KR100574563B1 - Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same - Google Patents

Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same Download PDF

Info

Publication number
KR100574563B1
KR100574563B1 KR1020030070596A KR20030070596A KR100574563B1 KR 100574563 B1 KR100574563 B1 KR 100574563B1 KR 1020030070596 A KR1020030070596 A KR 1020030070596A KR 20030070596 A KR20030070596 A KR 20030070596A KR 100574563 B1 KR100574563 B1 KR 100574563B1
Authority
KR
South Korea
Prior art keywords
plant
gene
present
promoter
efficiency expression
Prior art date
Application number
KR1020030070596A
Other languages
Korean (ko)
Other versions
KR20050035314A (en
Inventor
서미정
김미정
배정명
박영인
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020030070596A priority Critical patent/KR100574563B1/en
Publication of KR20050035314A publication Critical patent/KR20050035314A/en
Application granted granted Critical
Publication of KR100574563B1 publication Critical patent/KR100574563B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 애기장대 (Arabidopsis thaliana)의 마이크로좀 올레산 불포화제 (microsomal oleic acid desaturase) 유전자에서 유래된 식물체 고효율 발현 프로모터 및 인트론 (intron)과 이들을 함유하는 식물체 고효율 발현 벡터 그리고 이 발현벡터로 형질전환된 식물체에 관한 것이다.The present invention provides a plant high efficiency expression promoter and intron derived from the microsomal oleic acid desaturase gene of Arabidopsis thaliana and a plant high efficiency expression vector containing them and transformed with the expression vector. It is about a plant.

본 발명에 따르면, 기존에 널리 사용되어지고 있는 꽃양배추 모자익 바이러스 유래의 CaMV 35S promoter에 비해 형질전환 식물체에서 도입된 유전자의 발현을 꽃과 종자 조직에서는 약 10배 이상, 뿌리와 줄기에서는 약 3배 이상 증가시킬 수 있다. 또한, 본 발명은 유용물질을 대량 생산하고자 하는 형질전환 식물체 개발에 유용하게 이용될 수 있다.According to the present invention, the expression of the gene introduced in the transgenic plant is about 10 times or more in flowers and seed tissues, and about 3 times in roots and stems, compared to the CaMV 35S promoter derived from Cauliflower mosaic virus, which is widely used. Can be increased over. In addition, the present invention can be usefully used in the development of transformed plants to mass-produce useful materials.

Description

애기장대 유래 식물체 고효율 발현 프로모터 및 이를 함유하는 식물체 고효율 발현 벡터{Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same}Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same}

도 1은 본 발명의 애기장대 마이크로좀 올레산 불포화제 유전자 유래의 프로모터 및 그 유전자에 존재하는 인트론의 염기서열을 나타낸 것이다.Figure 1 shows a promoter derived from the Arabidopsis microsomal oleic acid unsaturated agent gene of the present invention and the nucleotide sequence of the intron present in the gene.

도 2a는 β-glucuronidase (이하 'GUS'라 약칭함) 리포터 유전자를 함유하는 binary vector, pBI101 (Cat.# 6017-1, Clontech, 미국)을 나타내는 모식도이다.Figure 2a is a schematic diagram showing a binary vector, pBI101 (Cat. # 6017-1, Clontech, USA) containing β-glucuronidase (hereinafter abbreviated as 'GUS') reporter gene.

도 2b는 본 발명의 애기장대 마이크로좀 올레산 불포화제 유전자 유래의 프로모터와 그 유전자 안에 존재하는 인트론을 포함하는 binary vector (이하, 'pAtW6-P2.4'로 약칭함)를 나타내는 모식도이다.Figure 2b is a schematic diagram showing a binary vector (hereinafter, abbreviated as 'pAtW6-P2.4') containing a promoter derived from the Arabidopsis microsomal oleic acid unsaturated agent gene of the present invention and the intron present in the gene.

도 3은 6종류의 binary 벡터들을 제한효소 HindIII 와 BamHI를 이용하여 절단한 다음, 0.7% agarose 젤에서 전기영동한 것을 나타낸 것이다.Figure 3 shows that six kinds of binary vectors were digested with restriction enzymes Hin dIII and Bam HI, followed by electrophoresis on 0.7% agarose gel.

도 4는 도 3의 6종류의 binary 벡터와 pBI121 (Cat#: 6018-1, Clontech, 미국) binary vector를 함유한 Agrobacteria 에 의해 형질전환된 애기장대들이다.FIG. 4 shows Arabidopsis transformed by Agrobacteria containing six binary vectors of FIG. 3 and a pBI121 (Cat #: 6018-1, Clontech, USA) binary vector.

도 5는 pAtW6-P2.4와 pBI121으로 형질전환된 애기장대 식물체의 전 조직- 뿌리, 줄기, 잎, 꽃대에 달린 잎 (cauline), 꽃, 발달 종자 그리고 꼬투리들을 이용 하여 GUS 활성을 조직 화학적 방법으로 염색한 것이다.FIG. 5 shows histochemical method of GUS activity using whole tissues of roots, stems, leaves, cauliflowers, flowers, developmental seeds and pods of Arabidopsis plants transformed with pAtW6-P2.4 and pBI121. It is dyed with.

도 6는 획득된 7종류의 형질전환 애기장대에서 식물체의 전 조직- 뿌리, 줄기, 잎, 꽃대에 달린 잎 (cauline), 꽃, 발달 종자, 그리고 꼬투리들을 이용하여 GUS 효소의 활성을 조사한 것이다.FIG. 6 shows the activity of GUS enzymes using the entire tissues of plants-roots, stems, leaves, cauline, flowers, developmental seeds, and pods in the seven types of transgenic Arabidopsis obtained.

본 발명은 애기장대 (Arabidopsis thaliana)의 마이크로좀 올레산 불포화제 (microsomal oleic acid desaturase) 유전자에서 유래된 식물체 고효율 발현 프로모터 및 인트론 (intron)과 이들을 함유하는 식물체 고효율 발현 벡터 그리고 이 발현벡터로 형질전환된 식물체에 관한 것이다.The present invention provides a plant high efficiency expression promoter and intron derived from the microsomal oleic acid desaturase gene of Arabidopsis thaliana and a plant high efficiency expression vector containing them and transformed with the expression vector. It is about a plant.

식물체내의 지방산들은 세포막과 종자 내 저장 오일을 이루는 중요한 구성 성분이다. 특히, 마이크로좀 올레산 불포화제 (microsomal oleic acid desaturase)는 세포 내 소포체 (endoplasmic reticulum) 막에 존재하여 포스파티딜콜린 (phosphatidylcholine)의 sn-1 과 sn-2 위치에 존재하는 일중 불포화지방산, oleic acid를 이중 불포화 지방산, linoleic acid로 전환되는 반응을 촉매하는 효소이다.Fatty acids in plants are important components of the cell membrane and the storage oil in the seeds. In particular, the microsomal oleic acid desaturase is present in the membrane of the endoplasmic reticulum, and the polyunsaturated monounsaturated fatty acid, oleic acid, present in the sn- 1 and sn- 2 positions of phosphatidylcholine It is an enzyme that catalyzes the conversion of fatty acids into linoleic acid.

애기장대, 페츄니아, 그리고 면화에서 마이크로좀 올레산 불포화제 게놈 유전자가 보고되었으며, 애기장대 게놈 상에는 이 유전자가 1개, 그 외의 다른 식물체에는 2개 이상의 유전자가 존재하는 것으로 알려져 있다 (Okuley et al., 1994; Verwoert et al., 2000; Pirtie et al., 2001). 특히, 애기장대의 마이크로좀 올레산 불포화제 유전자는 식물체의 전 조직에서 발현하며, 식물체의 세포막과 종자 내 저장 오일을 구성하는 linoleic acid 합성에 관여한다.Microsomal oleic acid desaturator genomic genes have been reported in Arabidopsis, petunia, and cotton, with one gene present in the Arabidopsis genome and two or more genes in other plants (Okuley et al., 1994; Verwoert et al., 2000; Pirtie et al., 2001). In particular, the microsomal oleic acid unsaturated gene gene of Arabidopsis is expressed in all tissues of plants and is involved in linoleic acid synthesis, which constitutes plant membranes and storage oils in seeds.

현재까지 상기에서 기술한 3종류의 식물체로부터 마이크로좀 올레산 불포화제 게놈 유전자가 보고되었으나, 그의 프로모터 및 그의 게놈 유전자에 존재하는 인트론에 대한 연구는 전 세계적으로 전혀 이루어지지 않았다.To date, microsomal oleic acid desaturator genomic genes have been reported from the three types of plants described above, but no studies have been made worldwide on their promoters and introns present in their genomic genes.

옥수수의 알코올 디하이드로게네이즈 (alcohol dehydrogenase) 유전자의 첫 번째 인트론 (intron)을 비롯하여 몇몇 식물 게놈 유전자들 상에 존재하는 인트론은 식물체에서 자신의 유전자 발현을 증가시킬 수 있음을 보고하였다 (Callis et al., 1987; Norris et al., 1993; Currie et al., 1991 and 1993). 그러나, 마이크로좀 올레산 불포화제 게놈 유전자내에 존재하는 인트론에 의한 자신의 유전자 발현 조절에 대한 연구는 전혀 이루어지지 않았다.Introns present on several plant genomic genes, including the first intron of corn alcohol dehydrogenase gene in maize, have been reported to increase their gene expression in plants (Callis et al. , 1987; Norris et al., 1993; Currie et al., 1991 and 1993). However, no studies have been made on the regulation of their gene expression by introns present in the microsomal oleic acid desaturator genomic gene.

최근에 유전 공학 기술을 이용하여 식물의 형질을 개량하고자 하는 많은 연구가 진행되고 있다. 이러한 과정에서 외래의 유용 유전자를 형질전환 식물체에서 발현시키고자 할 때 유전자 발현에 관여하는 프로모터가 요구된다. 이를 위해 식물체의 전 조직에서 발현이 유도되는 꽃양배추 모자익 바이러스 (cauliflower mosaic virus; CaMV35S) 유래의 프로모터가 널리 사용되어지고 있다. 그러나, 이러한 CaMV35S 프로모터가 사용되었을 때, 식물체의 잎과 세포분열이 활발한 조직을 제외한 식물의 다른 조직에서 외래유전자의 발현양이 적은 것이 단점이다. 그러므로 형질전환 식물체에서 외래 도입 유전자를 발현을 증가시킬 수 있는 프로모터가 강력 히 요구되고 있는 실정이다.Recently, many studies have been conducted to improve plant traits using genetic engineering techniques. In this process, when a foreign useful gene is to be expressed in a transgenic plant, a promoter involved in gene expression is required. For this purpose, a promoter derived from cauliflower mosaic virus (CaMV35S), which is expressed in all tissues of plants, has been widely used. However, when the CaMV35S promoter is used, the expression of foreign genes is low in other tissues of the plant except the leaf and the active cell division of the plant. Therefore, there is a strong demand for a promoter capable of increasing the expression of foreign transgenes in transgenic plants.

이에 본 발명자들은 애기장대로부터 유래된 마이크로좀 올레산 불포화제가 식물체의 전 조직에서 발현되는 것에 착안하여 그의 프로모터 및 인트론을 클로닝한 후, 프로모터 및 인트론을 binary vector에 삽입하여 모델 식물체인 애기장대에 도입한 결과, 애기장대 유래 마이크로좀 올레산 불포화제 유전자의 프로모터 및 그의 유전자에 존재하는 인트론 (intron)은 기존에 널리 사용되어지고 있는 꽃양배추 모자익 바이러스 유래의 CaMV 35S 프로모터에 비해 형질전환 식물체에서 도입된 유전자의 발현을 꽃과 종자 조직에서는 약 10배 이상, 뿌리와 줄기에서는 약 3배 이상 증가시킬 수 있음을 밝힘으로써 본 발명을 완성하였다.Therefore, the present inventors focused on the expression of microsomal oleic acid desaturants derived from Arabidopsis edodes from all tissues of plants, and cloned the promoters and introns. As a result, the promoter of the Arabidopsis-derived microsomal oleic acid desaturator gene and the intron present in the gene were compared to the CaMV 35S promoter derived from Cauliflower mosaic virus, which is widely used. The present invention has been completed by revealing that expression can be increased about 10 times or more in flower and seed tissues, and about 3 times or more in roots and stems.

따라서, 본 발명의 목적은 애기장대의 마이크로좀 올레산 불포화제 유전자에서 유래된 식물체 고효율 발현 프로모터 및/또는 발현 증강용 인트론을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a plant high efficiency expression promoter and / or intron for enhancing expression derived from the microsomal oleic acid unsaturated agent gene of Arabidopsis.

본 발명의 다른 목적은 위의 고효율 발현 프로모터 및/또는 발현 증강용 인트론를 함유하는 식물체 고효율 발현 벡터 및 이 발현 벡터로 형질전환된 식물체를 제공하는 것이다.Another object of the present invention is to provide a plant high efficiency expression vector and a plant transformed with the expression vector containing the above high efficiency expression promoter and / or intron for enhancing expression.

본 발명의 또 다른 목적은 식물체에서 유용 물질을 대량 생산하고자 하는 경우, 위의 고효율 발현 프로모터 및/또는 발현 증강용 인트론을 이용하여 외래 유전자를 형질전환 식물체에서 고효율로 발현시키는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for efficiently expressing a foreign gene in a transgenic plant by using the above-described high efficiency expression promoter and / or intron for enhancing expression when a large amount of useful substance is to be produced in a plant.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 1의 1 내지 959 (-959 내지 -1) 부위의 염기서열을 포함하는 식물체의 고효율 발현 프로모터를 제공한다. 괄호안은 전사 개시 부위로부터 upstream 방향으로 마이너스로 번호를 매긴 것이다.In order to achieve the object of the present invention, the present invention provides a high efficiency expression promoter of plants comprising the nucleotide sequence of the 1 to 959 (-959 to -1) region of SEQ ID NO: 1. Parentheses are numbered minus in the upstream direction from the transcription initiation site.

상기 본 발명의 고효율 발현 프로모터는 기존에 널리 사용되어지고 있는 꽃양배추 모자익 바이러스 유래의 CaMV 35S 프로모터에 비해 형질전환 식물체에서 도입된 유전자의 발현을 크게 증가시킬 수 있다.The high-efficiency expression promoter of the present invention can significantly increase the expression of the gene introduced in the transgenic plant as compared to CaMV 35S promoter derived from Cauliflower mosaic virus, which is widely used in the past.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 2의 전사 개시 부위로부터 +144 내지 +1274 부위의 염기서열을 포함하는 식물체의 발현 증강용(enhancing) 인트론을 제공한다.In order to achieve the object of the present invention, the present invention provides an intron for enhancing expression of a plant comprising a nucleotide sequence of +144 to +1274 site from the transcription initiation site of SEQ ID NO.

상기 본 발명의 발현 증강용 인트론은 식물체에서 도입된 유전자의 전사개시를 돕거나 전사된 mRNA의 안정성(stability)을 높임으로써 목적 유전자의 발현을 현저히 증가시킬 수 있다.The expression enhancing intron of the present invention can significantly increase the expression of a target gene by helping to initiate transcription of a gene introduced from a plant or by increasing the stability of the transcribed mRNA.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 식물체의 고효율 발현 프로모터 및/또는 발현 증강용 인트론을 함유하는 식물체의 고효율 발현 벡터를 제공한다.In order to achieve another object of the present invention, the present invention provides a high-efficiency expression vector of a plant containing a high-efficiency expression promoter and / or intron for enhancing expression of the plant.

본 발명의 식물체 고효율 발현 벡터는 상기 본 발명의 프로모터만을 함유하거나 본 발명의 인트론에 CaMV 35S 프로모터와 같은 일반 식물체 발현 프로모터를 조합하여 사용할 수도 있으나, 바람직하게는 상기 본 발명의 프로모터와 인트론을 모두 함유하는 것이 식물체에서 도입 유전자를 고효율로 발현시키기에 좋다.The plant high efficiency expression vector of the present invention may contain only the promoter of the present invention or a combination of a general plant expression promoter such as a CaMV 35S promoter in the intron of the present invention, but preferably contains both the promoter and the intron of the present invention. It is good to express transgenes in plants with high efficiency.

본 발명의 식물체 고효율 발현 벡터는 외래 유전자를 도입된 식물체내에서 일시적으로 발현시킬 수 있는 트랜젼트 발현(transient expression) 벡터일 수도 있으나, 바람직하게는 외래 유전자를 도입된 식물체에서 영구적으로 발현시킬 수 있는 바이너리(binary) 벡터인 것이 좋다The plant high efficiency expression vector of the present invention may be a transient expression vector capable of temporarily expressing a foreign gene in the introduced plant, but preferably, the plant can be permanently expressed in the introduced plant. Is a binary vector

본 발명에 이용될 수 있는 binary 벡터는 A. tumefaciens의 Ti 플라스미드와 함께 존재시 식물체를 형질전환시킬 수 있는 T-DNA의 BR과 BL을 함유하는 어떤 바이너리 벡터도 될 수 있으나, 바람직하게는 당업계에서 자주 사용되는 pBI101(Cat#: 6018-1, Clontech, 미국), pBIN19(Genbank 수탁번호 U09365), pBI121, pBIN20, BIBAC 벡터 등을 사용하는 것이 좋다.The binary vector that can be used in the present invention may be any binary vector containing BR and BL of T-DNA capable of transforming plants when present with Ti plasmid of A. tumefaciens , but preferably in the art. PBI101 (Cat #: 6018-1, Clontech, USA), pBIN19 (Genbank Accession No. U09365), pBI121, pBIN20, BIBAC vectors, and the like, which are frequently used in the present invention, are recommended.

상기 본 발명의 식물체 종자 특이적 발현 벡터에서, 본 발명의 프로모터 및/또는 인트론은 binary 벡터에 함유된 외래 유전자의 앞에 위치한다. 본 발명에서는 외래 유전자의 한 예로서 GUS 리포터 유전자가 함유된 binary 벡터(pBI101)에 본 발명의 프로모터 및 인트론을 삽입한 pAtW6-P2.4 (도 2b)을 제조하였으나, 상기 GUS 리포터 유전자를 다른 목적 외래 유전자로 치환할 수 있음은 당업자에게 자명하다.In the plant seed specific expression vector of the present invention, the promoter and / or intron of the present invention is located in front of the foreign gene contained in the binary vector. In the present invention, pAtW6-P2.4 (Fig. 2b) in which the promoter and intron of the present invention were inserted into a binary vector (pBI101) containing a GUS reporter gene as an example of a foreign gene was produced, but the GUS reporter gene was used for other purposes It will be apparent to those skilled in the art that substitution with a foreign gene is possible.

본 발명의 또 다른 목적을 달성하기 위해, 본 발명은 상기 본 발명의 식물체 고효율 발현 벡터로 형질전환된 식물체를 제공한다.In order to achieve another object of the present invention, the present invention provides a plant transformed with the plant high efficiency expression vector of the present invention.

상기 식물체 고효율 발현 벡터가 binary 벡터인 경우에는 예컨대, floral dip 방법 (Clough 와 Bent, 1998, The Plant Journal) 에 따라 식물체를 형질전환시키고, transient expression vector인 경우에는 예컨대, particle bombardment 방법 (Lacorte et al., 1997, Plant Cell Reports) 에 의거하여 식물체를 형질전환 시킬 수 있다. 본 발명의 식물체 종자 특이적 발현 벡터는 쌍자엽 혹은 단자엽 식물에 상관없이 어떤 식물체도 형질전환 시킬 수 있으나, 본 발명에서는 그 예로서 Arabidopsis의 형질전환만을 실시하였다.When the plant high efficiency expression vector is a binary vector, for example, the plant is transformed according to a floral dip method (Clough and Bent, 1998, The Plant Journal), and in the case of a transient expression vector, for example, a particle bombardment method (Lacorte et al. , 1997, Plant Cell Reports Plants can be transformed. The plant seed specific expression vector of the present invention can transform any plant irrespective of dicotyledonous or monocotyledonous plants, but in the present invention, only Arabidopsis was transformed.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 본 발명의 식물체 고효율 발현 벡터를 이용하여 외래 유전자를 형질전환 식물체에서 고효율로 발현시키는 방법을 제공한다.In order to achieve another object of the present invention, the present invention provides a method for efficiently expressing a foreign gene in a transgenic plant using the plant high efficiency expression vector of the present invention.

상기 외래 유전자는 식물체에서 대량 발현을 원하는 어떤 유전자도 될 수 있으며, 본 발명의 식물체 고효율 발현 벡터에서 상기 프로모터 및/또는 인트론의 뒤에 위치하며 필요에 따라 리포터 유전자와 융합되어 발현될 수도 있다.The foreign gene may be any gene for mass expression in a plant, and may be located after the promoter and / or intron in a plant high efficiency expression vector of the present invention and fused with a reporter gene as necessary.

본 발명은 애기장대 (Arabidopsis thaliana) 유래 마이크로좀 올레산 불포화제 유전자의 프로모터 및 그의 유전자에 존재하는 인트론 (intron)에 관한 것으로써 이는 기존에 널리 사용되어지고 있는 꽃양배추 모자익 바이러스 유래의 CaMV35S 프로모터에 비해 형질전환 식물체에서 도입된 유전자의 발현을 꽃과 종자 조직에서는 약 10배 이상, 뿌리와 줄기에서는 약 3배 이상 증가시킬 수 있다. 그러므로 본 발명은 유용물질을 대량 생산하고자 하는 형질전환 식물체 개발에 이용될 수 있다.The present invention relates to a promoter of the microsomal oleic acid desaturant gene derived from Arabidopsis thaliana and an intron present in the gene, which is compared to the CaMV35S promoter derived from Cauliflower mosaic virus, which is widely used. The expression of genes introduced in transgenic plants can be increased by at least about 10 times in flower and seed tissues and at least about 3 times in roots and stems. Therefore, the present invention can be used for the development of transgenic plants to mass produce useful substances.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

(실시예 1) 애기장대 유래 마이크로좀 올레산 불포화제 유전자의 프로모터 및 그의 유전자에 존재하는 인트론 확보 및 염기서열 분석Example 1 Intron Acquisition and Sequence Analysis of a Promoter from Microsomal Oleic Acid Unsaturated Gene Derived from Arabidopsis

애기장대의 마이크로좀 올레산 불포화제 유전자(FAD2)의 프로모터 및 그의 유전자에 존재하는 인트론을 확보하기 위하여 애기장대 게놈 염기서열 (http://mips.gsf.de/proj/thal/index.html, At3g12120, GenBank Accession No: NM_112047) 에 근거해서 forward primer(AraW6F1: 5'-CCG AAG CTT GGT GTG TCG TCG TTA TAC GCG GTA AA-3')와 reverse primer(AraW6R4: 5'-CGA GGA TCC CTG CAG AAA ACC AAA AGC AAA AG-3')를 제작하였고, 애기장대의 어린잎으로부터 게놈 DNA를 추출한 다음, 중합효소 연쇄 반응 (Polymerase Chain Reaction, 이하 'PCR'로 약칭함)을 수행하여 마이크로좀 올레산 불포화제 유전자의 프로모터 및 그의 유전자에 존재하는 인트론을 분리하였다. 분리된 약 2.4 kb DNA 절편을 pGEM-T 벡터(Promega, 미국)에 클로닝한 후, ABI Bigdye cycle sequencing kit (PE Applied Biosystems, 미국)을 이용하여 염기서열을 분석하였다 (도 1). 분석된 염기서열을 기존의 애기장대 게놈 데이터 베이스 (http://mips.gsf.de/proj/thal/index.html, At3g12120, GenBank Accession No: NM_112047)와 비교해 본 결과 정확히 같은 클론임을 확인하였다. 이탤릭체로 된 염기서열은 이 유전자의 5' untranslated region 내에 존재하는 인트론 부위를 나타낸 것이다. 또한, 단백질 합성 개시 코돈 'ATG'는 굵은 글씨체로, 전사개시(transcription initiation)부위인 염기(붉은 색) "A"를 '+1'로 표시하였다.Arabidopsis genomic sequence (http://mips.gsf.de/proj/thal/index.html, At3g12120) to secure the promoter of the Arabidopsis microsome oleic acid desaturator gene (FAD2) and introns present in the gene Based on GenBank Accession No: NM_112047, forward primer (AraW6F1: 5'-CCG AAG CTT GGT GTG TCG TCG TTA TAC GCG GTA AA-3 ') and reverse primer (AraW6R4: 5'-CGA GGA TGA CTG CAG AAA ACC AAA AGC AAA AG-3 ') was produced, genomic DNA was extracted from the young leaves of Arabidopsis subsidiary, followed by polymerase chain reaction (hereinafter, abbreviated as'PCR') to microsomal oleic acid unsaturated gene. The intron present in the promoter of and its gene was isolated. The isolated 2.4 kb DNA fragment was cloned into a pGEM-T vector (Promega, USA) and then sequenced using an ABI Bigdye cycle sequencing kit (PE Applied Biosystems, USA) (FIG. 1). The analyzed sequences were compared with the existing Arabidopsis genome database (http://mips.gsf.de/proj/thal/index.html, At3g12120, GenBank Accession No: NM_112047) and found to be exactly the same clones. Italicized sequences represent intron sites present in the 5 'untranslated region of the gene. In addition, the protein synthesis start codon 'ATG' is shown in bold type, and the base (red) "A", which is a transcription initiation site, is expressed as '+1'.

서열번호 1은 도1에서 전사개시부위의 상류(Upstream)를 나타낸 것이고, 서열번호 2는 도1에서 전사개시부위로부터의 하류(Downstream)을 나타낸 것이다.SEQ ID NO: 1 shows the upstream of the transcription start site in FIG. 1, and SEQ ID NO: 2 shows the downstream from the transcription start site in FIG.

(실시예 2) 애기장대 유래 마이크로좀 올레산 불포화제 유전자의 전사개시 부위 확인Example 2 Confirmation of transcription start site of Arabidopsis-derived microsomal oleic acid unsaturated agent gene

애기장대의 마이크로좀 올레산 불포화제 유전자 (At-FAD2)의 프로모터 부위의 활성을 조사하기 위해서는 이 유전자의 정확한 전사개시 부위가 확인되어야 하므로 cRACE (circular first-strand cDNA-mediated rapid amplication of c DNA ends) 방법 (Nucleic Acid Research 23: 3796-3797, 1995)에 의거하여 At-FAD2 유전자의 전사개시 부위를 확인하는 연구가 수행되었다. 애기장대의 꽃으로부터 전체 RNA를 분리한 후, 역전사 효소 (reverse transcriptase, Super ScriptTM II RT, GIBCO BRL)를 이용하여 cDNA pool을 만든 후, 이것을 주형으로 유전자 특이적 primers (AraW6R2; 5'-CAG CGT TTG AAA CAA TGC GGC GGG-3' 와 AraW6R3; 5'-CGG CAT TCT TCC ACC TGC ACC CAT G-3')와 cDNA library의 Adaptor primers (AP1; 5'-CCA TCC TAA TAC GAC TCA CTA TAG GGC-3' 와 AP2; 5'-ACT CAC TAT AGG GCT CGA GCG GC-3')를 이용하여 PCR을 수행한 결과, 번역 개시 코돈 (translation initiation codon, ATG)으로부터 147 base 앞에 존재하는 염기서열 "A"가 전사 개시 (transcription initiation)부위로 확인되었다. 이를 도 1에서 '+1'로 표시하였다. To investigate the activity of the promoter region of the Arabidopsis microsomal oleic acid desaturator gene ( At- FAD2), the exact transcriptional initiation site of this gene must be identified, so cRACE ( c ircular first-strand cDNA-mediated r apid a mplication of c According to the DNA e nds) method (Nucleic Acid Research 23: 3796-3797, 1995), a study was performed to identify the transcription initiation site of the At- FAD2 gene. After isolation of total RNA from Arabidopsis flower, cDNA pools were prepared using reverse transcriptase (Super Script TM II RT, G IBCO BRL), and then the gene-specific primers (AraW6R2; 5'-) were used as templates. CAG CGT TTG AAA CAA TGC GGC GGG-3 'and AraW6R3; 5'-CGG CAT TCT TCC ACC TGC ACC CAT G-3') and adapter primers of the cDNA library (AP1; 5'-CCA TCC TAA TAC GAC TCA CTA TAG PCR was performed using GGC-3 'and AP2; 5'-ACT CAC TAT AGG GCT CGA GCG GC-3'), resulting in the nucleotide sequence preceding 147 base from the translation initiation codon (ATG). A "was identified as the transcription initiation site. This is indicated as '+1' in FIG.

(실시예 3) 식물체의 전 조직에서 발현하는 애기장대 유래 마이크로좀 올레산 불포화제 유전자 프로모터의 활성 단편 및 그의 게놈 유전자에 존재하는 intron을 이용한 binary 벡터 제조Example 3 Preparation of binary vector using active fragment of Arabidopsis-derived microsomal oleic acid unsaturated gene gene promoter expressed in all tissues of plant and intron present in genomic gene

At-FAD2 유전자 프로모터의 활성, 프로모터 활성 단편 분석 및 그의 유전자 안에 존재하는 intron이 형질전환 식물체에서 외래 유전자 발현에 미치는 영향을 분석하기 위하여, 도 1의 염기서열에 근거하여 유전자 특이 primers (표 1)를 제조한 다음, 원래의 크기 및 5' 말단부터 일부분이 제거된 프로모터 부위를 PCR로 확보하였다. 확보된 PCR 생성물은 HindIII 와 BamHI 제한 효소 부위를 이용하여 β-glucuronidase (이하 'GUS'라 약칭함) 유전자를 함유하는 binary vector, pBI101 (Cat.# 6017-1, Clontech, 미국)(도 2a)에 삽입하여 pAtW6-P2.4라는 binary vector를 제조하였다(도 2b). 여기서 GUS는 β-glucuronidase를 코딩하는 리포터 유전자이고, NPTII는 Neomycin Phosphotransferase II를 코딩하는 kanamycin 저항성 마커 유전자이고, Nos-pro와 Nos-ter는 NPTII의 식물체 발현 프로모터와 터미네이터이다. 그리고 GUS 리포터 유전자는 삽입된 프로모터와 Nos (Nopaline synthase) 터미네이터 (Nos-ter)에 의해 식물체에서 발현된다.Gene specific primers based on the nucleotide sequence of FIG. 1 to analyze the activity of the At -FAD2 gene promoter, the analysis of promoter active fragments, and the effect of intron present in the gene on the transgenic plants (Table 1) After the preparation, the promoter site was partially removed from the original size and 5 'end by PCR. The obtained PCR product is a binary vector containing p-glucuronidase (hereinafter abbreviated as 'GUS') gene using Hin dIII and Bam HI restriction enzyme sites, pBI101 (Cat. # 6017-1, Clontech, USA) (Fig. Inserted into 2a) to prepare a binary vector called pAtW6-P2.4 (Fig. 2b). Wherein GUS is a reporter gene encoding β-glucuronidase, NPTII is a kanamycin resistance marker gene encoding Neomycin Phosphotransferase II, and Nos-pro and Nos-ter are plant expression promoters and terminators of NPTII. The GUS reporter gene is expressed in plants by the inserted promoter and the Nos (Nopaline synthase) terminator (Nos-ter).

제조된 각각의 binary vector를 대장균(DH5α)에 도입한 다음, alkaline lysis 방법 (Sambrook et al., 2001)에 의거하여 플라스미드를 추출하여 제한효소 HindIII 와 BamHI를 이용하여 절단한 다음 0.7% agarose 젤에서 전기영동 하였다 (도면 3). 여기서, pAtW6-P2.4는 유전자 특이적 primers, AraW6F1 과 AraW6R4에 의해 증폭된 기존의 프로모터 부위와 그의 유전자 안에 존재하는 intron을 함유하는 binary 벡터이고, pAtW6-PF1는 유전자 특이적 primers, AraW6F1 과 AraW6R1에 의해 증폭된 프로모터 부위를 함유한 binary 벡터이고, pAtW6-PF2는 유전자 특이적 primers, AraW6F2 와 AraW6R1에 의해 증폭된 프로모터 부위를 함유한 binary 벡터이고, pAtW6-PF3는 유전자 특이적 primers, AraW6F3 과 AraW6R1에 의해 증폭된 프 로모터 부위를 함유한 binary 벡터이고, pAtW6-PF4는 유전자 특이적 primers, AraW6F4 와 AraW6R1에 의해 증폭된 프로모터 부위를 함유한 binary 벡터이고, pAtW6-PF5는 유전자 특이적 primers, AraW6F5 와 AraW6R1에 의해 증폭된 프로모터 부위를 함유한 binary 벡터이다.Each of the prepared binary vectors was introduced into Escherichia coli ( DH5α ), and then plasmids were extracted using alkaline lysis method (Sambrook et al., 2001) and digested with restriction enzymes Hin dIII and Bam HI, followed by 0.7% agarose. Electrophoresis on the gel (Fig. 3). Here, pAtW6-P2.4 is a binary vector containing an existing promoter region amplified by gene specific primers, AraW6F1 and AraW6R4, and introns present in the gene, and pAtW6-PF1 are gene specific primers, AraW6F1 and AraW6R1. PAtW6-PF2 is a binary vector containing a promoter region amplified by, pAtW6-PF2 is a binary vector containing a promoter region amplified by AraW6F2 and AraW6R1, and pAtW6-PF3 is a gene specific primers, AraW6F3 and AraW6R1 PAtW6-PF4 is a binary vector containing a promoter region amplified by pAtW6-PF4 is a gene-specific primers, a binary vector containing promoter sites amplified by AraW6F4 and AraW6R1, and pAtW6-PF5 is a gene specific primers, AraW6F5 And a binary vector containing a promoter region amplified by AraW6R1.

아래 표 1은 PCR 반응에서 사용된 유전자 특이적 primer들의 염기서열을 나타낸다.Table 1 below shows the nucleotide sequences of the gene specific primers used in the PCR reaction.

Figure 112003037849244-pat00001
Figure 112003037849244-pat00001

(실시예 4) 제조된 binary 벡터를 이용해서 애기장대 식물체의 형질전환(Example 4) Transformation of Arabidopsis plants using the prepared binary vector

상기와 같이 제조된 6종류의 binary 벡터들 (pAtW6-P2.4, pAtW6-F1, pAtW6-F2, pAtW6-F3, pAtW6-F4, pAtW6-F5)과 pBI121 binary 벡터 (Cat.# 6018-1, Clontech, 미국)를 Agrobacterium tumefaciens C58C1 (Suh et al., 2002, Planta) 내로의 도입은 Freeze-thaw 방법 (An, G. 1987, Methods in Enzymology)에 근거하여 수행하였다. Agrobacteria tumefaciens C58C1균주를 O.D.=0.5가 되도록 YEP 배지에서 현탁 배양한 후, 20 mM CaCl2 용액에 현탁한 다음, 7종류의 binary 벡터와 각각 혼합하여 액체질소에 1분간 방치한 후, 37 oC에서 2분간 배양함으로써 Agrobacterium tumefaciens C58C1내로 도입하였다. 각각의 형질전환된 Agrobacteria는 2일 동안 28 oC에서 진탕 배양한 후, floral dip 방법 (Clough 와 Bent, 1998, The Plant Journal)에 근거하여 애기장대 (Arabidopsis thaliana cv. columbia)의 개화직전 암술머리에 접종함으로써 애기장대를 형질전환 시켰다. The six types of binary vectors prepared as described above (pAtW6-P2.4, pAtW6-F1, pAtW6-F2, pAtW6-F3, pAtW6-F4, pAtW6-F5) and pBI121 binary vectors (Cat. # 6018-1, The introduction of Clontech, USA into Agrobacterium tumefaciens C58C1 (Suh et al., 2002, Planta) was performed based on the Freeze-thaw method (An, G. 1987, Methods in Enzymology). Agrobacteria tumefaciens a suspended C58C1 strain after suspension culture in YEP medium, 20 mM CaCl 2 solution to a OD = 0.5, and then, after allowed to stand for 1 minute in liquid nitrogen by mixing seven types of binary vector with a respective, 37 o C Introduced into Agrobacterium tumefaciens C58C1 by incubation for 2 minutes. Each transformed Agrobacteria was incubated at 28 o C for 2 days, and then immediately before flowering at Arabidopsis thaliana cv. Columbia based on the floral dip method (Clough and Bent, 1998, The Plant Journal). By inoculating the Arabidopsis transformed.

(실시예 5) 형질전환된 애기장대의 조직 화학적 염색 및 효소학적 분석 Example 5 Histochemical staining and enzymatic analysis of transformed Arabidopsis vulgaris

상기에서 제조된 7종류의 애기장대 형질전환체로부터 종자를 수확한 다음, kanamycin (30 mg/L)을 함유하는 MS 배지에 도말하여 저항능을 가진 형질전환 식물체를 선별하였다. 선별된 형질전환 식물체의 각 조직으로부터 GUS 활성을 조직 화학적 염색 방법 및 효소학적 방법을 이용하여 조사하였다. 각 형질전환 식물체의 전 조직을 염색하기 위하여, 식물체의 각 조직은 1mM X-glu (5-bromo-4-chloro-3-indolyl-β-glucuronide), 100 mM sodium phosphate (pH 7.0), 10 mM EDTA, 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, 그리고 0.1% Triton X-100을 함유하는 용액에 담구어 37 ℃에서 12 시간 동안 반응시킨 다음, 용액을 제거한 후 100% 에탄올을 부가함으로써 조직에 존재하는 클로로필을 제거했다. 그 결과, 도 5에서 보는 것처럼 pAtW6-P2.4로 형질전환된 애기장대 (AtW6P2.4)의 전 조직- 뿌리, 줄기, 잎, 꽃대에 달린 잎 (cauline), 꽃, 발달 종자 그리고 꼬투리에서 GUS의 활성이 확인되었다. 도 5에서, Control은 형질전환되지 않은 애기장대이고, CaMV35S는 pBI121 binary 벡터에 의해 형질전환된 애기장대이고, AtWP2.4는 pAtW6-P2.4에 의해 형질전환된 애기장대이다. 종자1은 개화 후 5 - 7일, 종자2는 개화 후 10 - 15일, 그리고 종자3은 개화 후 23 -25일에 수확된 발달종자이다.Seeds were harvested from the seven Arabidopsis transformants prepared above, and then plated in MS medium containing kanamycin (30 mg / L) to select transgenic plants having resistance. GUS activity from each tissue of selected transgenic plants was examined using histochemical staining and enzymatic methods. To stain the entire tissue of each transgenic plant, each tissue of the plant was subjected to 1 mM X-glu (5-bromo-4-chloro-3-indolyl-β-glucuronide), 100 mM sodium phosphate (pH 7.0), 10 mM It was immersed in a solution containing EDTA, 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, and 0.1% Triton X-100, reacted at 37 ° C for 12 hours, and then removed from the solution and added to the tissue by adding 100% ethanol. Chlorophyll was removed. As a result, as shown in FIG. 5, the entire tissues of the Arabidopsis transformed with pAtW6-P2.4 (AtW6P2.4)-GUS in roots, stems, leaves, cauline, flowers, developmental seeds and pods Activity was confirmed. In FIG. 5, Control is a non-transformed Arabidopsis, CaMV35S is a Arabidopsis transformed with pBI121 binary vector, and AtWP2.4 is Arabidopsis transformed by pAtW6-P2.4. Seed 1 is 5-7 days after flowering, seed 2 10-15 days after flowering, and seed 3 is 23-25 days after flowering.

또한 GUS의 활성을 정량적으로 조사하기 위하여, Jefferson et. al. (EMBO J. 6: 3901-3907, 1987)의 방법에 의거하여 형질전환 식물체의 각 조직을 50 mM sodium phosphate (pH 7.0), 10 mM EDTA, 0.1% Triton X-100, 0.1% sodium lauroylsarcosine, 그리고 10 mM β-mercaptoethanol을 함유하는 용액에서 마쇄한 다음, 12,000 X g에서 원심분리하여 상등액을 취했다. 획득된 상등액은 1 mM MUG (4-methylumbelliferyl glucuronide와 섞어 37 ℃에서 반응시킨 다음, 0.2 M Na2CO3를 넣어 반응을 종료시켰다. 반응이 종료된 반응액은 fluorometer를 이용하여 365 nm 와 455 nm 파장에서 값을 측정한 다음, 측정된 값은 MUG 표준용액을 이용하여 만든 표준곡선과 비교함으로써 GUS 활성을 계산하여 도 6에 나타내었다. 도 6에서, 보여지는 GUS 활성도는 각 construct별로 얻어진 10개 형질전환체 (T1 식물체)를 분석하여 얻어진 값이다. 그 결과, 마이크로좀 올레산 불포화제 유전자의 프로모터는 식물체에서 줄기, 꽃 그리고 발달 종자에서 가장 강한 GUS의 발현 양상을 나타내었으며, 마이크로좀 올레산 불포화제 유전자의 인트론을 함유하고 있는 전장의 프로모터는 CaMV35S 프로모터에 비해 GUS의 발현양이 식물체의 잎과 꽃대에 달린 잎 (cauline) 조직에서는 비슷하지만, 꽃과 종자 조직에서는 약 10배 이상, 뿌리와 줄기에서는 약 3배 이상 증가시킬 수 있음을 확인하였다. 또한, 마이크로좀 올레산 불포화제 유전자 안에 존재하는 인트론은 자신의 프로모터와 함께 사용되었을 때 식물체의 전 조직에서 적어도 2배 이상의 GUS 활성을 증가시킬 수 있고, 특히 개화 후 5 - 7일의 발달 종자에서는 약 10배 이상의 GUS 발현이 증가됨을 확인하였다. 그리고 마이크로좀 올레산 불포화제 유전자 프로모터의 일부를 점차적으로 제거하였을 때, 식물체의 전 조직에서 GUS 활성이 감소됨을 확인하였다. In addition, to quantitatively investigate the activity of GUS, Jefferson et. al. According to the method of (EMBO J. 6: 3901-3907, 1987), each tissue of the transgenic plant was treated with 50 mM sodium phosphate (pH 7.0), 10 mM EDTA, 0.1% Triton X-100, 0.1% sodium lauroylsarcosine, and The supernatant was taken by grinding in a solution containing 10 mM β-mercaptoethanol and then centrifugation at 12,000 X g. The obtained supernatant was mixed with 1 mM MUG (4-methylumbelliferyl glucuronide) and reacted at 37 ° C., and 0.2 M Na 2 CO 3 was added to terminate the reaction. The reaction solution was terminated using a fluorometer at 365 nm and 455 nm. After measuring the value at the wavelength, the measured value was calculated by comparing the GUS activity by using a standard curve made using MUG standard solution, and is shown in Fig. 6. In Fig. 6, the GUS activity shown was 10 obtained for each construct. The result obtained by analyzing the transformants (T 1 plants), as a result, the promoter of the microsomal oleic acid desaturator gene showed the strongest expression of GUS in the stems, flowers, and developmental seeds in the plant. The full-length promoter containing the gene's intron was found to have a higher expression of GUS than the CaMV35S promoter. Similarly, it can be increased by about 10 times in flower and seed tissues, and about 3 times in roots and stems, and when introns in the microsomal oleic acid unsaturated gene are used with their promoters. It has been shown that GUS activity can be increased at least twofold in all tissues of the plant, especially at least about 10-fold increase in GUS expression in developing seeds 5-7 days after flowering, and part of the microsomal oleic acid desaturator gene promoter. When gradually eliminated, it was confirmed that the GUS activity is reduced in all tissues of the plant.

이상 설명한 바와 같이, 본 발명에서는 애기장대의 마이크로좀 올레산 불포화제 유전자 (At-FAD2)에서 유래된 프로모터와 그의 유전자에 존재하는 인트론을 이용하여 외래 유전자를 식물체에서 발현시킨 결과, 기존에 널리 사용되어지고 있는 CaMV35S 프로모터 보다 잎과 꽃대에 달린 잎을 제외한 식물체의 전 조직에서 적어도 3배에서 10배 이상 도입된 외래 유전자의 발현을 증가시킬 수 있는 신규 프로모터임을 확인하였다. 또한, 마이크로좀 올레산 불포화제 유전자 (At-FAD2)에 존재하는 인트론은 자신의 프로모터와 함께 사용되었을 경우, 식물체 전 조직에서 외래 유전자의 발현을 약 3배이상 증가시킬 수 있음을 확인하였다. As described above, in the present invention, as a result of expressing a foreign gene in a plant using a promoter derived from the microsomal oleic acid desaturator gene ( At- FAD2) of the Arabidopsis and its gene, it is widely used. It was confirmed that it is a novel promoter capable of increasing the expression of foreign genes introduced at least three to ten times in all tissues of plants except leaves and foliar leaves than the CaMV35S promoter. In addition, introns present in the microsomal oleic acid desaturator gene ( At- FAD2), when used in conjunction with its promoters, were found to increase the expression of foreign genes in the whole plant tissue by about three times or more.

<110> KOREA CHUNGANG EDUCATIONAL FOUNDATION <120> Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same <130> PN051409 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 959 <212> DNA <213> Arabidopsis thaliana <220> <221> promoter <222> (1)..(959) <400> 1 ggtgtgtcgt cgttatacgc ggtaaataga tagatagaaa aatagaagtc caatgcaaga 60 gacttaactt aatcatccca attaattgat tgcattaact tgtacttgta ttttccgtcc 120 gccacctaat ttgattaata atataataaa gattacaatt gaaaacataa acaagagaaa 180 atccgcacga atctaccaaa gtgcatcacg tttgggtatc catacacgtg accaccagtc 240 caccacaaca caatgtctgt agatatttta atgtttcaca tgatagaaga agccaaacgt 300 aagaactctc ttttccactt ttagcccttt ccccgcctac cactgcttac gacttgtgta 360 agtggcaaac tagtaataat agagacgaaa cttaaatata aaaaagttga atccaaccaa 420 gttggtgtta atcaaatggt taagttataa tggtgaaaga tttgccatgt gtattgtatt 480 aagagttaag accaaggttt ggttcccatc acttacgatt ctttcttttc atatgattct 540 aaagttagtt attataaaca tcttaattta ctacacaata ttcggtaatt tctacatatt 600 ttagagatta gtttgagttt caatccatac tttactagtg attataaatt aatatacgta 660 cttttcgact ataaagtgaa actaagtaaa ttagaacgtg atattaaaaa gttaatgttc 720 actgttatat ttttttcaca agtaaaaaat gggttatttg cggtaaataa aaataccaga 780 tattttgaat tgattaaaaa ggttgaaata agagaggagg ggaaagaaaa gaaggtgggg 840 gcccagtatg aaagggaaag gtgtcatcaa atcatctctc tctctctctc tctaccttcg 900 acccacgggc cgtgtccatt taaagccctg tctcttgcca ttccccatct gaccaccag 959 <210> 2 <211> 2577 <212> DNA <213> Arabidopsis thaliana <220> <221> intron <222> (144)..(1274) <400> 2 aagaagagcc acacactcac aaattaaaaa gagagagaga gagagagaga cagagagaga 60 gagagattct gcggaggagc ttcttcttcg tagggtgttc atcgttatta acgttatcgc 120 ccctacgtca gctccatctc caggtccgtc gcttctcttc catttcttct cattttcgat 180 tttgattctt atttctttcc agtagctcct gctctgtgaa tttctccgct cacgatagat 240 ctgcttatac tccttacatt caaccttaga tctggtctcg attctctgtt tctctgtttt 300 tttcttttgg tcgagaatct gatgtttgtt tatgttctgt caccattaat aataatgaac 360 tctctcattc atacaatgat tagtttctct cgtctacaaa acgatatgtt gcattttcac 420 ttttcttctt tttttctaag atgatttgct ttgaccaatt tgtttagatc tttattttat 480 tttattttct ggtgggttgg tggaaattga aaaaaaaaaa aacagcataa attgttattt 540 gttaatgtat tcattttttg gctatttgtt ctgggtaaaa atctgcttct actattgaat 600 ctttcctgga ttttttactc ctattgggtt tttatagtaa aaatacataa taaaaggaaa 660 acaaaagttt tatagattct cttaaacccc ttacgataaa agttggaatc aaaataattc 720 aggatcagat gctctttgat tgattcagat gcgattacag ttgcatggca aattttctag 780 atccgtcgtc acattttatt ttctgtttaa atatctaaat ctgatatatg atgtcgacaa 840 attctggtgg cttatacatc acttcaactg ttttcttttg gctttgtttg tcaacttggt 900 tttcaatacg atttgtgatt tcgatcgctg aatttttaat acaagcaaac tgatgttaac 960 cacaagcaag agatgtgacc tgccttatta acatcgtatt acttactact agtcgtattc 1020 tcaacgcaat cgtttttgta tttctcacat tatgccgctt ctctactctt tattcctttt 1080 ggtccacgca ttttctattt gtggcaatcc ctttcacaac ctgatttccc actttggatc 1140 atttgtctga agactctctt gaatcgttac cacttgtttc ttgtgcatgc tctgtttttt 1200 agaattaatg ataaaactat tccatagtct tgagttttca gcttgttgat tcttttgctt 1260 ttggttttct gcagaaacat gggtgcaggt ggaagaatgc cggttcctac ttcttccaag 1320 aaatcggaaa ccgacaccac aaagcgtgtg ccgtgcgaga aaccgccttt ctcggtggga 1380 gatctgaaga aagcaatccc gccgcattgt ttcaaacgct caatccctcg ctctttctcc 1440 taccttatca gtgacatcat tatagcctca tgcttctact acgtcgccac caattacttc 1500 tctctcctcc ctcagcctct ctcttacttg gcttggccac tctattgggc ctgtcaaggc 1560 tgtgtcctaa ctggtatctg ggtcatagcc cacgaatgcg gtcaccacgc attcagcgac 1620 taccaatggc tggatgacac agttggtctt atcttccatt ccttcctcct cgtcccttac 1680 ttctcctgga agtatagtca tcgccgtcac cattccaaca ctggatccct cgaaagagat 1740 gaagtatttg tcccaaagca gaaatcagca atcaagtggt acgggaaata cctcaacaac 1800 cctcttggac gcatcatgat gttaaccgtc cagtttgtcc tcgggtggcc cttgtactta 1860 gcctttaacg tctctggcag accgtatgac gggttcgctt gccatttctt ccccaacgct 1920 cccatctaca atgaccgaga acgcctccag atatacctct ctgatgcggg tattctagcc 1980 gtctgttttg gtctttaccg ttacgctgct gcacaaggga tggcctcgat gatctgcctc 2040 tacggagtac cgcttctgat agtgaatgcg ttcctcgtct tgatcactta cttgcagcac 2100 actcatccct cgttgcctca ctacgattca tcagagtggg actggctcag gggagctttg 2160 gctaccgtag acagagacta cggaatcttg aacaaggtgt tccacaacat tacagacaca 2220 cacgtggctc atcacctgtt ctcgacaatg ccgcattata acgcaatgga agctacaaag 2280 gcgataaagc caattctggg agactattac cagttcgatg gaacaccgtg gtatgtagcg 2340 atgtataggg aggcaaagga gtgtatctat gtagaaccgg acagggaagg tgacaagaaa 2400 ggtgtgtact ggtacaacaa taagttatga ggatgatggt gaagaaattg tcgacctttc 2460 tcttgtctgt ttgtcttttg ttaaagaagc tatgcttcgt tttaataatc ttattgtcca 2520 ttttgttgtg ttatgacatt ttggctgctc attatgttat gtgggaagtt agtgttc 2577 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F1 <400> 3 ccgaagcttg gtgtgtcgtc gttatacgcg gtaaa 35 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F2 <400> 4 ccgaagcttc caccagtcca ccacaacac 29 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F3 <400> 5 ccgaagcttg gtgaaagatt tgccatgtgt attg 34 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F4 <400> 6 ccgaagcttg aacgtgatat taaaaagtta atgttcactg 40 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F5 <400> 7 ccgaagcttc tctctacctt cgacccacgg 30 <210> 8 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer AraW6R1 <400> 8 caaggatccg gagatggagc tgacgtaggg gcg 33 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer AraW6R4 <400> 9 cgaggatccc tgcagaaaac caaaagcaaa ag 32 <110> KOREA CHUNGANG EDUCATIONAL FOUNDATION <120> Plant high-efficiency expression promoter derived from          Arabidopsis thaliana and plant high-efficiency expression vector          configuring the same <130> PN051409 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 959 <212> DNA <213> Arabidopsis thaliana <220> <221> promoter (222) (1) .. (959) <400> 1 ggtgtgtcgt cgttatacgc ggtaaataga tagatagaaa aatagaagtc caatgcaaga 60 gacttaactt aatcatccca attaattgat tgcattaact tgtacttgta ttttccgtcc 120 gccacctaat ttgattaata atataataaa gattacaatt gaaaacataa acaagagaaa 180 atccgcacga atctaccaaa gtgcatcacg tttgggtatc catacacgtg accaccagtc 240 caccacaaca caatgtctgt agatatttta atgtttcaca tgatagaaga agccaaacgt 300 aagaactctc ttttccactt ttagcccttt ccccgcctac cactgcttac gacttgtgta 360 agtggcaaac tagtaataat agagacgaaa cttaaatata aaaaagttga atccaaccaa 420 gttggtgtta atcaaatggt taagttataa tggtgaaaga tttgccatgt gtattgtatt 480 aagagttaag accaaggttt ggttcccatc acttacgatt ctttcttttc atatgattct 540 aaagttagtt attataaaca tcttaattta ctacacaata ttcggtaatt tctacatatt 600 ttagagatta gtttgagttt caatccatac tttactagtg attataaatt aatatacgta 660 cttttcgact ataaagtgaa actaagtaaa ttagaacgtg atattaaaaa gttaatgttc 720 actgttatat ttttttcaca agtaaaaaat gggttatttg cggtaaataa aaataccaga 780 tattttgaat tgattaaaaa ggttgaaata agagaggagg ggaaagaaaa gaaggtgggg 840 gcccagtatg aaagggaaag gtgtcatcaa atcatctctc tctctctctc tctaccttcg 900 acccacgggc cgtgtccatt taaagccctg tctcttgcca ttccccatct gaccaccag 959 <210> 2 <211> 2577 <212> DNA <213> Arabidopsis thaliana <220> <221> intron (222) (144) .. (1274) <400> 2 aagaagagcc acacactcac aaattaaaaa gagagagaga gagagagaga cagagagaga 60 gagagattct gcggaggagc ttcttcttcg tagggtgttc atcgttatta acgttatcgc 120 ccctacgtca gctccatctc caggtccgtc gcttctcttc catttcttct cattttcgat 180 tttgattctt atttctttcc agtagctcct gctctgtgaa tttctccgct cacgatagat 240 ctgcttatac tccttacatt caaccttaga tctggtctcg attctctgtt tctctgtttt 300 tttcttttgg tcgagaatct gatgtttgtt tatgttctgt caccattaat aataatgaac 360 tctctcattc atacaatgat tagtttctct cgtctacaaa acgatatgtt gcattttcac 420 ttttcttctt tttttctaag atgatttgct ttgaccaatt tgtttagatc tttattttat 480 tttattttct ggtgggttgg tggaaattga aaaaaaaaaa aacagcataa attgttattt 540 gttaatgtat tcattttttg gctatttgtt ctgggtaaaa atctgcttct actattgaat 600 ctttcctgga ttttttactc ctattgggtt tttatagtaa aaatacataa taaaaggaaa 660 acaaaagttt tatagattct cttaaacccc ttacgataaa agttggaatc aaaataattc 720 aggatcagat gctctttgat tgattcagat gcgattacag ttgcatggca aattttctag 780 atccgtcgtc acattttatt ttctgtttaa atatctaaat ctgatatatg atgtcgacaa 840 attctggtgg cttatacatc acttcaactg ttttcttttg gctttgtttg tcaacttggt 900 tttcaatacg atttgtgatt tcgatcgctg aatttttaat acaagcaaac tgatgttaac 960 cacaagcaag agatgtgacc tgccttatta acatcgtatt acttactact agtcgtattc 1020 tcaacgcaat cgtttttgta tttctcacat tatgccgctt ctctactctt tattcctttt 1080 ggtccacgca ttttctattt gtggcaatcc ctttcacaac ctgatttccc actttggatc 1140 atttgtctga agactctctt gaatcgttac cacttgtttc ttgtgcatgc tctgtttttt 1200 agaattaatg ataaaactat tccatagtct tgagttttca gcttgttgat tcttttgctt 1260 ttggttttct gcagaaacat gggtgcaggt ggaagaatgc cggttcctac ttcttccaag 1320 aaatcggaaa ccgacaccac aaagcgtgtg ccgtgcgaga aaccgccttt ctcggtggga 1380 gatctgaaga aagcaatccc gccgcattgt ttcaaacgct caatccctcg ctctttctcc 1440 taccttatca gtgacatcat tatagcctca tgcttctact acgtcgccac caattacttc 1500 tctctcctcc ctcagcctct ctcttacttg gcttggccac tctattgggc ctgtcaaggc 1560 tgtgtcctaa ctggtatctg ggtcatagcc cacgaatgcg gtcaccacgc attcagcgac 1620 taccaatggc tggatgacac agttggtctt atcttccatt ccttcctcct cgtcccttac 1680 ttctcctgga agtatagtca tcgccgtcac cattccaaca ctggatccct cgaaagagat 1740 gaagtatttg tcccaaagca gaaatcagca atcaagtggt acgggaaata cctcaacaac 1800 cctcttggac gcatcatgat gttaaccgtc cagtttgtcc tcgggtggcc cttgtactta 1860 gcctttaacg tctctggcag accgtatgac gggttcgctt gccatttctt ccccaacgct 1920 cccatctaca atgaccgaga acgcctccag atatacctct ctgatgcggg tattctagcc 1980 gtctgttttg gtctttaccg ttacgctgct gcacaaggga tggcctcgat gatctgcctc 2040 tacggagtac cgcttctgat agtgaatgcg ttcctcgtct tgatcactta cttgcagcac 2100 actcatccct cgttgcctca ctacgattca tcagagtggg actggctcag gggagctttg 2160 gctaccgtag acagagacta cggaatcttg aacaaggtgt tccacaacat tacagacaca 2220 cacgtggctc atcacctgtt ctcgacaatg ccgcattata acgcaatgga agctacaaag 2280 gcgataaagc caattctggg agactattac cagttcgatg gaacaccgtg gtatgtagcg 2340 atgtataggg aggcaaagga gtgtatctat gtagaaccgg acagggaagg tgacaagaaa 2400 ggtgtgtact ggtacaacaa taagttatga ggatgatggt gaagaaattg tcgacctttc 2460 tcttgtctgt ttgtcttttg ttaaagaagc tatgcttcgt tttaataatc ttattgtcca 2520 ttttgttgtg ttatgacatt ttggctgctc attatgttat gtgggaagtt agtgttc 2577 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F1 <400> 3 ccgaagcttg gtgtgtcgtc gttatacgcg gtaaa 35 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F2 <400> 4 ccgaagcttc caccagtcca ccacaacac 29 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F3 <400> 5 ccgaagcttg gtgaaagatt tgccatgtgt attg 34 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F4 <400> 6 ccgaagcttg aacgtgatat taaaaagtta atgttcactg 40 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer AraW6F5 <400> 7 ccgaagcttc tctctacctt cgacccacgg 30 <210> 8 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer AraW6R1 <400> 8 caaggatccg gagatggagc tgacgtaggg gcg 33 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer AraW6R4 <400> 9 cgaggatccc tgcagaaaac caaaagcaaa ag 32

Claims (8)

서열번호 1의 1 내지 959 (-959 내지 -1) 부위의 염기서열을 포함하는 식물체의 고효율 발현 프로모터.A high efficiency expression promoter of a plant comprising the nucleotide sequence of the 1 to 959 (-959 to -1) region of SEQ ID NO: 1. 서열번호 2의 전사 개시 부위로부터 +144 내지 +1274 부위의 염기서열을 포함하는 식물체의 발현 증강용(enhancing) 인트론.An intron for enhancing expression of a plant comprising a nucleotide sequence of +144 to +1274 region from the transcription initiation site of SEQ ID NO. 제 1항의 고효율 발현 프로모터 및 제 2항의 발현 증강용 인트론을 함유하는 식물체의 고효율 발현 벡터.A high efficiency expression vector of a plant containing the high efficiency expression promoter of claim 1 and the intron for enhancing expression of claim 2. 제 3항에 있어서, 상기 프로모터가 바이너리(binary) 벡터에 삽입된 것을 특징으로 하는 식물체의 고효율 발현 벡터.4. The high efficiency expression vector of a plant according to claim 3, wherein the promoter is inserted into a binary vector. 제 4항에 있어서, 도 2b에 도시된 pAtW6-P2.4인 것을 특징으로 하는 식물체의 고효율 발현 벡터.The high efficiency expression vector of the plant of Claim 4 which is pAtW6-P2.4 shown in FIG. 2B. 제 3항 내지 제5항 중 어느 한 항의 고효율 발현 벡터를 함유하고 있는 대장균(E.coli) 또는 아그로박테리움 튜머퍼시언스 (Agrobacterium tumefaciens C58C1)E. coli or Agrobacterium tumefaciens C58C1 containing the high efficiency expression vector of any one of claims 3 to 5. 제 3항 내지 제5항 중 어느 한 항의 고효율 발현 벡터로 형질전환된 식물체.A plant transformed with the high efficiency expression vector of any one of claims 3 to 5. 제 3항 내지 제5항 중 어느 한 항의 종자 특이적 발현 벡터를 이용하여 외래 유전자를 형질전환 식물체에서 발현시키는 방법.A method of expressing a foreign gene in a transgenic plant using the seed specific expression vector of any one of claims 3 to 5.
KR1020030070596A 2003-10-10 2003-10-10 Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same KR100574563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030070596A KR100574563B1 (en) 2003-10-10 2003-10-10 Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030070596A KR100574563B1 (en) 2003-10-10 2003-10-10 Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same

Publications (2)

Publication Number Publication Date
KR20050035314A KR20050035314A (en) 2005-04-18
KR100574563B1 true KR100574563B1 (en) 2006-04-27

Family

ID=37238767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030070596A KR100574563B1 (en) 2003-10-10 2003-10-10 Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same

Country Status (1)

Country Link
KR (1) KR100574563B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803391B1 (en) * 2006-09-07 2008-02-14 대한민국 Ubiquitous promoter primers for amplification thereof the expression vector comprising the same and the transformation plant
KR100803390B1 (en) * 2006-09-07 2008-02-14 대한민국 Root specific promoter
KR101101774B1 (en) 2009-02-12 2012-01-05 전남대학교산학협력단 Fruit specific expression promoter from Solanum lycopersicum histidine decarboxylase gene and uses thereof
KR101288502B1 (en) * 2010-12-03 2013-07-26 대한민국 Binary vector for plant gene transformation
KR101433893B1 (en) * 2013-01-02 2014-08-29 고려대학교 산학협력단 Promoter for directing embryo-specific expression

Also Published As

Publication number Publication date
KR20050035314A (en) 2005-04-18

Similar Documents

Publication Publication Date Title
US5959175A (en) Sunflower albumin 5&#39; regulatory region for the modification of plant seed lipid composition
EP1107661B1 (en) Plant fatty acid desaturase promoters
EP1967589B1 (en) An oleosin 5&#39; regulatory region for the modification of plant seed lipid composition
EP0734446B1 (en) Controlled expression of transgenic constructs in plant plastids
JP4961593B2 (en) Plant promoters and uses thereof
ZA200103557B (en) Novel expression cassette for expressing genes in plant seed.
WO1998045460A9 (en) A sunflower albumin 5&#39; regulatory region for the modification of plant seed lipid composition
EP1141355B1 (en) S-adenosyl-l-methionine synthetase promoter and its use in expression of transgenic genes in plants
JP2007521830A (en) Sugar-derived promoter from sweet potato
CA2280236A1 (en) Selection method for transgenic plants
AU737823B2 (en) Strong early seed-specific gene regulatory region
US7371928B2 (en) Plant seed-specific expression promoter derived from sesame and seed-specific expression vector comprising the promoter
KR100574563B1 (en) Plant high-efficiency expression promoter derived from Arabidopsis thaliana and plant high-efficiency expression vector comprising the same
US20140373192A1 (en) High efficiency plant expression promotor from capcicum annuum serine hydroxymethyl transferase gene and uses thereof
KR100544702B1 (en) Plant seed-specific expression promoter derived from sesame and seed-specific expression vector comprising the promoter
EP1644507B1 (en) Novel rubisco promoters and uses thereof
JP2000083679A (en) Plant promoter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120410

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20120523

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee