KR100601082B1 - Magnesia-Graphite Spray Material and Manufacturing Method Thereof - Google Patents

Magnesia-Graphite Spray Material and Manufacturing Method Thereof Download PDF

Info

Publication number
KR100601082B1
KR100601082B1 KR1019980060078A KR19980060078A KR100601082B1 KR 100601082 B1 KR100601082 B1 KR 100601082B1 KR 1019980060078 A KR1019980060078 A KR 1019980060078A KR 19980060078 A KR19980060078 A KR 19980060078A KR 100601082 B1 KR100601082 B1 KR 100601082B1
Authority
KR
South Korea
Prior art keywords
magnesia
powder
graphite
weight
refractory
Prior art date
Application number
KR1019980060078A
Other languages
Korean (ko)
Other versions
KR20000043673A (en
Inventor
김인술
박노형
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1019980060078A priority Critical patent/KR100601082B1/en
Publication of KR20000043673A publication Critical patent/KR20000043673A/en
Application granted granted Critical
Publication of KR100601082B1 publication Critical patent/KR100601082B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/047Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

본 발명은 철강제조용 노체중에서 전로, 전기로, 래들 및 정련로에서 사용하고 난후 수집된 마그네시아-흑연계 폐내화물을 이용하여 노체 내화물의 손상부위를 열간 보수하는데 사용할 수 있는 분말 용사재료에 관한 것으로 마그네시아-흑연질 폐내화물을 이용한 불꽃용사보수용 분말재료에 있어서, 마그네시아-흑연질 폐내화물을 35중량% 내지 83중량%에 크롬광 분말을 10중량% 내지 30중량%를 첨가하고 규회석 분말을 5중량% 내지 20중량% 첨가하며 알루미나 분말을 2중량% 내지 15중량%를 첨가한 마그네시아-흑연질 용사재료 및 그 제조방법에 관한 것이다.The present invention relates to a powder spray material that can be used for hot repair of damaged parts of furnace refractories using magnesia-graphite waste refractories collected after use in converters, electric furnaces, ladles and refining furnaces in steel manufacturing furnaces. -Flame spray repair powder material using graphite waste refractories, magnesia-graphite waste refractory to 35% to 83% by weight of chromium ore powder 10% to 30% by weight and wollastonite powder 5% The present invention relates to a magnesia-graphite spraying material containing 2% to 15% by weight of alumina powder and a method for producing the same.

Description

마그네시아 - 흑연계 용사재료 및 그 제조방법Magnesia-Graphite Spray Material and Manufacturing Method Thereof

본 발명은 불꽃용사보수용 분말재료에 관한 것으로, 보다 상세하게는 철강제조용 노체중에서 전로, 전기로, 래들 및 정련로에서 사용하고 난후 수집된 마그네시아-흑연계 폐내화물을 이용하여 노체 내화물의 손상부위를 열간 보수하는데 사용할 수 있는 분말 용사재료에 관한 것이다.TECHNICAL FIELD The present invention relates to a powder material for flame spray repair, and more particularly, to damaged parts of a furnace refractory body using magnesia-graphite waste refractories collected after use in converters, electric furnaces, ladles and refining furnaces in steel manufacturing furnaces. The present invention relates to a powder spray material that can be used for hot repair.

지금까지 각종 공업용 노체의 내장내화물에 대한 보수 기술로서 습식 스프레이 보수법과 용사보수법이 있다.Up to now, there are wet spray repair method and thermal spray repair method for repairing interior refractories of various industrial furnace bodies.

습식 스프레이 보수법은 고온에서 사용 중인 노체를 일단 공냉 혹은 살수에 의하여 완전히 냉각시킨 후 부정형 내화재를 물과 혼합하여 흑손으로 시공하거나 또는 분사하여 열간 혹은 냉간에서 덧살 붙이기로 보수하는 방법이다.The wet spray repair method is a method of repairing a furnace in use at high temperature by air cooling or watering, and then repairing it with hot hand or by spraying with an irregular refractory material mixed with water or spraying it with black hands.

그리고 용사보수법은 열간에서 노체를 냉각시키지 않고 곧바로 분말상의 내화재료를 2000-2500℃정도의 고온불꽃으로 분사 즉 용사하여 보수하는 방법이다.The thermal spraying method is a method of spraying or spraying a powdery refractory material with a high temperature flame at about 2000-2500 ° C. without thermal cooling of the furnace body in a hot manner.

내장내화물에 대한 보수 기술 중에서 습식스프레이 보수법은 부정형 내화재를 물과 혼합하여 사용하기 때문에 보수하려고 하는 손상된 내화물 부위가 온도차이에 의한 열충격을 받기도 하고 부착효율이 좋지 않고 보수시공체도 치밀하지 못하다는 단점이 있다.Among the repair techniques for interior refractories, the wet spray repair method uses irregular refractory materials in combination with water, so damaged refractory parts to be repaired are subject to thermal shock due to temperature differences, poor adhesion efficiency, and incomplete repair structures. There is this.

이에 반하여 용사보수법 특히 불꽃용사보수기술은 상기의 습식보수방법의 결점인 모재 내화물과의 나쁜 부착성과 용강에 대한 미흡한 내식성 등의 문제점을 일시에 해소할 수 있는 기술로서 가동중인 노체를 냉각시키지 않고 조업온도에 가까운 열간에서 손상된 노체용 내화물을 즉시 보수할 수 있는 장점이 있어서 최근 제강용 노체 내화물의 보수기술로서 각광을 받고 있다.On the other hand, the thermal spray repair method, especially the flame spray repair technology, can solve problems such as bad adhesion with the base material refractory and poor corrosion resistance to molten steel, which are the drawbacks of the wet repair method. Recently, due to the advantage of being able to immediately repair the damaged furnace body refractory in the hot close to the operating temperature has been spotlighted as a technology for repairing steel furnace furnace refractory.

불꽃용사기술은 석유, 코크스 분말, LPG와 같은 가연성 연료와 연소용 산소를 이용하여 2000℃ 이상의 고온 고속의 불꽃을 발생시켜 분말상의 내화재료를 고속으로 분사시켜 내화물 손상부위에 용융 또는 반용융 상태로 부착시키는 일종의 세라믹 용접법에 해당한다.Flame spraying technology uses flammable fuel such as petroleum, coke powder, LPG and combustion oxygen to generate high temperature and high speed flame of 2000 ℃ or higher to inject powdery refractory materials at high speed to melt or semi-melt the refractory damaged areas. It is a kind of ceramic welding method to attach.

노체를 냉각시키지 않고 열간에서 바로 치밀한 접착에 의한 보수가 가능하고 모재 내화물 이상의 우수한 내식성을 가지는 보수시공체를 얻을 수 있기 때문에 산업용 노체 전반에 걸쳐서 적용범위가 넓혀져 가고 있다.It is possible to repair by compact adhesion immediately without cooling the furnace body, and to obtain a repaired body having excellent corrosion resistance than the base material refractory material, and thus the application range is being widened throughout the industrial furnace body.

특히 이 기술은 가동중인 노체의 내화물 손상부위 표면에 보수 효과 저하 요인이 되는 부착금속이나 슬래그와 같은 이물질을 고온불꽃에 의하여 쉽게 제거할 수 있어서 내화물 손상부위에 대한 획기적인 보수 효과를 얻을 수 있는 이점이 있다.In particular, this technology can easily remove foreign substances such as adherent metal or slag, which causes deterioration of the repair effect on the surface of the refractory damaged part of the running body by high-temperature flames, and thus has the advantage of achieving a remarkable repair effect on the refractory damaged part. have.

산업용 노체의 내장내화물의 손상부위를 보수하기 위한 종래의 불꽃용사보수용 마그네시아계 분말재료로는 마그네시아 성분용으로 전융질이나 소결 마그네시아 분말 혹은 마그네시아 제조과정 중 부산물로 산출되는 마그네시아 원립을 사용하거나 천연적으로 산출되는 마그네사이트를 주로 이용하였다.Conventional fire spray repair magnesia-based powder materials for repairing the damaged parts of internal furnace refractory materials of industrial furnaces are made of magnesia powder for magnesia, or magnesia raw material produced as a by-product during magnesia manufacturing process or naturally. Magnesite calculated mainly was used.

이 경우 사용하는 마그네시아 원료는 비교적 균일한 품질을 나타내어 마그네시아계 불꽃용사보수용 분말재료의 제조에는 다소 편리한 점이 있으나 고가의 원료를 사용하여야 하는 단점이 있다.In this case, the magnesia raw material to be used exhibits a relatively uniform quality, which is somewhat convenient for the manufacture of the magnesia flame spraying repair powder material, but has a disadvantage of using an expensive raw material.

본 발명은 이와 같은 문제점을 해결하기 위하여 안출한 것으로, 그 목적은 고가의 마그네시아 원료 대신에 노체의 마그네시아-흑연계 폐내화물을 이용하여 폐내화물 중에 함유되어 있는 흑연을 제거하지 않고 그대로 사용하여 불꽃용사보수시의 열효율 향상효과를 기할 수 있는 노체 보수용 마그네시아-흑연질 분말 용사재료 및 그 제조방법을 제공하는 것이다.The present invention has been made in order to solve such a problem, the purpose of the flame spray by using the magnesia-graphite waste refractory of the furnace instead of expensive magnesia raw materials without removing the graphite contained in the waste refractory It is to provide a magnesia-graphite powder thermal spraying material for repairing a furnace body capable of improving the thermal efficiency at the time of repair and a manufacturing method thereof.

상기와 같은 목적을 달성하기 위하여, 본 발명은 마그네시아-흑연질 폐내화물을 이용한 불꽃용사보수용 분말재료에 있어서, 마그네시아-흑연질 폐내화물을 35중량% 내지 83중량%에 크롬광 분말을 10중량% 내지 30중량%를 첨가하고 규회석분말을 5중량% 내지 20중량% 첨가하며 알루미나 분말을 2중량% 내지 15중량%를 첨가한 마그네시아-흑연질 용사재료를 제공한다.In order to achieve the above object, the present invention is a flame spraying maintenance powder material using magnesia-graphite waste refractory, magnesia-graphite waste refractory to 35% by weight to 83% by weight chromium ore powder 10% Provided is a magnesia-graphite spraying material in which% to 30% by weight is added, 5% to 20% by weight of wollastonite powder and 2 to 15% by weight of alumina powder are added.

본 발명에서 폐 마그네시아-흑연질 폐내화물을 용사재료의 주원료로 선택한 것은 마그네시아-흑연질 폐내화물의 분쇄물이 고순도의 고급 마그네시아 분말에 비하여 시공체의 내식성 측면에서 큰 차이가 없을 뿐 아니라 마그네시아-흑연질 폐내화물 중의 마그네시아 이외의 흑연이나 CaOㆍSiO2계의 미량의 불순물이 불꽃 용사용 재료에서 저융점 물질계 조성이 되어 오히려 용사 효율을 올릴 수 있다는 점 때문이다.In the present invention, the waste magnesia-graphite waste refractory material is selected as the main raw material of the thermal spraying material. This is because trace impurities other than magnesia in the waste refractories and trace impurities of CaO.SiO 2 system become low melting point system composition in the flame spraying material and can increase the thermal spraying efficiency.

또한 본 발명에서 마그네시아-흑연질 폐내화물은 전로, 전기로, 래들 및 정련로로부터 사용후에 배출된 폐내화물을 간단히 분쇄 분급하여 입도 처리하여 얻을 수 있고 여기에 크롬광 분말과 저융점 물질인 규회석 분말 그리고 첨가제로서 미분의 알루미나 분말을 사용하여 저가이면서도 고 효율을 나타낼 수 있는 마그네시아 -흑연질 용사 보수재료를 얻을 수 있다.In the present invention, magnesia-graphite waste refractory can be obtained by simply crushing and classifying the waste refractory discharged after use from converters, electric furnaces, ladles and refining furnaces, and containing chrome ore powders and low-melting-point wollastonite powders. And by using the finely divided alumina powder as an additive, it is possible to obtain a magnesia-graphite thermal spray repair material that can exhibit a low cost and high efficiency.

본 발명에서 크롬광 분말은 용사 시공체의 슬래그 젖음성을 나쁘게 하고 내열충격성을 향상시키기 위하여 첨가되었다.In the present invention, the chromium ore powder was added to improve the slag wettability of the thermal sprayed coating and to improve the thermal shock resistance.

그리고 본 발명에서 저융점 물질인 규회석 분말을 첨가한 것은 마그네시아-흑연질 폐내화물 중에 미량 포함된 흑연의 기능을 보충하기 위한 것으로 규회석은 용사재료의 용사성능 즉, 부착성과 내침식성을 동시에 확보할 수 있게 하기 위한 것이다.In the present invention, the addition of wollastonite powder, which is a low melting point material, is used to supplement the function of graphite contained in a small amount of magnesia-graphite waste refractory, and wollastonite can secure the thermal spraying performance of the thermal spraying material, that is, adhesion and corrosion resistance at the same time. It is to be.

또한 본 발명에서 미분의 알루미나 분말을 첨가한 것은 용사재료를 용사 할 경우 용사재료의 부착성 향상과 시공체의 열간강도의 향상을 위하여 첨가되었다.In addition, in the present invention, the addition of the finely divided alumina powder was added to improve the adhesiveness of the thermal spray material and the hot strength of the construction body when the thermal spraying material was sprayed.

본 발명의 제조방법상의 특징은 용사재료로 사용한 배합 원료들의 혼합도를 높이기 위하여 사용한 원료들을 큰 입도 갖는 원료와 작은 입도를 갖는 원료를 먼저 배합하여 혼합된 입자들 간의 전기적 결합을 유도하고 그 다음 1차 배합된 원료들을 모두 모아 2차 배합한 것에 있다The manufacturing method of the present invention is characterized in that the raw materials having a large particle size and the raw material having a small particle size are first blended to increase the degree of mixing of the blended raw materials used as the thermal spraying material, thereby inducing electrical bonding between the mixed particles. It is in the secondary compound which gathered all the primary ingredients

이를 위하여 입도가 큰 마그네시아-흑연질 폐내화물 분쇄물에 입도가 작은 규회석 분말을 일정량 첨가 혼합하여 1차 배합물을 만드는 한편 입도가 큰 크롬광 분말에 입도가 작은 규회석 분말의 나머지 양을 첨가 혼합하여 2차 배합물을 만들고 이렇게 준비된 1차 배합물과 2차 배합물에 입도가 작은 알루미나 분말 첨가하여 혼련하여 마그네시아-흑연질 용사재료를 제조하였다.To this end, a small amount of wollastonite powder is added to the magnesia-graphite waste refractory crushing powder with a large particle size to make a primary blend, and the remaining amount of wollastonite powder with a small particle size is added to the chromium powder with large particle size. A tea blend was prepared and kneaded by adding alumina powder having a small particle size to the prepared primary blend and the secondary blend to prepare a magnesia-graphite thermal spray material.

이하 본 발명에 따른 마그네시아-흑연질 용사재료의 조성과 그 제조방법에 대하여 상세히 설명한다.Hereinafter, the composition of the magnesia-graphite thermal spray material according to the present invention and a manufacturing method thereof will be described in detail.

표 1은 본 발명의 실시예에 사용한 마그네시아-흑연계 용사재료의 조성과 비교예로 사용한 용사재료의 조성을 나타내고 있다.Table 1 shows the composition of the magnesia-graphite spraying material used in the examples of the present invention and the composition of the thermal spraying material used in the comparative example.

[표 1]TABLE 1

(여기서; 1)마그네시아-흑연: 마그네시아 흑연질 폐내화물을 분쇄 및 분급한 입경 0.21mm 이하인 분말, 2)크롬광: 입경 0.21mm이하의 천연산 크롬광 분말, 3)규회석: 입경 0.074mm이하의 천연산 규회석 분말, 4) 입경 0.074mm 이하의 알루미나 분말)(Here; 1) magnesia-graphite: powder having a particle diameter of 0.21 mm or less obtained by pulverizing and classifying magnesia graphite waste refractories, 2) chromium light: natural chromium powder having a particle size of 0.21 mm or less, 3) wollastonite: particle size of 0.074 mm or less Natural wollastonite powder, 4) Alumina powder with particle size less than 0.074mm)

표 1에서와 같이 본 발명의 실시예에서 주원료 사용한 마그네시아-흑연계 폐내화물은 노체 내화물로 사용되고 난 폐기물을 분쇄 분급한 후 이를 최대 83중량% 최소 35중량 % 첨가하였다.As shown in Table 1, the magnesia-graphite waste refractories used as the main raw materials in the examples of the present invention were added to a maximum of 83 wt% and at least 35 wt% after crushing and classifying the waste used as the furnace refractories.

여기서 마그네시아-흑연계 폐내화물은 재질의 등급에 따라 용사재료의 내식성에 영향을 주지만 용사 보수시공체 자체가 영구적인 보수가 아닌 노체 가동 중 일정기간동안의 작용으로 그 효과가 충분하므로 굳이 등급의 구분을 배겨서 용사재료의 성능을 정하는 것보다 첨가하는 규회석의 함량과 크롬광 및 알루미나의 함량의 조정으로 용사재료의 성능을 구분하는 것이 바람직하다.The magnesia-graphite waste refractory affects the corrosion resistance of the sprayed material according to the grade of the material, but the spraying repair itself is not permanent repair but the effect is sufficient for a certain period of time during the operation of the furnace. It is preferable to distinguish the performance of the thermal spray material by adjusting the content of wollastonite and chromium ore and alumina rather than determining the performance of the thermal spray material.

본 발명의 실시예에서 크롬광 분말은 최소 10중량% 최대 30중량%로 첨가하였고 규회석 분말은 최소 5중량% 최대 20중량%로 첨가하였으며, 알루미나 분말은 최소 2중량 % 최대 15중량%의 범위로 첨가하였다.In the embodiment of the present invention, the chromium ore powder is added at least 10% by weight up to 30% by weight, the wollastonite powder is added at least 5% by weight up to 20% by weight, and the alumina powder is in the range of at least 2% by weight up to 15% by weight. Added.

여기서 규회석 분말은 이와 유사한 조성을 갖는 3CaOㆍSiO2 와 같은 3CaOㆍSiO2 계 분말재료로 대체하여 사용할 수 있다.The wollastonite powder may be used in place of a 3CaO.SiO 2 based powder material such as 3CaO.SiO 2 having a similar composition.

비교예는 본 발명의 실시예에 따른 용사재료의 물성과 비교하기 위하여 첨가물의 조성을 달리하여 본 실시예와 동일한 방법으로 배합 혼련하였다.The comparative example was kneaded and kneaded in the same manner as in the present example by varying the composition of the additive in order to compare the physical properties of the thermal spray material according to the embodiment of the present invention.

도 1에서 본 발명의 마그네시아-흑연질 용사재료의 상세한 제조방법을 나타내었다.1 shows a detailed manufacturing method of the magnesia-graphite thermal spray material of the present invention.

본 발명의 실시예에서 사용한 마그네시아-흑연 폐내화물은 제절소의 전로, 전기로, 래들 및 정련로 등에서 사용한 후 산출되는 마그네시아-흑연질 내화물로서 폐내화물에 함유된 흑연으로 인하여 부착지금이나 슬래그가 쉽게 제거되며 다른 소성 내화물에 비하여 비교적 쉽게 분쇄된다. 다만 함유된 입경 3-5mm 정도의 마그네시아 입자의 분쇄에 다소의 부하가 걸리나 분쇄기를 사용 못할 정도는 아니다.The magnesia-graphite waste refractory used in the embodiment of the present invention is a magnesia-graphite refractory produced after use in a converter, an electric furnace, a ladle and a refining furnace of a mill, and is easily removed from the slag due to the graphite contained in the waste refractory. It is pulverized relatively easily compared to other plastic refractory materials. However, it takes some load to grind the magnesia particles with a particle diameter of about 3-5mm, but it is not enough to use the grinder.

본 발명의 실시예에 따른 마그네시아-흑연계 용사재료의 제조방법은 먼저 마그네시아-흑연질 폐내화물을 적절히 분쇄하여 입경이 0.21mm 이하가 되도록 체가름하여 마그네시아 -흑연계 원료를 준비하였다.In the manufacturing method of the magnesia-graphite spraying material according to the embodiment of the present invention, the magnesia-graphite-based raw material was prepared by appropriately pulverizing the magnesia-graphite waste refractories and sieving them to have a particle diameter of 0.21 mm or less.

여기에 저융점 재료로서 일정량의 규회석 분말을 첨가하여 혼련한 것을 1차 배합물로 준비하고 입경 0.21mm 이하의 크롬광 분말에 같은 방법으로 규회석 분말을 첨가하여 혼련한 것을 2차 배합물로 준비하였다.A low melting point material was added and kneaded with a certain amount of wollastonite powder to prepare a primary blend, and a wollastonite powder with a particle size of 0.21 mm or less was added and kneaded in the same manner to prepare a secondary blend.

마지막으로 1차 배합물과 2차 배합물 및 일정량의 미분의 알루미나 분말 3종을 배합 혼련하는 분말용사재료를 제조하였다.Finally, a powder spray material was prepared by blending and kneading the primary blend, the secondary blend, and three kinds of alumina powders of a predetermined amount of fine powder.

이상과 같이 본 발명의 실시예와 비교예에 따라 제조한 용사재료의 물성과 이들을 용사 시공한 시공체의 물성을 표 2에 나타내었다.As described above, the physical properties of the thermal spray materials prepared according to the Examples and Comparative Examples of the present invention and the physical properties of the thermal sprayed coatings are shown in Table 2.

[표 2]TABLE 2

(여기서 ; 1)용사재료 F.I; 유동성 지수(Flowability index), 2)내식성; 용사속도 50kg/hr, 산소 75Nm3/hr, LPG 15Nm3/hr, 용사거리 30cm 의 조건으로 용사하여 얻은 시공체를 유도용해로법으로 1650℃에서 2시간 동안 용강으로 침식시킨 후의 침식된 단면적으로 비교(◎:매우양호, ○:양호, △:보통, ×:불량))(Here; 1) spray material F.I; Flowability index, 2) corrosion resistance; Compared to the eroded cross-sectional area after the sprayed body was eroded by molten steel at 1650 ℃ for 2 hours by induction melting method under the conditions of spraying speed of 50kg / hr, oxygen 75Nm3 / hr, LPG 15Nm3 / hr, spraying distance 30cm : Very good, ○: Good, △: Normal, X: Poor))

이하 표 2에 나타난 실험결과를 바탕으로 본 발명에 의한 각 원료의 한정 이유에 대하여 설명한다.Hereinafter, the reason for limitation of each raw material according to the present invention will be described based on the experimental results shown in Table 2.

본 발명의 실시예에서 마그네시아-흑연질 폐내화물은 최대 83중량% 최소 35중량%까지 사용이 가능하며 크롬광 분말은 최소 10중량%에서 최대 30중량%까지 첨가할 수 있는데 기본적으로는 마그네시아-흑연질 폐내화물의 사용량을 크롬광 분말보다 많은 것이 바람직하다.In an embodiment of the present invention, magnesia-graphite waste refractory can be used up to 83% by weight to 35% by weight, and chromium ore powder can be added from 10% to 30% by weight. It is preferable that the amount of vaginal waste refractories is used more than chromium ore powder.

그 이유는 크롬광 분말이 용사 시공체의 슬래그 젖음성을 나쁘게 하고 내열충격성을 향상시킬 수 있는 역할로 충분할 뿐 가격이 비싸므로 다량 첨가되면 경제성이 떨어지기 때문이다.The reason is that the chromium ore powder is sufficient to deteriorate the slag wettability of the thermal spraying body and to improve the thermal shock resistance, but the price is high, and thus economical efficiency is reduced when a large amount is added.

따라서 마그네시아-흑연질 폐내화물은 상기 범위로 한정되며 크롬광 분말은 비교예 6과 같이 첨가량이 10중량% 미만일 경우에는 용사재료의 부착성이 떨어지고 시공체의 슬래그에 대한 내식성과 내열충격성이 나빠지는 문제가 발생하며, 비교예 8과 같이 30중량% 이상 첨가되면 용사재료의 내식성도 급격히 나빠지고 가격 또한 비싸지므로 경제성이 떨어진다.Therefore, magnesia-graphite waste refractory is limited to the above range, and when the amount of chromium ore powder is less than 10% by weight, as in Comparative Example 6, the adhesion of the thermal spraying material is inferior, and the corrosion resistance and thermal shock resistance to the slag of the construction body deteriorate. A problem occurs, and when added to 30% by weight or more, as in Comparative Example 8, the corrosion resistance of the thermal spraying material is also rapidly worsened and the price is also expensive, the economical efficiency is lowered.

본 발명의 실시예에서 규회석은 마그네시아-흑연계 폐내화물 분쇄원료 및 크롬광 분말 각각에 대하여 각각의 비율로 첨가하되 용사재료 총 충량에 대하여 최소 5중량% 최대 20중량%를 첨가 혼합하여 1차 배합물 및 2차 배합물로 하는데 어느 것이든 첨가량이 5중량% 미만이 되면 표 2의 비교예 7과 같이 흑연의 함유에 의한 용사효율 향상에도 불구하고 저융점 재료의 부족으로 용사시의 양호한 부착율을 얻을 수 없다.In the embodiment of the present invention, wollastonite is added to the magnesia-graphite waste refractory crushed raw material and the chromium ore powder in each ratio, but at least 5% by weight and at most 20% by weight based on the total amount of the thermal spraying material is added and mixed. And when the addition amount is less than 5% by weight of any of the secondary blends as shown in Comparative Example 7 of Table 2, despite the improvement of the spraying efficiency by the inclusion of graphite, the low melting point material to obtain a good adhesion rate during the spraying Can't.

또한 비교예 9와 같이 규회석을 20중량% 이상 첨하하면 저융점 재료가 과잉 첨가되어 저융점 재료의 과용융으로 불꽃용사보수시 시공체의 기공율이 높고 용사 보수후 재가동시 용강이나 용융슬래그에 대한 내식성이 극히 나빠지게 된다.In addition, when the wollastonite is added by more than 20% by weight as in Comparative Example 9, the low melting point material is excessively added, resulting in high melting of the low melting point material, resulting in high porosity of the construction body during flame spray repair, and corrosion resistance to molten steel or molten slag when restarting after thermal spray repair. This is extremely bad.

따라서 규회석 첨가량은 10중량% 전,후가 바람직하며 입도는 미분일수록 용사성능이 좋아지지만 용사재료의 유동성이 나빠지는 원인이 되므로 0.074mm 이하의 것이 적당하다.Therefore, the amount of wollastonite added is preferably 10% by weight before and after, and the finer the particle size, the better the thermal spraying performance, but the fluidity of the thermal spraying material is deteriorated.

본 발명의 실시예에서 알루미나 분말은 미분일수록 반응성이 우수하여 용사성능이 향상되지만 용사재료 제조시의 분산성과 용사재료의 유동성을 고려하면 0.074mm 이하의 것이 바람직하다.In the embodiment of the present invention, the finer the powder, the better the reactivity, so that the spraying performance is improved, but considering the dispersibility and the fluidity of the spraying material during the preparation of the spraying material, it is preferably 0.074 mm or less.

알루미나 분말의 첨가량이 비교예 6과 같이 첨가량이 2중량% 미만일 경우에는 시공체의 부착율이 떨어져서 첨가효과가 미흡하며 비교예 8과 9에서와 같이 15중량% 이상이 첨가되면 용사 시공체의 기공율이 증가하여 내식성이 떨어지게 된다.If the addition amount of the alumina powder is less than 2% by weight as in Comparative Example 6, the adhesion rate of the construction body is inferior and the effect of addition is inadequate. When more than 15% by weight is added as in Comparative Examples 8 and 9, the porosity of the sprayed body is This increases the corrosion resistance.

따라서 알루미나 분말의 첨가량은 5중량% 전,후가 바람직하다.Therefore, the addition amount of the alumina powder is preferably before and after 5% by weight.

이와 같이 본 발명은 제강공정의 산업폐기물인 마그네시아-흑연질의 폐내화물을 이용하여 저가의 불꽃용사보수용 분말재료를 제공함으로써 전로, 래들, 전기로 및 정련로 등의 노체 내화물 손상부위를 저비용으로 용사보수할 수 있으며 마그네시아-흑연질 폐내화물을 자원화 함으로써 철강산업에서 산업폐기물 중의 한가지인 폐내화물의 발생량 증가에 의한 매립장의 부족문제와 매립으로 인한 환경오염 문제를 해소하는데 큰 효과가 있다.As such, the present invention provides a low-cost flame spraying repair powder material using magnesia-graphite waste refractories, which are industrial wastes in the steelmaking process, to spray furnace refractory damaged parts such as converters, ladles, electric furnaces, and refining furnaces at low cost. By reusing the magnesia-graphite waste refractories, the steel industry has a great effect in solving the problems of landfill shortage caused by the increase in the amount of waste refractories, one of industrial wastes in the steel industry, and environmental pollution caused by landfills.

도 1은 본 발명의 마그네시아-흑연계 분말 용사재료의 제조공정을 나타낸 공정도이다.1 is a process chart showing a manufacturing process of the magnesia-graphite powder spraying material of the present invention.

Claims (2)

마그네시아-흑연질 폐내화물 35중량% 내지 83중량%;Magnesia-graphite waste refractory 35% to 83%; 크롬광 분말 10중량% 내지 30중량%;10% to 30% by weight of chromium light powder; 규회석분말 5중량% 내지 20중량%; 및Wollastonite powder 5% to 20% by weight; And 알루미나 분말 2중량% 내지 15중량%2 wt% to 15 wt% of alumina powder 를 포함하는 마그네시아-흑연질 용사재료.Magnesia-graphite thermal spraying material comprising a. 마그네시아-흑연질 폐내화물 분쇄물에 상기 마그네시아-흑연질 폐내화물 분쇄물보다 입도가 작은 규회석 분말을 일정량 첨가 혼합하여 1차 배합물을 만드는 단계;Adding a predetermined amount of wollastonite powder having a smaller particle size than the magnesia-graphite waste refractory powder to magnesia-graphite waste refractory powder to form a primary blend; 크롬광 분말에 상기 크롬광 분말보다 입도가 작은 규회석 분말의 나머지 양을 첨가 혼합하여 2차 배합물을 만드는 단계; 및Adding and mixing the remaining amount of wollastonite powder having a smaller particle size than the chromium ore powder to the chromium ore powder to form a secondary blend; And 상기 1차 배합물과 상기 2차 배합물에 알루미나 분말 첨가하여 혼련하는 단계Kneading by adding alumina powder to the primary blend and the secondary blend 를 포함하는 마그네시아-흑연질 용사재료의 제조방법.Method of producing a magnesia-graphite thermal spraying material comprising a.
KR1019980060078A 1998-12-29 1998-12-29 Magnesia-Graphite Spray Material and Manufacturing Method Thereof KR100601082B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980060078A KR100601082B1 (en) 1998-12-29 1998-12-29 Magnesia-Graphite Spray Material and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980060078A KR100601082B1 (en) 1998-12-29 1998-12-29 Magnesia-Graphite Spray Material and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20000043673A KR20000043673A (en) 2000-07-15
KR100601082B1 true KR100601082B1 (en) 2006-09-27

Family

ID=19566929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980060078A KR100601082B1 (en) 1998-12-29 1998-12-29 Magnesia-Graphite Spray Material and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100601082B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742862B1 (en) * 2001-08-24 2007-07-26 주식회사 포스코 Batch composition for tap hole of blast furnace
KR100508511B1 (en) * 2002-08-19 2005-08-17 주식회사 포스코 Recycle Processing of Topedo Ladle Car Waste Refractory
KR100910452B1 (en) * 2002-11-19 2009-08-04 주식회사 포스코 Process for coating a continuous casting tundish

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054871A (en) * 1991-06-25 1993-01-14 Shinagawa Refract Co Ltd Corrosion-resistant magnesia-carbon-based brick
KR930012643A (en) * 1991-12-05 1993-07-21 정명식 Basic flame spray material composition
JPH06298564A (en) * 1993-04-12 1994-10-25 Harima Ceramic Co Ltd Carbonaceous magnesia fire brick
JPH0733537A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Carbon-containing refractory material for melt-spraying
KR950017852A (en) * 1993-12-24 1995-07-20 조말수 Magnesia Spherical Powder Spraying Method
JPH10287478A (en) * 1997-04-11 1998-10-27 Nippon Steel Corp Carbon-containing flame spray material and its production
KR19990050186A (en) * 1997-12-16 1999-07-05 이구택 Slag Coating Method for Protection of Crossroad Car Furnace Refractories
KR20000043685A (en) * 1998-12-29 2000-07-15 이구택 Slag coating material for converter
KR20000043690A (en) * 1998-12-29 2000-07-15 이구택 Magnesia-based powder for flame thermal spraying process and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054871A (en) * 1991-06-25 1993-01-14 Shinagawa Refract Co Ltd Corrosion-resistant magnesia-carbon-based brick
KR930012643A (en) * 1991-12-05 1993-07-21 정명식 Basic flame spray material composition
JPH06298564A (en) * 1993-04-12 1994-10-25 Harima Ceramic Co Ltd Carbonaceous magnesia fire brick
JPH0733537A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Carbon-containing refractory material for melt-spraying
KR950017852A (en) * 1993-12-24 1995-07-20 조말수 Magnesia Spherical Powder Spraying Method
JPH10287478A (en) * 1997-04-11 1998-10-27 Nippon Steel Corp Carbon-containing flame spray material and its production
KR19990050186A (en) * 1997-12-16 1999-07-05 이구택 Slag Coating Method for Protection of Crossroad Car Furnace Refractories
KR20000043685A (en) * 1998-12-29 2000-07-15 이구택 Slag coating material for converter
KR20000043690A (en) * 1998-12-29 2000-07-15 이구택 Magnesia-based powder for flame thermal spraying process and preparation method thereof

Also Published As

Publication number Publication date
KR20000043673A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
CN105859314B (en) A kind of smelting molten steel equipment carbon containing gunning refractory and preparation method thereof
CN106278324A (en) A kind of modified high-purity magnesium-aluminum spinel composite brick and preparation method thereof
CN105801136A (en) Converter repairing mass and preparation method thereof
CN113666734A (en) Environment-friendly magnesium spinel gunning mix for converter and preparation and application thereof
JP2014094872A (en) Spray repair material using used brick
KR20100065987A (en) Slag cutting dart containing recycled magnesia-chromium refractory and manufacturing method thereof
KR100601082B1 (en) Magnesia-Graphite Spray Material and Manufacturing Method Thereof
CN112441840A (en) Converter repairing material prepared by utilizing recycled magnesia-hercynite bricks
JP5650903B2 (en) Spray repair material using used brick
CN101550471B (en) Method utilizing nonferrous metal production waste to prepare calcium aluminate used for metallurgy
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JP2003212667A (en) Process for recycling used refractory
JP3639635B2 (en) Method for producing magnesia-carbon refractory brick
CN106977181A (en) A kind of BOF Hood magnesium-aluminum-calcium titanium carbon brick and preparation method thereof
CN107324824A (en) A kind of BOF Hood tar combination magnesia-alumina brick and preparation method thereof
KR20000043693A (en) Alumina-based thermal spray material containing graphite and preparation method thereof
CN1027752C (en) Electric furnace spraying and repairing material
JPH10287478A (en) Carbon-containing flame spray material and its production
KR100302356B1 (en) Fireproot material for hot mending of damage part in melting furnace bady
KR960006239B1 (en) Process for the preparation of magnesia powders
CN111439991B (en) Repairing mass for converter, preparation method and construction method
JP2885630B2 (en) Flame spray material
KR100417712B1 (en) Steel Filling Material
KR100213320B1 (en) Process for producing spray deposit
KR940007226B1 (en) Mo-al203 low expansion flame spray material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130704

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140707

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee