to 40 mesh Alkali-resistant fiberglass net. 제1항에 있어서, 상기 유리섬유 망은 30∼36 메쉬인 것임을 특징으로 하는 내알칼리성 유리섬유 망.The alkali-resistant glass fiber net according to claim 1, wherein the glass fiber net is 30 to 36 mesh. 제1항에 있어서, 상기 에틸렌비닐아세테이트의 혼합비는 80∼97중량%이고, 멜라민은 3∼20중량%인 것을 특징으로 하는 내알칼리성 유리섬유 망.The alkali-resistant glass fiber net according to claim 1, wherein the mixing ratio of ethylene vinyl acetate is 80 to 97% by weight and melamine is 3 to 20% by weight. 외경이 0.2∼1.0mm 범위이고, 경사와 위사의 굵기를 같은 유리섬유로 20∼40메쉬의 유리섬유 망을 직조하는 단계, 및Weaving a 20-40 mesh fiberglass net with a glass fiber having an outer diameter ranging from 0.2 mm to 1.0 mm and having the same thickness as the warp and weft yarn, and 상기 유리섬유 망을 에틸렌비닐아세테이트와 멜라민을 혼합시킨 내알칼리성 폴리머에 디핑(Dipping)한 후, 건조 및 경화시키는 단계를 포함하는 것을 특징으로 하는 내알칼리성 유리섬유 망의 제조방법.And dipping the glass fiber net in an alkali resistant polymer mixed with ethylene vinyl acetate and melamine, and then drying and curing the glass fiber net. 제4항에 있어서, 상기 에틸렌비닐아세테이트의 혼합비는 80∼97중량%이고, 멜라민은 3∼20중량%인 것을 특징으로 하는 내알칼리성 유리섬유 망의 제조방법.The method of claim 4, wherein the mixing ratio of ethylene vinyl acetate is 80 to 97% by weight, and melamine is 3 to 20% by weight. 제4항에 있어서, 상기 건조 및 경화 단계는 50∼70℃에서 수행되는 것을 특징으로 하는 내알칼리성 유리섬유 망의 제조방법.5. The method of claim 4, wherein the drying and curing steps are performed at 50 ° C. to 70 ° C. 6.
KR1020040116811A 2004-12-30 2004-12-30 Alkali-proof glass fiber net and method for preparing the same KR100601236B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040116811A KR100601236B1 (en) 2004-12-30 2004-12-30 Alkali-proof glass fiber net and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040116811A KR100601236B1 (en) 2004-12-30 2004-12-30 Alkali-proof glass fiber net and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20060078120A KR20060078120A (en) 2006-07-05
KR100601236B1 true KR100601236B1 (en) 2006-07-13

Family

ID=37170069

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040116811A KR100601236B1 (en) 2004-12-30 2004-12-30 Alkali-proof glass fiber net and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100601236B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409887A (en) * 2013-08-21 2013-11-27 南通汇能环保建材有限公司 High-strength high-alkali-resistant glass fiber mesh fabric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351466A (en) * 2022-01-14 2022-04-15 山东大庚工程材料科技有限公司 Alkali-resistant high-strength basalt geogrid and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256277A (en) * 1996-03-18 1997-09-30 Nitto Denko Corp Highly light transmitting film member
JP2001159049A (en) 1999-11-29 2001-06-12 Unitika Ltd Mesh sheet
KR20010049602A (en) * 1999-07-01 2001-06-15 오오사와 슈지로 Mesh fabric for reinforcement and material reinforcement method
KR200332299Y1 (en) 2003-08-22 2003-11-05 주식회사 화광건설 Glass fiber reinforced sheet for constructing vertical section of cutting soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256277A (en) * 1996-03-18 1997-09-30 Nitto Denko Corp Highly light transmitting film member
KR20010049602A (en) * 1999-07-01 2001-06-15 오오사와 슈지로 Mesh fabric for reinforcement and material reinforcement method
JP2001159049A (en) 1999-11-29 2001-06-12 Unitika Ltd Mesh sheet
KR200332299Y1 (en) 2003-08-22 2003-11-05 주식회사 화광건설 Glass fiber reinforced sheet for constructing vertical section of cutting soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409887A (en) * 2013-08-21 2013-11-27 南通汇能环保建材有限公司 High-strength high-alkali-resistant glass fiber mesh fabric

Also Published As

Publication number Publication date
KR20060078120A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
CN1754015B (en) Facing material with controlled porosity for construction boards
JPS6028775B2 (en) Fiber-reinforced cementitious material free of asbestos and glass fibers
EP2650125B1 (en) Fiber reinforced cementitious material and uses thereof
SK241092A3 (en) Formed resistant product reinforced by fibrous
PL211155B1 (en) Inorganic matrix-fabric system and method
EP0261971B1 (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
CN103243826B (en) A kind of inorganic foamed heat insulating porous composite plate
KR101230256B1 (en) Ultra-high performance fiber reinforced cementitious composites and manufacturing method
PL207867B1 (en) Moulded fibre-reinforced cement articles and reinforcing fibre for such articles
KR100601236B1 (en) Alkali-proof glass fiber net and method for preparing the same
CN110054446B (en) Cement mortar and preparation process thereof
KR101150458B1 (en) Environmental friendly fiber-reinforced concrete
KR102315321B1 (en) Skin material of insulating material for building and composite insulating material for building comprising the same
Dhaheer et al. Improvement of ordinary and pure gypsum properties by using polyvinyl alcohol (PVA)
KR102525691B1 (en) Concrete Section Repair And Reinforcement Method Using Polymer Mortar
KR20050042553A (en) Concrete composition reinforced by fiber coated with thermoset resin and preparation method thereof
RU2736673C1 (en) Non-combustible, radically curable composite semi-finished material
CN112960957B (en) Glass fiber reinforced concrete and preparation method thereof
KR100694199B1 (en) Method for preparing the insulation panel having thermal resistance
KR102196629B1 (en) Method of repairing cross-section using member for restraining transformation, and member for restraining transformation and Mortar composition for repairing cross-section thereof
KR101686894B1 (en) A concrete structures methode using reinforcing fibers
Flayeh et al. The use of fiberglass textile-reinforced mortar (TRM) jacketing system to enhance the load capacity and confinement of concrete columns
CN203270830U (en) Inorganic foaming microporous heat preservation composite board
KR102563276B1 (en) Concrete Cross-section Repair And Reinforcement Polymer Mortar And Concrete Cross-section Repair And Reinforcement Method Using This
KR20140059118A (en) Cellulose fiber reinforced concrete composition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140707

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180809

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200108

Year of fee payment: 14