KR100582092B1 - The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts - Google Patents

The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts Download PDF

Info

Publication number
KR100582092B1
KR100582092B1 KR1020040048021A KR20040048021A KR100582092B1 KR 100582092 B1 KR100582092 B1 KR 100582092B1 KR 1020040048021 A KR1020040048021 A KR 1020040048021A KR 20040048021 A KR20040048021 A KR 20040048021A KR 100582092 B1 KR100582092 B1 KR 100582092B1
Authority
KR
South Korea
Prior art keywords
phenol
activated carbon
catalyst
benzene
present
Prior art date
Application number
KR1020040048021A
Other languages
Korean (ko)
Other versions
KR20050123383A (en
Inventor
김태환
성재석
추고연
김동국
심규성
최정식
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020040048021A priority Critical patent/KR100582092B1/en
Publication of KR20050123383A publication Critical patent/KR20050123383A/en
Application granted granted Critical
Publication of KR100582092B1 publication Critical patent/KR100582092B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 페놀 합성용 활성탄 촉매 및 그 제조방법과 이를 이용한 페놀 합성방법에 관한 것으로, 그 목적은 벤젠에서 페놀로의 직접 전환반응이 가능하고, 우수한 페놀수율을 구비하며, 이로 인해 부산물의 분리 및 처리비용을 절감하고, 공정상 투입되는 에너지 소비를 절약할 수 있는 페놀 합성용 활성탄 촉매 및 그 제조방법과 이를 이용한 페놀 합성방법을 제공하는 것이다. The present invention relates to an activated carbon catalyst for synthesizing phenol, a method for preparing the same, and a method for synthesizing phenol using the same, and an object thereof is to enable direct conversion of benzene to phenol, and to have an excellent phenol yield, thereby separating and byproducts. The present invention provides an activated carbon catalyst for synthesizing phenol, a method for preparing the same, and a method for synthesizing phenol using the same, which may reduce treatment costs and reduce energy consumption in a process.

본 발명은 활성탄을 지지체로 하여, 티타늄, 코발트, 망간, 니켈, 철, 구리, 바나듐으로 이루어진 군에서 선택된 하나의 전이금속이 담지된 촉매에 의해 벤젠으로부터 페놀을 직접 합성할 수 있는 페놀 합성용 활성탄 촉매 및 그 제조방법과 이를 이용한 페놀 합성방법을 제공함에 있다. The present invention provides activated carbon for phenol synthesis, which can directly synthesize phenol from benzene by using a activated carbon as a support and supporting a transition metal selected from the group consisting of titanium, cobalt, manganese, nickel, iron, copper, and vanadium. It provides a catalyst, a method for preparing the same, and a method for synthesizing phenol using the same.

페놀합성, 하이드록실화반응, 활성탄, 산처리, 열처리, 전이금속Phenol synthesis, hydroxylation, activated carbon, acid treatment, heat treatment, transition metal

Description

페놀 합성용 활성탄 촉매 제조방법과 이를 이용한 페놀 합성방법{The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts} The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts}

도 1 은 본 발명에 따른 활성탄의 산처리 공정도1 is an acid treatment process chart of activated carbon according to the present invention.

도 2 는 본 발명에 따라 전이금속이 담지된 활성탄 촉매의 페놀 수율을 보인 예시도Figure 2 is an exemplary view showing the phenol yield of the activated carbon catalyst supported on the transition metal in accordance with the present invention

도 3 은 본 발명의 바나듐 담지량에 따른 벤젠 전환율과 페놀 선택도를 보인 예시도3 is an exemplary view showing benzene conversion and phenol selectivity according to the amount of vanadium supported in the present invention.

도 4 는 본 발명의 바나듐 담지량에 따른 페놀 수율을 보인 예시도4 is an exemplary view showing a phenol yield according to the amount of vanadium supported in the present invention

도 5 는 본 발명의 철 담지량에 다른 벤젠 전환율과 페놀 선택도를 보인 예시도5 is an exemplary view showing another benzene conversion rate and phenol selectivity in the iron loading of the present invention

도 6 은 본 발명의 철 담지량에 따른 페놀 수율을 보인 예시도6 is an exemplary view showing a phenol yield according to the iron loading of the present invention

도 7 은 본 발명에 따른 바나듐/철 촉매의 용매 첨가량에 따른 페놀 수율을 보인 예시도7 is an exemplary view showing a phenol yield according to the amount of solvent added to the vanadium / iron catalyst according to the present invention

도 8 은 아세토니트릴 용매하에서의 본 발명 활성탄 촉매에 따른 벤젠 전환 율과 페놀 선택도를 보인 예시도8 is an exemplary view showing benzene conversion and phenol selectivity according to the activated carbon catalyst of the present invention in an acetonitrile solvent.

도 9 는 아세토니트릴 용매하에서의 본 발명 활성탄 촉매에 따른 페놀 수율을 보인 예시도9 is an exemplary view showing a phenol yield according to the activated carbon catalyst of the present invention in an acetonitrile solvent

도 10 은 본 발명 철이 담지된 활성탄 촉매의 벤젠전환율 및 페놀선택도를 보인 예시도10 is an exemplary view showing the benzene conversion rate and phenol selectivity of the present invention iron-supported activated carbon catalyst

도 11 은 본 발명 철이 담지된 활성탄 촉매의 페놀 수율을 보인 예시도11 is an exemplary view showing the phenol yield of the iron-supported activated carbon catalyst of the present invention

본 발명은 페놀 합성용 활성탄 촉매 제조방법과 이를 이용한 페놀 제조방법에 관한 것으로, 높은 비표면적과 다공성을 구비하는 활성탄을 지지체로 하여 전이금속이 담지된 촉매를 통해 벤젠에서 페놀로의 직접 합성시, 높은 페놀 수율을 얻을 수 있는 페놀 합성용 활성탄 촉매 제조방법과 이를 이용한 페놀 제조방법에 관한 것이다. The present invention relates to a method for preparing an activated carbon catalyst for phenol synthesis and a method for preparing a phenol using the same, wherein when direct synthesis of benzene to phenol is carried out through a catalyst having a transition metal supported on activated carbon having a high specific surface area and porosity, It relates to a method for producing activated carbon catalyst for phenol synthesis and a method for producing phenol using the same, which can obtain a high phenol yield.

일반적으로 페놀은 2001년에 2백4십만 톤이 생산될 만큼 화학산업에서는 중간체 및 최종물질로서 중요한 물질이며, 생산의 80%는 호크공정(Hock proedss)이라 불리우는 큐멘의 산화반응을 통하여 제조되어지고, 나머지는 톨루엔의 산화공정에 의하여 제조되어진다. 호크공정에서는 다단계 공정으로 페놀이 제조되며, 최종 생산물로 페놀과 아세톤이 등몰로 얻어지나, 아세톤은 용매로 우수한 성질을 갖고 있 지만, 시장수요는 페놀보다 크지 않다. 반면 톨로엔 공정에서는 벤조산을 거쳐 페놀이 생상되도록 되어 있으나, 페놀 수율이 낮은 문제점이 있었다. 또한, 기존의 상용화공정은 상기와 같이 다단 공정으로 이루어져 있어, 에너지 다소비 및 부산물 처리라는 문제점이 발생되었다. In general, phenol is an important intermediate and final material in the chemical industry, producing 2.4 million tonnes in 2001. 80% of its production is produced through the oxidation of cumene, called hawk proeds. The remainder is produced by the oxidation process of toluene. In the hawk process, phenol is produced in a multi-step process. As a final product, phenol and acetone are obtained in equimolar moles, but acetone has excellent properties as a solvent, but market demand is not greater than that of phenol. On the other hand, in the toloene process, phenol is produced through benzoic acid, but there is a problem in low phenol yield. In addition, the existing commercialization process is made of a multi-stage process as described above, the problem of energy consumption and by-product treatment occurs.

이와 같은 문제점을 해소하기 위하여 여러가지 단계를 거치지 않고 일단계 공정으로 보다 적은 부산물이 생산되는 공정의 개발 즉, 아산화질로, 산소, 공기를 산화제로 사용하는 기상산화반응과, 과산화수소, 산소, 공기를 사용하는 액상산화반응을 통하여 벤젠에서 페놀로의 직접 전환반응에 대한 연구가 활발하게 진행되고 있으며, 이러한 액상 반응에서 주로 사용되어진 촉매는 구리가 담지된 제올라이트 촉매, 구리가 치환된 중기공 실리케이트와 알루미노실리케이트 촉매, MCM-41 과 VPI-5 에 캡슐화된 헤테로 폴리산 촉매, 실리카에 지지된 배금 촉매, 그리고 알루미나에 담지된 바나듐 촉매 등이 사용되고 있다.In order to solve this problem, the development of a process in which fewer by-products are produced in one step without going through various steps, ie, gas phase oxidation reaction using nitrous oxide, oxygen and air as oxidant, hydrogen peroxide, oxygen, air A study on the direct conversion of benzene to phenol through the liquid phase oxidation reaction has been actively conducted. The catalysts mainly used in this liquid phase reaction include a copper-supported zeolite catalyst, a copper-substituted hollow pore silicate and alumina. A nosilicate catalyst, a heteropolyacid catalyst encapsulated in MCM-41 and VPI-5, a doubling catalyst supported on silica, and a vanadium catalyst supported on alumina are used.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 그 목적은 벤젠에서 페놀로의 직접 전환반응이 가능하고, 우수한 페놀수율을 구비하며, 이로인해 부산물의 분리 및 처리비용을 절감하고, 공정상 투입되는 에너지 소비를 절약할 수 있는 페놀 합성용 활성탄 촉매 제조방법과 이를 이용한 페놀 합성방법을 제공하는 것이다. The present invention has been made in view of the above problems, and its object is to allow direct conversion of benzene to phenol, and to have an excellent phenol yield, thereby reducing the cost of separation and treatment of by-products, and injecting them into the process. It is to provide a method for preparing an activated carbon catalyst for phenol synthesis and a phenol synthesis method using the same, which can reduce energy consumption.

본 발명은 벤젠에서 페놀로의 직접 하이드록실화 반응에 사용되는 촉매 및 이를 이용한 페놀의 제조방법에 관한 것으로, 본 발명은 활성탄을 지지체로 하여 전이금속을 담지한 활성탄 촉매를 제조하고, 상기 촉매하에서 벤젠과 산화제 및 용매를 일정비율로 혼합하여 벤젠으로부터 페놀을 직접 합성하도록 되어 있다. The present invention relates to a catalyst used in the direct hydroxylation reaction of benzene to phenol and a method for producing phenol using the same. The present invention provides an activated carbon catalyst supporting a transition metal with activated carbon as a support, and under the catalyst Benzene, oxidant and solvent are mixed in a proportion to synthesize phenol directly from benzene.

상기 활성탄 촉매는 회전증발기를 이용하여 함침법에 의해 제조되며, 전이금속으로는 티타늄, 코발트, 망간, 니켈, 철, 구리, 바나듐을 사용하고, 바람직하게는 철, 구리, 바나듐을 사용한다. The activated carbon catalyst is prepared by impregnation using a rotary evaporator. As the transition metal, titanium, cobalt, manganese, nickel, iron, copper, vanadium is used, and preferably iron, copper, vanadium.

즉, 금속전구체(구리 ; copper acetate monohydrate, 철 ; iron nitrate monohydrate, 바나듐 ; vanadyl acetylacetonate 등등)를 물에 녹인 다음 회전증발기에 넣은 후 활성탄에 함침시키고, 이를 80°건조기에 넣고 하루정도 건조한 다음, 질소분위기하에서 550℃를 유지하며 5시간 동안 소성하여, 전이금속이 담지된 활성탄 촉매를 제조한다. 이때 상기 촉매는 550℃ 이상에서는 활성이 크기 변하지 않으므로, 상기 온도를 유지하면서 소성한다. That is, metal precursors (copper; copper acetate monohydrate, iron; iron nitrate monohydrate, vanadium; vanadyl acetylacetonate, etc.) are dissolved in water, placed in a rotary evaporator, impregnated in activated carbon, dried in an 80 ° dryer, and dried for one day. Firing at 550 ° C. under an atmosphere for 5 hours to prepare an activated carbon catalyst having a transition metal supported thereon. In this case, since the activity does not change in size at 550 ° C. or higher, the catalyst is calcined while maintaining the temperature.

또한, 상기 활성탄은 산처리 또는 산처리 및 열처리를 한 활성탄을 사용할 수 있다. 즉, 도 1 에 도시된 바와 같이, 활성탄(Norit AC)에 5M의 질산(HNO3)을 첨가하고 이를 4시간 동안 60℃∼70℃질산의 끊는 점 근방에서 리플럭스(reflux)시킨 다음, 80℃이상에서 건조하여 일정량의 질산이 처리된 활성탄(NACH)을 사용할 수 있다. 또한, 이와 같이 질소분위기하에서 질산처리된 활성탄을 600℃∼1100℃에서 열처리하여 산처리 및 열처리가 이루어진 활성탄을 지지체로 사용할 수 있다.In addition, the activated carbon may be activated carbon subjected to acid treatment or acid treatment and heat treatment. That is, as shown in FIG. 1, 5M nitric acid (HNO 3 ) is added to activated carbon (Norit AC) and refluxed near the break point of 60 ° C. to 70 ° C. nitric acid for 4 hours, and then 80 Activated carbon (NACH) treated with a certain amount of nitric acid by drying at or above ℃ can be used. In addition, activated carbon treated with nitric acid under a nitrogen atmosphere at 600 ° C. to 1100 ° C. may be used as a support.

본 발명은 상기와 같은 활성탄 촉매하에서 벤젠과 과산화수소를 반응시킴으로써 페놀을 직접 합성하도록 되어 있다. 이때, 상기 벤젠과 과산화수소의 혼합물은 벤젠과 과산화수소수에 다량 함유된 물이 잘 섞이지 않게 되므로, 이에 아세톤 또는 아세토니트릴 등의 용매를 더 첨가하여 벤젠과 과산화수소를 균일하게 혼합하며, 혼합되는 용매는 벤젠을 기준으로 1 : 4.65 ∼ 1 : 6.58 의 투입몰비(벤젠 : 용매)를 유지한다. 용매의 양이 상대적으로 많아지면 반응물 혼합물이 희석되는 효과를 야기함으로, 반응물이 촉매활성점으로 접근이 제한되게 된다. 그러므로, 용매의 양이 반응에 보다 크게 영향을 미치게 되므로, 벤젠과 용매의 몰비를 한정하여 반응물인 벤젠과 과산화수소, 아세토니트릴의 혼합비를 조절하였다. The present invention is intended to directly synthesize phenol by reacting benzene and hydrogen peroxide under the above activated carbon catalyst. In this case, since the mixture of benzene and hydrogen peroxide does not mix well with water contained in a large amount of benzene and hydrogen peroxide, acetone or acetonitrile is further added thereto to uniformly mix benzene and hydrogen peroxide, and the mixed solvent is benzene. The molar ratio (benzene: solvent) of 1: 4.65-1: 6.58 is maintained on the basis of. A relatively large amount of solvent causes the reactant mixture to be diluted, thereby restricting access to the catalytically active site. Therefore, since the amount of the solvent has a greater influence on the reaction, the mixing ratio of the reactants benzene, hydrogen peroxide and acetonitrile was controlled by limiting the molar ratio of benzene and solvent.

이하 본 발명을 첨부된 도면 및 실시예에 의거하여 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and examples.

실시예 1Example 1

티타늄, 코발트, 망간, 니켈, 철, 구리, 바나듐 전구체를 물에 녹인 다음 회전증발기에 넣은 후 활성탄에 함침시키고, 이를 80℃건조기에 넣고 24시간정도 건조한 다음, 질소분위기하에서 550℃, 5시간 동안 소성하여, 티타늄, 코발트, 망간, 니켈, 철, 구리, 바나듐 0.5wt% 가 활성탄에 담지된 활성탄 촉매를 제조한다. Titanium, cobalt, manganese, nickel, iron, copper and vanadium precursors are dissolved in water and then placed in a rotary evaporator and impregnated with activated carbon.Then, they are placed in an 80 ° C dryer and dried for 24 hours, and then at 550 ° C for 5 hours under nitrogen atmosphere. By firing, an activated carbon catalyst having 0.5 wt% of titanium, cobalt, manganese, nickel, iron, copper, and vanadium supported on activated carbon is prepared.

벤젠으로부터 페놀 직접 합성 실험은 SUS 반응기를 사용하였으며, 반응물과 상기 0.5wt% 전이금속이 담지된 활성탄 촉매는 마그네틱 교반기를 이용하여 완전히 혼합한다. 이때, 반응은 65℃에서 5시간 동안 진행되었으며, 반응물은 주 원료인 벤젠과 산화제인 30% 과산화수소 및 용매로 구성되어 있으며, 반응물이 벤젠과 용매인 아세토니트릴, 산화제인 과산화수소를 1 : 3 : 6.0 의 몰비로 혼합하여 시험하였으며, 또한, 촉매는 0.1g 사용되었으며, 반응 생성물의 분석은 C18 컬럼과 UV 디텍터(파장 : 254㎚)가 장착된 HPLC(Waters 2690)를 이용하였다. LC 의 이동상은 42vol%의 물과 58vol%의 아세토니트릴의 조성으로 혼합하여 1.0 ㎖/min 으로 흘렸다. Phenol direct synthesis experiment from benzene was used in the SUS reactor, the reactant and the activated carbon catalyst loaded with the 0.5wt% transition metal is completely mixed using a magnetic stirrer. At this time, the reaction was carried out for 5 hours at 65 ℃, the reactant is composed of benzene as the main raw material, 30% hydrogen peroxide and a solvent as an oxidizing agent, the reactants are benzene, acetonitrile as a solvent, hydrogen peroxide as an oxidizing agent 1: 1: 6.0. The mixture was tested by mixing in a molar ratio of. Also, 0.1 g of the catalyst was used, and the reaction product was analyzed by HPLC (Waters 2690) equipped with a C18 column and a UV detector (wavelength: 254 nm). The mobile phase of LC was mixed at a composition of 42 vol% water and 58 vol% acetonitrile and flowed at 1.0 ml / min.

상기와 같은 전이금속이 담지된 활성탄 촉매에 의한 페놀 수율의 결과는 도 2 에 도시된 바와 같으며, 이를 통해 철, 구리, 바나듐이 다른 전이금속에 비해 우수한 반응특성을 구비하고 있음을 알 수 있다. The result of phenol yield by the activated carbon catalyst loaded with the transition metal as described above is shown in FIG. 2, and it can be seen that iron, copper, and vanadium have better reaction characteristics than other transition metals. .

실시예 2Example 2

바나듐 전구체 물질(vanadyl acetylacetonate)을 물에 녹인 다음 회전증발기에 넣은 후 활성탄에 함침시키고, 이를 80℃건조기에 넣고 하루정도 건조한 다음, 질소분위기하에서 550℃, 5시간 동안 소성하여, 바나듐을 0.5wt%, 1.0wt%, 2.0wt%, 5.0wt% 로 활성탄에 담지한 활성탄 촉매를 제조한다. 벤젠으로부터 페놀 직접합성 실험 및 반응생성물의 분석은 실시예 1 과 같다. After dissolving vanadium precursor material (vanadyl acetylacetonate) in water and putting it in a rotary evaporator, it was impregnated in activated carbon, and dried in an 80 ° C. dryer for one day, and then calcined at 550 ° C. for 5 hours under a nitrogen atmosphere. , Activated carbon catalyst supported on activated carbon at 1.0wt%, 2.0wt%, 5.0wt%. Phenol direct synthesis experiments and reaction products from benzene are the same as in Example 1.

도 3 은 본 발명의 바나듐 담지량에 따른 벤젠 전환율과 페놀 선택도를 보인 예시도를, 도 4 는 본 발명의 바나듐 담지량에 따른 페놀 수율을 보인 예시도를 도시한 것으로, 바나듐 5.0wt% 담지된 촉매가 약 13%의 페놀수율을 얻고 있음을 알 수 있다. Figure 3 is an exemplary view showing the benzene conversion and phenol selectivity according to the vanadium supported amount of the present invention, Figure 4 shows an exemplary view showing the phenol yield according to the vanadium supported amount of the present invention, vanadium 5.0wt% supported catalyst It can be seen that the phenol yield of about 13% is obtained.

실시예 3Example 3

철 전구체 물질(iron nitrate monohydrate)을 물에 녹인 다음 회전증발기에 넣은 후 활성탄에 함침시키고, 이를 80℃건조기에 넣고 하루정도 건조한 다음, 질소분위기하에서 550℃, 5시간 동안 소성하여, 철을 0.5wt%, 1.0wt%, 2.0wt%, 5.0wt% 로 활성탄에 담지한 활성탄 촉매를 제조한다. 벤젠으로부터 페놀 직접합성 실험 및 반응생성물의 분석은 실시예 1 과 같다. Iron nitrate monohydrate was dissolved in water and then placed in a rotary evaporator, impregnated in activated carbon, and then dried in an 80 ° C. dryer for one day, and then calcined at 550 ° C. for 5 hours under a nitrogen atmosphere. An activated carbon catalyst supported on activated carbon at%, 1.0wt%, 2.0wt%, 5.0wt% is prepared. Phenol direct synthesis experiments and reaction products from benzene are the same as in Example 1.

도 5 는 본 발명의 철 담지량에 다른 벤젠 전환율과 페놀 선택도를 보인 예시도를, 도 6 은 본 발명의 철 담지량에 따른 페놀 수율을 보인 예시도를 도시한 것으로, 실시예 2 와 비슷한 경향의 결과를 나타내고 있으며, 철 5.0wt%가 담지된 촉매의 경우, 바나듐 촉매의 페놀 수율보다 높은 약 16% 의 수율을 나타내고 있음을 알 수 있다. 5 is an exemplary view showing different benzene conversion and phenol selectivity in the iron loading of the present invention, and FIG. 6 is an exemplary view showing the phenol yield according to the iron loading of the present invention. The results show that, in the case of a catalyst loaded with 5.0 wt% of iron, the yield of about 16% is higher than that of the phenol of the vanadium catalyst.

실시예 4Example 4

도 7 은 본 발명에 따른 바나듐/철 촉매의 용매 첨가량에 따른 페놀 수율을 보인 예시도를 도시한 것으로, 실시예 2 및 3 에 의한 바나듐 5.0wt% 로 활성탄에 담지한 활성탄 촉매 및 철 5.0wt% 로 활성탄에 담지한 활성탄 촉매를 제조하고, 상기 활성탄 촉매하에서 벤젠으로부터 페놀 직접합성 실험시, 용매로 아세톤 20.8 g(solvⅠ), 아세토니트릴 14.7 g(solvⅡ), 아세토니트릴 20.8 g(solvⅢ) 을 첨가하 였으며, 이에 따른 반응생성물을 분석하였다. 7 is an exemplary view showing the phenol yield according to the solvent addition amount of the vanadium / iron catalyst according to the present invention, the activated carbon catalyst and 5.0 wt% iron supported on activated carbon with 5.0 wt% of vanadium according to Examples 2 and 3 Activated carbon supported on activated carbon was prepared, and 20.8 g of acetone, 14.7 g of acetonitrile, 20.8 g of acetonitrile, and 20.8 g of acetonitrile were added as a solvent during phenol direct synthesis experiment from benzene under the activated carbon catalyst. The reaction product was analyzed accordingly.

아세토니트릴이 14.7 g(solvⅡ) 투입된 경우가 가장 우수한 반응성을 보이고 있으며, 아세토니트릴이 14.7 g 투입된 경우 바나듐보다는 철의 경우가 보다 높은 페놀 수율을 얻을 수 있음을 알 수 있으며, 아세토니트릴이 20.8 g(solvⅢ) 투입된 경우는 바나듐 촉매가 철 촉매보다 수율이 높게 나타남을 알 수 있다. When acetonitrile was added 14.7 g (solvII), the highest reactivity was observed. When acetonitrile was added 14.7 g, iron showed higher phenol yield than vanadium, and acetonitrile 20.8 g ( solvIII) It can be seen that the vanadium catalyst has a higher yield than the iron catalyst.

실시예 5Example 5

활성탄에 5M의 질산을 첨가하고 이를 4시간 동안 60℃∼70℃에서 리플럭스(reflux)시킨 다음, 80℃이상에서 건조하여 일정량의 질산이 처리된 활성탄을 제조한다. 또한, 이와 같이 질소분위기하에서 질산처리된 활성탄을 600℃, 750℃, 1100℃에서 열처리하였으며, 이들을 각각 NACH-600N, NACH-750N, NACH-1100N으로 명명하였으며, 아세토니트릴 용매하에서 활성탄 촉매의 벤젠전환율과 페놀 선택도를 살펴보았으며 그 결과는 도 8 과 같다. 5M nitric acid is added to activated carbon and refluxed at 60 ° C. to 70 ° C. for 4 hours, and then dried at 80 ° C. or higher to prepare activated carbon treated with a certain amount of nitric acid. In addition, the activated carbon treated with nitric acid under nitrogen atmosphere was heat treated at 600 ° C, 750 ° C, and 1100 ° C. These were named as NACH-600N, NACH-750N, and NACH-1100N, respectively, and the benzene conversion rate of the activated carbon catalyst under acetonitrile solvent And phenol selectivity were examined and the results are shown in FIG. 8.

도 8 은 아세토니트릴 용매하에서의 본 발명 활성탄 촉매에 따른 벤젠 전환율과 페놀 선택도를 보인 예시도를 도시한 것으로, 벤젠의 전환율은 조금 차이만 있을 뿐 큰 변화는 관찰되지 않았으나, 페놀의 선택도는 NACH-600N 이 가장 높게 관찰되었다. FIG. 8 shows an exemplary view showing benzene conversion and phenol selectivity according to the present invention activated carbon catalyst in acetonitrile solvent. The conversion of benzene was only slightly different, but no significant change was observed, but the selectivity of phenol was NACH. -600N was the highest observed.

이와 같은 결과에 따른 페놀의 수율은 도 9 와 같다. 도 9 는 아세토니트릴 용매하에서의 본 발명 활성탄 촉매에 따른 페놀 수율을 보인 예시도를 도시한 것으로, 산처리 및 산처리와 열처리가 된 활성탄 촉매하에서의 페놀 수율이 더 우수함 을 알 수 있다. The yield of phenol according to this result is as shown in FIG. Figure 9 shows an exemplary view showing the phenol yield according to the activated carbon catalyst of the present invention in acetonitrile solvent, it can be seen that the phenol yield under the activated carbon catalyst subjected to acid treatment, acid treatment and heat treatment.

실시예 6Example 6

활성탄에 5M의 질산을 첨가하고 이를 4시간 동안 60℃∼70℃에서 리플럭스(reflux)시킨 다음, 80℃이상에서 건조하여 일정량의 질산이 처리된 활성탄을 제조하고, 이와 같이 질소분위기하에서 질산처리된 활성탄을 600℃, 750℃, 1100℃에서 열처리하여 활성탄을 제조한다. 5M nitric acid was added to the activated carbon and refluxed at 60 ° C. to 70 ° C. for 4 hours, and then dried at 80 ° C. or higher to prepare activated carbon treated with a certain amount of nitric acid. Thus, nitric acid treatment under nitrogen atmosphere was performed. Activated carbon is heat-treated at 600 ° C., 750 ° C., and 1100 ° C. to produce activated carbon.

철 전구체 물질(iron nitrate monohydrate)을 물에 녹인 다음 회전증발기에 넣은 후 활성탄(A), 산처리된 활성탄(B), 산처리된 후 600℃에서 열처리된 활성탄(C), 750℃에서 열처리된 활성탄(D), 1100℃에서 열처리된 활성탄(E) 촉매의 벤젠 전환율 및 페놀 선택도를 관찰하였으며, 그 결과는 도 10 및 도 11 과 같다. (이때의 용매는 아세토니트릴을 사용하였다.)Iron nitrate monohydrate was dissolved in water and then placed in a rotary evaporator, activated carbon (A), acid treated activated carbon (B), acid treated and activated carbon (C) heat treated at 600 ° C., heat treated at 750 ° C. Activated carbon (D), benzene conversion and phenol selectivity of the activated carbon (E) catalyst heat-treated at 1100 ° C. were observed, and the results are shown in FIGS. 10 and 11. (Acetonitrile was used for the solvent at this time.)

도 10 은 본 발명 철이 담지된 활성탄 촉매의 벤젠전환율 및 페놀선택도를 보인 예시도를, 도 11 은 본 발명 철이 담지된 활성탄 촉매의 페놀 수율을 보인 예시도를 도시한 것으로, 이 결과로 부터 산처리되고 600℃에서 열처리된 5wt% 철이 담지된 활성탄 촉매(C)가 가장 우수한 반응성을 보이고 있음을 알 수 있다. 10 is an exemplary view showing the benzene conversion rate and phenol selectivity of the iron-supported activated carbon catalyst of the present invention, Figure 11 is an illustration showing the phenol yield of the iron-supported activated carbon catalyst of the present invention, from the acid It can be seen that the activated carbon catalyst (C) loaded with 5 wt% iron treated and heat treated at 600 ° C. shows the best reactivity.

상기 실시예 1 내지 6 에서와 같이, 전이금속의 지지체로 활성탄을 사용하는 촉매하에서 벤젠에서 페놀로의 직접 합성반응시 높은 페놀 수율을 얻을 수 있음을 알 수 있으며, 지지체로 사용되는 활성탄을 산처리 또는 산처리와 열처리를 할 경 우, 매우 우수한 페놀수율을 얻을 수 있음을 알 수 있다. As in Examples 1 to 6, it can be seen that a high phenol yield can be obtained in the direct synthesis of benzene to phenol under a catalyst using activated carbon as a support of the transition metal, and acid treated the activated carbon used as a support Alternatively, when the acid treatment and heat treatment are performed, very good phenol yield can be obtained.

또한, 전이금속의 담지량 및 벤젠과 용매의 투입몰비를 선택된 조건하에서 투입할 경우, 페놀 수율을 향상시킬 수 있음을 알 수 있다. In addition, it can be seen that the phenol yield can be improved when the amount of the transition metal supported and the molar ratio of benzene and solvent are added under selected conditions.

비교예 1Comparative Example 1

종래의 제올라이트계 촉매하에서 벤젠에서 페놀로의 직접 전환반응을 실시하였으며, 이에 대한 벤젠전환율과 페놀선택도 및 수율을 표 1 에 도시하였다. Direct conversion of benzene to phenol was carried out under a conventional zeolite catalyst, and benzene conversion, phenol selectivity, and yield thereof are shown in Table 1 below.

Figure 112004027637968-pat00001
Figure 112004027637968-pat00001

[3] A. Kumar Jr., S.K. Das and A. Kumar, J. Catal., 166, 108 (1997).[3] A. Kumar Jr., SK Das and A. Kumar, J. Catal. , 166 , 108 (1997).

[4] A. Bhaumik, P. Mukherjee and R. Kumar, J. Catal., 178, No. 1, 101 (1998).[4] A. Bhaumik, P. Mukherjee and R. Kumar, J. Catal. , 178 , No. 1, 101 (1998).

[5] C.W. Lee, W.J. Lee, Y.K. Park and S.E. Park, Catal. Today, 61, 137 (2000).[5] CW Lee, WJ Lee, YK Park and SE Park, Catal. Today , 61 , 137 (2000).

[6] M. Stockmann, F. Konietzni, J.V. Notheis, J. Voss, W. Keune and W.F. Maier, App. Catal. A: General, 208, 343 (2001).[6] M. Stockmann, F. Konietzni, JV Notheis, J. Voss, W. Keune and WF Maier, App. Catal. A: General , 208 , 343 (2001).

[7] T. Ohtani, S. Nishiyama, S. Tsuruya and M. Masai, J. Catal., 155, 158 (1995).[7] T. Ohtani, S. Nishiyama, S. Tsuruya and M. Masai, J. Catal. , 155 , 158 (1995).

[8] T. Miyake, M. Hamada, Y. Sasaki and M. Oguri, App. Catal. A: General, 131, 33 (1995).[8] T. Miyake, M. Hamada, Y. Sasaki and M. Oguri, App. Catal. A: General , 131 , 33 (1995).

[9] T. Miahara, H. Kanzaki, R. Hamada, S. Kuroiwa, S. Nishiyama and S. Tsuruya, J. Mol. Catal. A: Chemical, 176, 141 (2002).[9] T. Miahara, H. Kanzaki, R. Hamada, S. Kuroiwa, S. Nishiyama and S. Tsuruya, J. Mol. Catal. A: Chemical , 176 , 141 (2002).

[10] Y. Masumoto, R. Hamada, K. Yokota, S. Nishiyama and S. Tsuruya, J. of Mol. Catal. A: Chemical, 114, 181 (1996).[10] Y. Masumoto, R. Hamada, K. Yokota, S. Nishiyama and S. Tsuruya, J. of Mol. Catal. A: Chemical , 114 , 181 (1996).

상기에서와 같이, 종래의 제올라이트계 촉매는 페놀의 수율면에서 10% 이하로 나타나고 있음을 알 수 있다 As described above, it can be seen that the conventional zeolite catalyst is represented by 10% or less in terms of yield of phenol.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

이와 같이 본 발명은 페놀 직접 합성에, 높은 비표면적, 다공성 활성탄을 지 지체로 한 전이금속 담지촉매를 사용하도록 되어 있어, 활성탄의 적용분야를 넓히고, 기존 공정상에서 분리공정상에 투입되는 에너지를 절약할 수 있으며, 높은 페놀 수율을 얻을 수 있어 화학제품의 기초 및 중간 생성물인 페놀의 수요를 충족시킬 수 있다. As described above, the present invention is to use a transition metal supported catalyst having a high specific surface area and porous activated carbon as a support for direct synthesis of phenol, thereby broadening the field of application of activated carbon and saving energy input to the separation process in the existing process. High phenol yields can be obtained to meet the demand for phenol, the basic and intermediate product of chemicals.

또한, 활성탄의 전처리 및 열처리, 벤젠과 용매의 최적 투입몰비를 통해 페놀 수율을 향상시킬 수 있는 등 많은 효과가 있다.













In addition, through the pre-treatment and heat treatment of activated carbon, the optimum molar ratio of benzene and solvent can improve the phenol yield.













Claims (7)

삭제delete 삭제delete 벤젠으로부터 페놀로의 직접 합성반응시 사용되는 촉매제조방법에 있어서;A method for producing a catalyst used in the direct synthesis of benzene to phenol; 상기 촉매는 티타늄, 코발트, 망간, 니켈, 철, 구리, 바나듐으로 이루어진 군에서 선택된 하나의 전이금속 전구체를 물에 녹이고, 회전증발기에 넣은 후 활성탄에 함침시키며, 이를 건조기에 넣고 80℃에서 24시간 건조한 다음, 질소분위기하에서 550℃를 유지하며 소성하되,The catalyst is dissolved in water, one transition metal precursor selected from the group consisting of titanium, cobalt, manganese, nickel, iron, copper, vanadium, put in a rotary evaporator, and impregnated in activated carbon, put it in a dryer for 24 hours at 80 ℃ After drying, firing is maintained at 550 ° C. under a nitrogen atmosphere. 상기 활성탄은 5M의 질산을 첨가하고 이를 4시간동안 60℃∼70℃에서 리플럭스(reflux)시킨 다음, 80℃에서 건조한 후, 이를 600℃∼1100℃에서 열처리한 것을 특징으로 하는 페놀 합성용 활성탄 촉매 제조방법.The activated carbon was added with 5M nitric acid and refluxed at 60 ° C. to 70 ° C. for 4 hours, dried at 80 ° C., and then heat-treated at 600 ° C. to 1100 ° C. Catalyst preparation method. 삭제delete 상기 청구항 3 의 방법에 의해 제조된 촉매하에서, 벤젠과 과산화수소를 반응시키되, 상기 벤젠과 과산화수소에 용매로 아세톤 또는 아세토니트릴을 첨가하여 혼합하며, 상기 벤젠과 용매는 1 : 4.6∼6.58 의 투입몰비를 구비하는 것을 특징으로 하는 활성탄 촉매를 이용한 페놀 합성방법.Under the catalyst prepared by the method of claim 3, benzene and hydrogen peroxide are reacted, and acetone or acetonitrile is added to the benzene and hydrogen peroxide as a solvent, and the benzene and the solvent are added at a molar ratio of 1: 4.6 to 6.58. Phenol synthesis method using an activated carbon catalyst, characterized in that provided. 삭제delete 삭제delete
KR1020040048021A 2004-06-25 2004-06-25 The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts KR100582092B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040048021A KR100582092B1 (en) 2004-06-25 2004-06-25 The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040048021A KR100582092B1 (en) 2004-06-25 2004-06-25 The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts

Publications (2)

Publication Number Publication Date
KR20050123383A KR20050123383A (en) 2005-12-29
KR100582092B1 true KR100582092B1 (en) 2006-05-22

Family

ID=37294983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040048021A KR100582092B1 (en) 2004-06-25 2004-06-25 The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts

Country Status (1)

Country Link
KR (1) KR100582092B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780910B1 (en) * 2007-01-24 2007-11-30 한국에너지기술연구원 Producing method of ni/activated carbon catalysts and hydrogen-producing system through supercritical water gasification of organic compounds using ni/activated carbon catalysts and driving method thereof
KR100885191B1 (en) * 2007-08-28 2009-03-12 충북대학교 산학협력단 Preaparation of mesoporosity in activated carbons using Fe-exchange
KR101038253B1 (en) * 2009-07-13 2011-05-31 충북대학교 산학협력단 A method of mesopore of active carbon fiber for supercapacitor electrode
CN111116321B (en) * 2020-01-21 2023-01-03 山东理工大学 Green synthesis method for preparing phenol by benzene hydroxylation

Also Published As

Publication number Publication date
KR20050123383A (en) 2005-12-29

Similar Documents

Publication Publication Date Title
Maurya et al. Zeolite-Y encapsulated metal complexes of oxovanadium (VI), copper (II) and nickel (II) as catalyst for the oxidation of styrene, cyclohexane and methyl phenyl sulfide
KR100237976B1 (en) Vanadium-phosphorous based oxide, its production, catalyst for vaporation comprising the sameand partial vapor-phase oxidation for hydrocarbon
EP2493837B1 (en) Hydrocarbon selective oxidation with heterogenous gold catalysts
US5981424A (en) Catalysts for hydroxylation and ammination of aromatics using molecular oxygen as the terminal oxidant without coreductant
US6180836B1 (en) Preparation of phenol via one-step hydroxylation of benzene catalyzed by copper-containing molecular sieve
KR100582092B1 (en) The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts
KR20100072254A (en) Improved oxidation catalyst for maleic anhydride production
RU2454277C2 (en) Method of producing hydrogen cyanide through catalytic oxidation in ammonia medium
Selvaraj et al. Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr–Mn-MCM-41 molecular sieves
Maurya et al. Liquid-phase catalytic hydroxylation of phenol using Cu (II), Ni (II) and Zn (II) complexes of amidate ligand encapsulated in zeolite-Y as catalysts
Liu et al. Selective oxidation of propylene to acetone by molecular oxygen over Mx/2H5− x [PMo10V2O40]/HMS (M= Cu2+, Co2+, Ni2+)
Meng et al. Catalytic hydroxylation of 2, 3, 6-trimethylphenol with hydrogen peroxide over copper hydroxyphosphate (Cu2 (OH) PO4)
Li et al. Oxodiperoxo tungsten complex-catalyzed synthesis of adipic acid with hydrogen peroxide
KR19980071834A (en) Process for preparing Icrylic acid from acrolein by redox reaction and use of solid mixed oxide composition as redox system in the reaction
EP3003553B1 (en) Liquid phase nitration of aromatics using solid acid catalyst
KR20120139675A (en) Method for producing propylene oxide
CN102850205B (en) Method for producing 1,2-cyclohexanediol and adipic acid
JP2008207156A (en) Manufacturing method of ketone compound
KR100336969B1 (en) A process for preparing acrolein with core-shell structure catalyst
Wroblewska et al. Hydroxylation of phenol with hydrogen peroxide over the Ti-MWW catalyst in the presence of acetonitrile
CN115466183B (en) Co-production method of aromatic hydrocarbon nitration and oxidation products
JP3759847B2 (en) Method for activating vanadium-phosphorus catalyst
CN111848555B (en) Preparation of 5,5 from 2-alkyl furan ′ -dialkyl-2, 2 ′ New process for the preparation of bisfurans
US8269036B2 (en) Processes for producing an oxalate by coupling of CO
JP2008013476A (en) Process for preparing phenols

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120504

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130515

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 9

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150511

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee