KR100573881B1 - Pharmaceutical Composition for Recovering Ischemia - Google Patents

Pharmaceutical Composition for Recovering Ischemia Download PDF

Info

Publication number
KR100573881B1
KR100573881B1 KR1020030085985A KR20030085985A KR100573881B1 KR 100573881 B1 KR100573881 B1 KR 100573881B1 KR 1020030085985 A KR1020030085985 A KR 1020030085985A KR 20030085985 A KR20030085985 A KR 20030085985A KR 100573881 B1 KR100573881 B1 KR 100573881B1
Authority
KR
South Korea
Prior art keywords
plc
calcium
ischemic
ischemia
phospholipase
Prior art date
Application number
KR1020030085985A
Other languages
Korean (ko)
Other versions
KR20050052127A (en
Inventor
장양수
황기철
Original Assignee
장양수
황기철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장양수, 황기철 filed Critical 장양수
Priority to KR1020030085985A priority Critical patent/KR100573881B1/en
Publication of KR20050052127A publication Critical patent/KR20050052127A/en
Application granted granted Critical
Publication of KR100573881B1 publication Critical patent/KR100573881B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/04003Phospholipase C (3.1.4.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

포스포리파제 C-δ(phospholipase C-δ, PLC-δ)를 유효성분으로 포함하고, 약제학적으로 허용되는 담체를 포함하는 허혈증상 치료제에 관한 것이다. 본 발명의 허혈증상 치료제는 세포에 과량의 칼슘이 침적되어 허혈상태가 유발되는 증상을 예방할 수 있으므로, 허혈증의 예방 및 치료에 널리 활용될 수 있을 것이다.Phospholipase C-δ (phospholipase C-δ, PLC-δ) as an active ingredient, and relates to a therapeutic agent for ischemic symptoms comprising a pharmaceutically acceptable carrier. The ischemic treatment agent of the present invention can prevent a symptom of causing an ischemic state due to deposition of excess calcium in a cell, and thus may be widely used for the prevention and treatment of ischemia.

포스포리파제 C-δ, 칼슘의 과다 침적, 허혈증Phospholipase C-δ, excessive deposition of calcium, ischemia

Description

허혈증상 치료제{Pharmaceutical Composition for Recovering Ischemia} Pharmaceutical Composition for Recovering Ischemia             

도 1은 각 부위에서 PLC의 발현정도를 나타내는 전기영동사진이다.1 is an electrophoresis picture showing the degree of expression of PLC in each site.

도 2는 폐색시술 이후의 시간경과에 따른 PLC-δ1의 발현수준을 나타내는 그래프이다.Figure 2 is a graph showing the expression level of PLC-δ1 with time after occlusion.

도 3은 허혈상태의 배양된 심근세포에서 시간의 경과에 따른 PLC의 발현양상을 나타내는 전기영동사진이다.Figure 3 is an electrophoresis picture showing the expression of PLC over time in cultured cardiomyocytes in ischemia.

도 4는 단백질 분해효소 억제제가 PLC-δ의 발현에 미치는 영향을 나타내는 그래프이다.4 is a graph showing the effect of protease inhibitors on the expression of PLC-δ.

도 5는 발현벡터 pcDNA3.1-HA(PLC-δ1)의 유전자 지도이다.5 is a genetic map of the expression vector pcDNA3.1-HA (PLC-δ1).

도 6은 플루오로크롬의 형광도를 이용하여 시료에 침적된 칼슘의 정도를 나타내는 그래프이다.6 is a graph showing the degree of calcium deposited on the sample using the fluorescence of fluorochrome.

본 발명은 허혈증상 치료제에 관한 것이다. 좀 더 구체적으로, 본 발명은 포스포리파제 C-δ(phospholipase C-δ, PLC-δ)를 유효성분으로 포함하고, 약제학적으로 허용되는 담체를 포함하는 허혈증상 치료제에 관한 것이다.The present invention relates to a treatment for ischemic symptoms. More specifically, the present invention relates to a therapeutic agent for ischemic disease comprising phospholipase C-δ (PLC-δ) as an active ingredient and a pharmaceutically acceptable carrier.

심장세포에서 칼슘 항상성이 파괴되면, 의식상실 및 미토콘드리아의 기능장애를 동반하는 심장근의 허혈증, 전기 허혈증으로부터 수반되는 수축력의 감소 등의 다양한 생리현상의 변화를 초래하는데, 초기에는 허혈성 산독증(acidosis)에 의하여 유도되고 마그네슘과 무기 인산에 의하여 촉진되는 수축성 단백질의 기능저하가 두드러지게 나타나며, 이러한 증상은 세포내 상태(in vivo)에서 뿐만 아니라, 배양된 심장근에서도 동일하게 나타난다(참조: Tanaka M., et al., Circ. Res., 75:426-433, 1994; Long X., et al., J. Clin. Invest., 99:2635-2643, 1997; Chen S. J., et al., Mol. Cell. Biochem., 178:141-149, 1998; Bialik S., et al., Circ. Res., 85:403-414, 1999). Destruction of calcium homeostasis in cardiac cells leads to various physiological changes, including loss of consciousness and cardiac muscle ischemia accompanied by mitochondrial dysfunction, and reduction of contractility associated with electrical ischemia, which is initially associated with ischemic acidosis. Of the contractile proteins induced by and stimulated by magnesium and inorganic phosphates are notable, and these symptoms are the same not only in vivo but also in cultured heart muscle (Tanaka M., et. al., Circ.Res., 75: 426-433, 1994; Long X., et al., J. Clin. Invest., 99: 2635-2643, 1997; Chen SJ, et al., Mol. Biochem., 178: 141-149, 1998; Bialik S., et al., Circ.Res., 85: 403-414, 1999).

이러한 허혈증상의 주요 원인은 심장근에 칼슘이온이 과량으로 침적되는 것으로 알려져 있으며, 이러한 칼슘의 증가는 포스포리파제 C(phospholipase C, PLC), 단백질 인산화효소, 단백질 분해효소, 핵산분해효소 등의 세포내 수준을 변화시킨다고 알려져 있다(참조: Bolli R. and Marban E., Physiol. Rev., 79:609-634, 1999).It is known that the main cause of this ischemia is the excessive accumulation of calcium ions in the heart muscle, and this increase in calcium is caused by intracellular intracellular activities such as phospholipase C (PLC), protein kinase, protease, and nuclease. It is known to change levels (Bolli R. and Marban E., Physiol. Rev., 79: 609-634, 1999).

특히, 포스포리파제 C는 막 인지질과 포스파티딜이노시톨 4,5-비스포스페이트(phosphatidylinositol 4,5-bisphosphate, PIP2)를 가수분해하여 디아실글리세롤(diacylglycerol, DAG)과 이노시톨 1,4,5-트리포스페이트(inositol 1,4,5-triphosphate, IP3)를 생성하는데, 전기 생성된 물질은 단백질 인산화효소 C(protein kinase C, PKC)와 세포내 칼슘 이동을 매개한다고 보고된 바 있다(참조: Rhee S. G. and Bae Y. S., J. Biol. Chem., 272:15045-15048, 1997). 현재까지 11종의 PLC 동위효소가 보고되어 있는데, 이들은 크게 PLC-β, PLC-γ, PLC-δ 및 PLC-ε의 4가지 그룹으로 분류된다. 이 중, PLC-β, PLC-γ및 PLC-ε은 G-단백질 연계 수용체(G-protein coupled receptor), 수용체 티로신 인산화효소 및 라스 경로(ras pathway)에 의하여 활성화되고, PLC-δ는 GTP 결합 단백질에 의하여 활성화되는 것으로 알려져 있다. 특히, PLC-δ1은 GTP 결합 단백질의 일종인 트랜스글루타미나제 II(transglutaminase II, Gh)가 작용하는, α1-아드레너직 경로에 의하여 활성화되는 것으로 알려져 있다(참조: Rhee S. G., Annu. Rev. Biochem., 70:281-312, 2001; Hwang K. C. and Gray C. D., J. Biol. Chem., 270:27058-27062, 1995). 전기 경로는 칼슘의 항상성을 조절하고, 혈압조절, 신경전달물질의 분비 등의 생리적인 조절과정을 조절하는 신호전달체계에 있어서 중요한 역할을 담당한다고 보고된 바 있다(참조: Murthy S. N. P., Proc. Natl. Acad. Sci., USA., 96:11815-11819, 1999). In particular, phospholipase C hydrolyzes membrane phospholipids and phosphatidylinositol 4,5-bisphosphate (PIP 2 ) to diacylglycerol (DAG) and inositol 1,4,5-tri It produces phosphate (inositol 1,4,5-triphosphate, IP 3 ), which has been reported to mediate intracellular calcium transport with protein kinase C (PKC). SG and Bae YS, J. Biol. Chem., 272: 15045-15048, 1997). To date, 11 PLC isozymes have been reported, which are largely classified into four groups: PLC-β, PLC-γ, PLC-δ, and PLC-ε. Among them, PLC-β, PLC-γ and PLC-ε are activated by G-protein coupled receptor, receptor tyrosine kinase and Ras pathway, PLC-δ is GTP binding It is known to be activated by proteins. In particular, PLC-δ1 is known to be activated by the α 1 -adrenergic pathway to which transglutaminase II (G h ), a type of GTP binding protein, functions (see Rhee SG, Annu). Rev. Biochem., 70: 281-312, 2001; Hwang KC and Gray CD, J. Biol. Chem., 270: 27058-27062, 1995). Electrical pathways have been reported to play an important role in signaling systems that regulate calcium homeostasis and regulate physiological control processes such as blood pressure control and neurotransmitter release (Murthy SNP, Proc. Natl). Acad. Sci., USA., 96: 11815-11819, 1999).

모든 PLC 동위효소는 칼슘이온과 반응하는 C2 도메인을 포함하고, PLC 동위효소 중에서 PLC-δ1은 세포내 칼슘이온에 대하여 가장 민감하게 반응하는 삼차원 구조를 갖기 때문에, PLC-δ1의 연구는 칼슘이온과 관련된 PLC 동위효소의 수용체- 매개 활성화와 칼슘 채널의 활성화 연구에 있어 중요한 단서를 제공할 것으로 예측되고 있으나(참조: Rebecchi M. J., et al., Physiol. Rev., 80:1291-1335, 2000), 현재까지는, 과량의 칼슘침적으로 인하여 유발된 허혈상태의 심장근에서 PLC에 의한 PIP2, DAG, IP3의 일차 가수분해 대사산물이 세포내 칼슘의 이동을 통한 세포내 신호전달과 PKC의 활성화에 중요한 역할을 수행한다는 연구결과만이 보고된 바 있다(참조: Hansen C. A., et al., J. Mol. Cell. Cardiol., 27:471-484, 1995; Schnabel P., et al., J. Mol. Cell. Cardiol., 28:2419-2427, 1996). Because all PLC isoenzymes contain C2 domains that react with calcium ions, and among PLC isoenzymes, PLC-δ1 has a three-dimensional structure that is most sensitive to intracellular calcium ions, the study of PLC-δ1 It is expected to provide important clues in the study of receptor-mediated and calcium channel activation of related PLC isoenzymes (Rebecchi MJ, et al., Physiol. Rev., 80: 1291-1335, 2000). To date, the primary hydrolysates of PIP 2 , DAG, and IP 3 by PLC in the ischemic heart muscle caused by excessive calcium deposition are important for intracellular signaling and activation of PKC through intracellular calcium transport. Only studies that play a role have been reported (Hansen CA, et al., J. Mol. Cell. Cardiol., 27: 471-484, 1995; Schnabel P., et al., J. Mol Cell.Cardiol., 28: 2419-2427, 1996).

세포내에서 증가된 칼슘이온은 단백질 인산화효소와 칼슘활성화 단백질 분해효소를 활성화시키는데, 이처럼 활성화된 단백질 분해효소는 세포내 칼슘의 수준을 조절하는 단백질을 분해시켜서 칼슘이온의 농도에 대한 반응성을 저하시키고, 칼슘이온의 농도에 대한 반응성이 저하된 세포에는 과량의 칼슘이온이 침적되며, 과량으로 침적된 칼슘이온은 해당 조직의 생리활성을 변화시키게 된다. 특히, 심장근의 경우에는 상술한 바와 같이, 칼슘이온의 과량침적은 심장의 허혈증을 유발시키게 되어, 결과적으로 개체를 사망시킬 수도 있으므로, 세포내에서 칼슘이온의 수준이 일정수준 이상으로 증가되지 못하게 조절하는 방법을 개발하려는 노력이 계속되고 있으나, 아직까지는 별다른 성과가 보고되지 않고 있는 실정이다. Increased intracellular calcium ions activate protein kinases and calcium activating proteolytic enzymes. These activated proteases degrade proteins that regulate the level of intracellular calcium, reducing their reactivity to calcium ion concentrations. In addition, excess calcium ions are deposited in cells that have decreased reactivity to calcium ions, and excessively deposited calcium ions change the physiological activity of the tissue. In particular, in the case of cardiac muscle, as described above, excessive deposition of calcium ions may lead to cardiac ischemia, which may result in death of the individual, thereby preventing the level of calcium ions from being increased within a certain level. Efforts have been made to develop ways to do this, but no results have been reported.

따라서, 세포내에서 칼슘이온의 수준이 일정수준 이상으로 증가되지 못하게 조절하여 허혈증을 치료할 수 있는 방법을 개발하여야 할 필요성이 끊임없이 대두 되었다.Therefore, there is a constant need to develop a method for treating ischemia by regulating the level of calcium ions in the cell not to be raised above a certain level.

이에, 본 발명자들은 세포내에서 칼슘이온의 수준이 일정수준 이상으로 증가되지 못하게 조절하여 심장의 허혈증을 치료할 수 있는 방법을 개발하고자 예의 연구 노력한 결과, 세포내에서 PLC-δ를 과발현시키면, 세포내 칼슘이온의 과량침적이 감소되어, 허혈증상을 치료할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
Therefore, the present inventors have made intensive studies to develop a method for treating cardiac ischemia by regulating the level of calcium ions in the cell not to be increased above a certain level. Excessive deposition of calcium ions was reduced, confirming that it is possible to treat ischemic symptoms, and completed the present invention.

결국, 본 발명의 주된 목적은 PLC-δ를 유효성분으로 포함하는 허혈증상 치료제를 제공하는 것이다.
After all, the main object of the present invention is to provide a treatment for ischemic symptoms comprising PLC-δ as an active ingredient.

본 발명의 허혈증상 치료제는 포스포리파제 C-δ(phospholipase C-δ, PLC-δ)를 유효성분으로 하고, 약제학적으로 허용되는 담체를 포함한다: 이때, 사용되는 포스포리파제 C-δ가 특별히 이에 제한되는 것은 아니나, 포스포리파제 C-δ1(phospholipase C-δ1, PLC-δ1)을 사용함이 바람직하다.The agent for treating ischemic symptoms of the present invention is phospholipase C-δ (PLC-δ) as an active ingredient, and includes a pharmaceutically acceptable carrier, wherein the phospholipase C-δ used is Although not particularly limited thereto, it is preferable to use phospholipase C-δ1 (PL-δ1, PLC-δ1).

본 발명자들은 심장근의 허혈상태는 칼슘의 과량침적이 주 원인이 되고, 모든 PLC 동위효소에 칼슘과 반응할 수 있는 C2 도메인이 존재함에 착안하여, 칼슘의 대사에 PLC 동위효소가 어떠한 영향을 미치는지 알아보고자 하였다. 우선, 허혈상 태의 심장에서 다양한 PLC 동위효소의 발현양상을 측정한 결과, 허혈상태의 심장근에서는 PLC 동위효소중, PLC-δ계열에 속하는 PLC-δ1(서열번호 1)만이 시간의 경과에 따라 발현수준이 감소함을 알 수 있었다. The inventors note that the ischemic state of cardiac muscle is mainly caused by excessive deposition of calcium, and that all PLC isoenzymes have a C2 domain capable of reacting with calcium, and thus, how PLC isozymes affect calcium metabolism. I wanted to see. First, as a result of measuring the expression patterns of various PLC isoenzymes in the ischemic heart, only PLC-δ1 (SEQ ID NO: 1), belonging to the PLC-δ family, is expressed over time in the ischemic heart muscle. It was found that the level decreased.

허혈상태의 심장근에서 전기 PLC-δ1이 시간의 경과에 따라 발현수준이 감소하는 원인을 분석한 결과, 칼슘활성화 단백질분해효소에 의하여 PLC-δ1이 분해됨을 확인하여, 세포내 칼슘이온에 의하여, PLC-δ1이 직접적으로 영향을 받음을 알 수 있었다. 세포내에서 증가된 칼슘이온은 단백질 인산화효소와 칼슘활성화 단백질 분해효소를 활성화시키는데, 이처럼 활성화된 단백질 분해효소는 세포내 칼슘의 수준을 조절하는 단백질을 분해시켜서 칼슘이온의 농도에 대한 반응성을 저하시키게 됨을 감안하여, 본 발명자들은 PLC-δ1이 세포내 칼슘의 수준을 조절하는 역할을 수행할 것으로 예측하고, 세포내 PLC-δ1의 수준을 증가시킬 경우, 세포내 칼슘의 수준을 조절할 수 있을 것으로 예견하였다.As a result of analyzing the cause of the decrease of the expression level of PLC-δ1 over time in the ischemic heart muscle, it was confirmed that PLC-δ1 is degraded by calcium-activated protease, It was found that -δ1 was directly affected. Increased intracellular calcium ions activate protein kinases and calcium-activated proteolytic enzymes. These activated proteases degrade proteins that regulate the levels of intracellular calcium, resulting in decreased reactivity to calcium ion concentrations. In light of this, we expect that PLC-δ1 will play a role in regulating intracellular calcium levels and predict that intracellular calcium levels can be controlled by increasing intracellular PLC-δ1 levels. It was.

상술한 예견을 입증하기 위하여, 본 발명자들은 진핵세포에서 PLC-δ1을 발현시킬 수 있는 발현벡터 pcDNA3.1-HA(PLC-δ)를 작제하고, 이를 심장근 세포에 도입시켜 허혈상태를 인위적으로 유발시킨 후, 칼슘농도를 측정하였다. 그 결과, 전기 발현벡터가 도입된 심장근 세포에서는 허혈상태에서도 세포내 칼슘의 농도가 증가하지 않음을 확인할 수 있었다.In order to prove the above prediction, the present inventors construct an expression vector pcDNA3.1-HA (PLC-δ) capable of expressing PLC-δ1 in eukaryotic cells, and introduce it into cardiomyocytes to artificially induce an ischemic state. After the calcium concentration was measured. As a result, it was confirmed that the intracellular calcium concentration did not increase even in the ischemic state in the cardiomyocytes into which the electric expression vector was introduced.

따라서, 본 발명의 허혈증상 치료제는 세포에 과량의 칼슘이 침적되어 허혈상태가 유발되는 증상을 예방할 수 있으므로, 허혈증의 예방 및 치료에 널리 활용 될 수 있을 것이다.Therefore, the ischemic symptom treatment agent of the present invention can prevent the symptom of causing an ischemic state due to the deposition of excess calcium in the cell, and thus may be widely used for the prevention and treatment of ischemia.

한편, 본 발명의 PLC-δ를 유효성분으로 하고, 약제학적으로 허용가능한 담체를 첨가한 허혈증상 치료제는 주사형태로 투여될 수 있다. 이때, 주사용 조성물은 등장성 수용액 또는 현탁액이 바람직하고, 언급한 조성물은 멸균되고/되거나 보조제(예를 들면, 방부제, 안정화제, 습윤제 또는 유화제 용액 촉진제, 삼투압 조절을 위한 염 및/또는 완충제)를 함유한다. 또한, 이들은 기타 치료적으로 유용한 물질을 함유할 수 있다. On the other hand, the ischemic symptoms therapeutic agent containing PLC-δ of the present invention as an active ingredient and a pharmaceutically acceptable carrier can be administered in an injection form. The injectable compositions are preferably aqueous isotonic solutions or suspensions, and the compositions mentioned are sterile and / or adjuvants (e.g., preservatives, stabilizers, wetting or emulsifier solution promoters, salts and / or buffers for controlling osmotic pressure). It contains. In addition, they may contain other therapeutically valuable substances.

유효량Effective amount

본 발명에 있어서 유효성분인 PLC-δ의 투여량은 환자의 연령, 성별, 증상, 투여방법 또는 예방목적에 따라, 체중 kg 당 0.1 내지 1㎎을 일일 1회 투여할 수 있다. 특이 증상을 나타내는 환자에 대한 투여용량 수준은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여 시간, 투여 방법, 배설율, 질환의 중증도 등에 따라 당업자가 투여량을 변화시킬 수도 있다. In the present invention, the dose of the active ingredient PLC-δ may be administered once daily to 0.1 to 1 mg / kg body weight, depending on the age, sex, symptoms, administration method or prevention of the patient. Dosage levels for patients with specific symptoms may vary by those skilled in the art depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, rate of excretion, severity of disease, and the like.

PLC-δ의 급성독성실험Acute Toxicity Test of PLC-δ

6 내지 7주령 된 비설치류 비글견(beagle)을 대상으로 본 발명의 PLC-δ를 피하주사하고, 투여후 7일간에 걸쳐 비글견의 사망수를 측정하여 LD50 값을 결정하였는 바, LD50 값은 약 580mg/kg이었다. 따라서, 상기 표시하는 유효량의 범위에서, 본 발명의 PLC-δ을 유효성분으로 함유하는 허혈증상 치료제는 충분히 안전한 약물임을 알 수 있었다.6 to 7-week-old non-rodent beagle dogs (beagle) determining the LD 50 values, and subcutaneously injected PLC-δ of the present invention, to measure the number of deaths of beagles over the 7 days after administration targeting bar, hayeotneun LD 50 The value was about 580 mg / kg. Therefore, it was found that the ischemic symptom treatment agent containing PLC-δ of the present invention as an active ingredient in the range of the effective amount indicated above was a sufficiently safe drug.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상적의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: 허혈상태의 심장근에서의 PLC 동위효소 발현 변화 Example 1 : Change of PLC isoenzyme expression in ischemic heart muscle

허혈상태의 심장근에서의 PLC 동위효소의 발현을 관찰하기 위하여, 랫트에서 관상동맥으로 가는 좌측 동맥을 외과적으로 폐색시킴으로써 심근경색을 유도하였다. 즉, 생후 200일이 경과된 30g의 웅성 스프라그-다울리 랫트를 10㎎/㎏의 케타민(ketamine) 및 5㎎/㎏의 자일라진(xylazine)으로 마취한 후, 제 3 및 제 4 늑골을 절단하여 흉부를 개방하고, 늑간을 통하여 심장을 꺼냈다. 그 후, 좌측의 관상동맥을 5-0 프롤렌 봉합기구(prolen suture, ETHICON, UK)를 이용하여 이의 기원부위로부터 2 내지 3mm를 폐색시키고, 심장을 본래 위치로 재위치시켜서 심근경색을 유도하였고, 대조군으로는 관상동맥을 폐색시키지 않은 랫트를 사용하였다. In order to observe the expression of PLC isoenzyme in ischemic heart muscle, myocardial infarction was induced by surgically occluding the left artery from the rat to the coronary artery. That is, after 200 days of age, 30 g of male Sprague-Dawley rats were anesthetized with 10 mg / kg of ketamine and 5 mg / kg of xylazine, and then the third and fourth ribs were removed. The amputation opened the chest and the heart was pulled through the intercostal space. The left coronary artery was then occluded 2-3 mm from its origin using a 5-0 prolen suture (ETHICON, UK) and the heart was repositioned to induce myocardial infarction. As a control, rats which did not occlude the coronary artery were used.

전기 실험군과 대조군의 심장을 각각 적출하여, 실험군의 심장을 경계부위와 상처부위로 분리시킨 후, 각각을 균질화 완충용액(homogenization buffer, 1mM EGTA, 1mM DTT, 1mM PMSF, 10㎍/㎖ 류펩틴, 10㎍/㎖ 아프로티닌, 및 4㎍/㎖의 칼파인 억제제 I 및 II, 10mM Tris-HCl 완충액, pH 7.4)에서 균질화시키고, 4℃, 100,000 ×g에서 1시간 원심분리하여 상층액을 수득하였다. 전기 상층액에 2M이 되도록 KCl을 첨가하고, 4℃에서 2시간동안 교반한 후, 35,000 ×g에서 30분간 원심분리하여 상층액을 수득하고, 4L의 균질화 완충액에서 하룻밤동안 투석시킨 다음, 동일조건으로 원심분리하여 80mg의 단백질을 포함하는 상층액을 수득하였다. 전기 수득한 상층액을 1mM EGTA 및 0.1mM DDT가 포함된 20mM HEPES-NaOH(pH 7.0)으로 평형화시킨 헤파린-세파로오스 CL-6B 컬럼에 적용하고, 1.2M NaCl이 포함된 평형완충액으로 용출하여, PLC활성을 나타내는 활성분획을 수득하였다. 이때, PLC 활성측정은 [3H]-PIP2와 [3H]-PI를 기질로 사용한 가수분해활성을 측정함으로써, 수행되었다. [3H]-PIP2를 기질로 사용한 가수분해활성은 지질 교질입자(12μM [3 H]-PIP2, 12,000cpm), 50mM HEPES-NaOH(pH 7.0), 0.1% 소듐 디옥시콜레이트, 120mM KCl, 10mM NaCl, 2mM MgCl2, 2mM EGTA, 및 1.4mM CaCl2)를 포함하는 95㎕ 반응 혼합용액에 시료 5㎕를 혼합하고, 30℃에서 10분간 반응시킨 후, 반응액 내의 [3H] 수준 을 측정함으로써 수행되고, [3H]-PI를 기질로 사용한 가수분해활성은 150μM [3H]-PI(20,000cpm), 50mM HEPES-NaOH(pH 7.0), 3mM CaCl2, 2mM EGTA, 및 0.1% 소듐 디옥시콜레이트가 포함된 150㎕ 반응 혼합용액에 시료 50㎕를 혼합하고, 30℃에서 10분간 반응시킨 후, 반응액 내의 [3H] 수준을 측정함으로써 수행되었다.The heart of the experimental group and the control group were removed, and the heart of the experimental group was separated into the border and wound areas, and then each was homogenization buffer (homogenization buffer, 1 mM EGTA, 1 mM DTT, 1 mM PMSF, 10 µg / ml leupetin, Homogenized in 10 μg / ml aprotinin, and 4 μg / ml of calpine inhibitors I and II, 10 mM Tris-HCl buffer, pH 7.4), and centrifuged at 4 ° C., 100,000 × g for 1 hour to obtain supernatant. . KCl was added to the supernatant to 2M, stirred at 4 ° C. for 2 hours, centrifuged at 35,000 × g for 30 minutes to give a supernatant, and dialyzed overnight in 4L homogenization buffer, followed by the same conditions. Centrifugation gave a supernatant containing 80 mg of protein. The supernatant obtained above was applied to a Heparin-Sepharose CL-6B column equilibrated with 20 mM HEPES-NaOH (pH 7.0) containing 1 mM EGTA and 0.1 mM DDT, and eluted with an equilibration buffer containing 1.2 M NaCl. , An active fraction showing PLC activity was obtained. At this time, PLC activity measurement was performed by measuring the hydrolytic activity using [ 3 H] -PIP 2 and [ 3 H] -PI as a substrate. Hydrolytic activity using [ 3 H] -PIP 2 as substrate was measured for lipid colloid (12 μM [ 3 H] -PIP 2 , 12,000 cpm), 50 mM HEPES-NaOH (pH 7.0), 0.1% sodium deoxycholate, 120 mM KCl 5 μl of the sample was mixed in a 95 μl reaction mixture containing 10 mM NaCl, 2 mM MgCl 2 , 2 mM EGTA, and 1.4 mM CaCl 2 , and reacted at 30 ° C. for 10 minutes, followed by [ 3 H] levels. Hydrolysis activity using [ 3 H] -PI as a substrate was performed at 150 μM [ 3 H] -PI (20,000 cpm), 50 mM HEPES-NaOH (pH 7.0), 3 mM CaCl 2 , 2 mM EGTA, and 0.1 50 μl of the sample was mixed with 150 μl reaction mixture solution containing% sodium dioxycholate, reacted at 30 ° C. for 10 minutes, and then measured by measuring the level of [ 3 H] in the reaction solution.

전기 수득한 활성분획을 1mM EGTA 및 0.1mM DDT를 포함하는 20mM HEPES-NaOH(pH 7.0)으로 평형화시킨 TSKgel 헤파린-5PW HPLC 컬럼(7.5X75mm)에 적용하고, 15㎖의 평형완충용액으로 세척한 다음, 0 내지 0.64M의 농도를 갖는 NaCl을 포함하는 평형완충용액 40㎖ 및 0.64M 내지 1M의 농도를 갖는 NaCl을 포함하는 평형완충용액 10㎖로 용출하여, PLC활성을 나타내는 활성분획을 수득하였다. 전기 수득한 활성분획을 PLC-δ1, PLC-γ1, PLC-β1 및 PLC-β3의 항체를 이용한 면역블롯방법으로 분석하여, PLC-δ1, PLC-γ1, PLC-β1 및 PLC-β3의 발현수준을 측정하였다(참조: 도 1). 도 1은 각 부위에서 PLC의 발현정도를 나타내는 전기영동사진으로서, N은 대조군을 나타내고, B는 경계부위를 나타내며, S는 상처부위를 나타낸다. 도 1에서 보듯이, 대조군에서는 PLC-δ1, PLC-β1, PLC-β3 및 PLC-γ1이 일정수준으로 발현되었으나, 실험군에서는 PLC-β1, PLC-β3, 및 PLC-γ1는 정상적으로 발현되지만, PLC-δ1의 발현이 현저하게 감소됨을 알 수 있었다.The previously obtained active fraction was applied to a TSKgel heparin-5PW HPLC column (7.5X75 mm) equilibrated with 20 mM HEPES-NaOH (pH 7.0) containing 1 mM EGTA and 0.1 mM DDT, washed with 15 ml of equilibration buffer, , 40 mL of an equilibration buffer containing NaCl having a concentration of 0 to 0.64 M and 10 mL of an equilibration buffer containing NaCl having a concentration of 0.64 M to 1M were eluted to obtain an active fraction showing PLC activity. The activity fractions obtained previously were analyzed by immunoblot method using antibodies of PLC-δ1, PLC-γ1, PLC-β1 and PLC-β3, and the expression levels of PLC-δ1, PLC-γ1, PLC-β1 and PLC-β3 were analyzed. Was measured (see FIG. 1). Figure 1 is an electrophoresis picture showing the degree of expression of PLC at each site, N represents the control, B represents the border, S represents the wound. As shown in FIG. 1, PLC-δ1, PLC-β1, PLC-β3 and PLC-γ1 were expressed at a constant level in the control group, but PLC-β1, PLC-β3, and PLC-γ1 were normally expressed in the experimental group, but PLC The expression of -δ1 was found to be significantly reduced.

이에, 경색시간의 경과에 따른 PLC-δ1의 발현정도를 알아보기 위하여, 폐색시술 직후, 폐색시술 2시간 경과, 폐색시술 1일 경과 및 폐색시술 3일경과된 실험 군의 경계부위 및 상처부위와 대조군으로부터 각각 PLC-δ1을 수득하여, 이의 발현정도를 측정하였다(참조: 도 2). 도 2는 폐색시술 이후의 시간경과에 따른 PLC-δ1의 발현수준을 나타내는 그래프로서, (□)은 대조군을 나타내고, (▦)는 경계부위를 나타내며, (■)는 상처부위를 나타낸다. 도 2에서 보듯이, 폐색시술 1일경과된 시점에서 경계부위와 상처부위의 PLC-δ1 발현수준이 갑작스럽게 감소하며, 이후의 시간이 경과하더라도 더 이상의 감소는 나타나지 않음을 알 수 있었다.Therefore, in order to determine the expression level of PLC-δ1 according to the infarction time, the boundary area and the wound area of the experimental group immediately after the occlusion procedure, 2 hours after the occlusion procedure, 1 day after the occlusion procedure, and 3 days after the occlusion procedure, PLC-δ1 was obtained from the control group, respectively, and the expression level thereof was measured (see FIG. 2). Figure 2 is a graph showing the expression level of PLC-δ1 over time after the occlusion procedure, (□) represents the control group, (경계) represents the border site, (■) represents the wound site. As shown in FIG. 2, the level of PLC-δ1 expression in the border and wound area suddenly decreased at the time of day 1 after the occlusion procedure, and no further decrease was observed even after a lapse of time.

실시예 2: 허혈상태에서의 PLC의 발현양상의 변화 Example 2 Change in the Expression Pattern of PLC in Ischemia

전기 실시예 1의 결과를 분석하기 위하여, 심장근 세포를 배양하여, 인위적인 허혈증을 유발시킨 경우에도, 동일한 결과를 나타내는지를 확인하였다.In order to analyze the result of Example 1, it was confirmed that the cardiomyocytes were cultured to show the same result even when artificial ischemia was induced.

우선, 1 내지 2일된 스프라그-다울리 랫트의 심장으로부터 심실세포를 수득하고, 0.1mM BrdU를 포함하는 배양완충용액(α-MEM, Gibco-BRL, USA)에 현탁시킨 후, 배양접시에 5 ×105세포/㎖의 농도로 접종한 다음, 37℃, 5% CO2의 조건으로 세포배양기에서 배양하였다. 이어, 1mM 2-디옥시글루코스, 20mM 소듐락테이트, 12mM KCl, 1mM 소듐 디티오니트, 및 0.2% FBS(pH 6.5)를 포함하는 변형된 크랩(Kreb) 완충액(137mM NaCl, 3.8mM KCl, 0.49mM MgCl2, 0.9mM CaCl2, 4mM Hepes)으로 배양액을 교체시킨 다음, 37℃에서 수 시간동안 배양함으로써 허혈상태를 유발시켰다. 이어, 허혈유발직후, 1일 경과, 2일 경과 및 3일 경과된 시료세포를 수득하고, 각 시 료에서 PLC-δ1, PLC-β1 및 PLC-γ1의 발현수준을 측정하였다(참조: 도 3). 도 3은 허혈상태의 배양된 심근세포에서 시간의 경과에 따른 PLC의 발현양상을 나타내는 전기영동사진이다. 도 3에서 보듯이, PLC-β1 및 PLC-γ1의 발현수준은 시간의 경과에 따라 변화되지 않았으나, PLC-δ1는 시간의 경과에 따라 감소됨을 알 수 있었다.First, ventricular cells were obtained from the heart of 1 to 2 day old Sprague-Dawley rats, suspended in a culture buffer solution (α-MEM, Gibco-BRL, USA) containing 0.1 mM BrdU, and then cultured in a culture dish. The cells were inoculated at a concentration of 10 5 cells / ml and then cultured in a cell incubator at 37 ° C. and 5% CO 2 . Then, a modified crab buffer (137 mM NaCl, 3.8 mM KCl, 0.49) containing 1 mM 2-dioxyglucose, 20 mM sodium lactate, 12 mM KCl, 1 mM sodium dithionite, and 0.2% FBS pH 6.5 Ischemic state was induced by replacing the culture with mM MgCl 2 , 0.9 mM CaCl 2 , 4 mM Hepes) and then incubating for several hours at 37 ° C. Subsequently, after 1 day, 2 days, and 3 days after the ischemic induction, sample cells were obtained, and the expression levels of PLC-δ1, PLC-β1, and PLC-γ1 were measured in each sample (see FIG. 3). ). Figure 3 is an electrophoresis picture showing the expression of PLC over time in cultured cardiomyocytes in ischemia. As shown in FIG. 3, the expression levels of PLC-β1 and PLC-γ1 did not change with time, but PLC-δ1 decreased with time.

실시예 3: 단백질 분해효소가 PLC-δ에 미치는 영향 Example 3 Effect of Protease on PLC-δ

실시예 2에서 보듯이, 허혈상태에서는 시간의 경과에 따라 PLC-δ의 수준이 감소하였으므로, 이러한 PLC-δ의 수준감소가 단백질 분해효소에 의한 것인지를 확인하고자 하였다. 즉, 전기 실시예 2에서와 동일한 방법으로 허혈상태를 유발시킨 배양된 심근세포에, 칼슘활성화 단백질 분해효소인 칼파인(calpain)의 억제제인 칼파스타틴(calpastatin) 및 카스파제(caspase)의 억제제인 zVAD-fmk을 각각 100mM 및 10μM의 농도로 배양초기에 첨가하고, PLC-δ의 발현수준을 면역블럿 방법으로 측정하였다. 이때, 대조군으로는 정상 랫트에서 수득한 심근세포에 단백질 분해효소 억제제를 처리하지 않은 실험군을 사용하였다(참조: 도 4). 도 4는 단백질 분해효소 억제제가 PLC-δ의 발현에 미치는 영향을 나타내는 그래프로서 1번 레인은 대조군이고, 2번 레인은 허혈상태를 유발시킨 심근세포를 나타내며, 3번 레인은 허혈상태를 유발시킨 심근세포에 칼파스타틴을 처리한 실험군을 나타내고, 4번 레인은 허혈상태를 유발시킨 심근세포에 칼파스타틴과 zVAD-fmk을 처리한 실험군을 나 타낸다. 도 4에서 보듯이, 단백질 분해효소 억제제는 허혈상태의 심근세포에서 PLC-δ1의 분해를 억제시킴을 알 수 있었다. As shown in Example 2, in the ischemic state, since the level of PLC-δ decreased with time, it was intended to determine whether such a decrease in PLC-δ was due to proteolytic enzymes. That is, in the cultured cardiomyocytes inducing ischemic state in the same manner as in Example 2, inhibitors of calpastatin and caspase, which are inhibitors of calpain, a calcium-activated protease zVAD-fmk was added at the beginning of culture at concentrations of 100 mM and 10 μM, respectively, and the expression level of PLC-δ was measured by immunoblot method. At this time, the control group was used as a control group not treated with a protease inhibitor on the cardiomyocytes obtained from normal rats (see Figure 4). Figure 4 is a graph showing the effect of protease inhibitors on the expression of PLC-δ, lane 1 is a control, lane 2 is a cardiomyocyte that induced ischemic state, lane 3 is an ischemic state Cardiac cells were treated with calpastatin, and lane 4 shows ischemia-induced cardiomyocytes with calpastatin and zVAD-fmk. As shown in Figure 4, the protease inhibitors were found to inhibit the degradation of PLC-δ1 in ischemic cardiomyocytes.

실시예 4: 허혈상태 세포의 칼슘이온 과량침적에 대한 PLC-δ1의 영향 Example 4 Effect of PLC-δ1 on Calcium Ion Excess Deposition in Ischemic Cells

허혈상태 세포에서 칼슘이온 과량침적에 대한 PLC-δ의 영향을 알아보기 위하여, PLC-δ1가 과다발현된 허혈상태의 심장근 세포에서 칼슘침적 정도를 측정하였다.To investigate the effect of PLC-δ on calcium ion overdeposition in ischemic cells, calcium deposition was measured in ischemic cardiomyocytes overexpressed with PLC-δ1.

먼저, 상업적으로 입수가능한 pcDNA3.1-HA 벡터(Invitrogen, USA)에 PLC-δ1를 암호화하는 cDNA(서열번호 1)를 삽입시켜서, 진핵세포에서 PLC-δ1를 발현시킬 수 있는 발현벡터 pcDNA3.1-HA(PLC-δ1)을 작제하였다. 즉, PLC-δ1 유전자를 포함하는 것으로 알려진 pIBI20 벡터(참조: Junliang Pan et al., J. Biol. Chem., 273(16):10058-10067, 1998; John A. et al., Proc. Natl. Acad. Sci., USA, 95(2):638-645, 1998)을 HindIII로 절단한 후, pcDNA3.1-HA 벡터의 HindIII 좌위에 삽입시켜서 발현벡터 pcDNA3.1-HA(PLC-δ1)을 작제하였다.(참조: 도 5). 도 5는 발현벡터 pcDNA3.1-HA(PLC-δ1)의 유전자 지도이다.First, an expression vector pcDNA3.1 capable of expressing PLC-δ1 in eukaryotic cells by inserting cDNA (SEQ ID NO: 1) encoding PLC-δ1 into a commercially available pcDNA3.1-HA vector (Invitrogen, USA). -HA (PLC-δ1) was constructed. Ie, the pIBI20 vector known to contain the PLC-δ1 gene (Junliang Pan et al., J. Biol. Chem., 273 (16): 10058-10067, 1998; John A. et al., Proc. Natl Acad.Sci., USA, 95 (2): 638-645, 1998) was digested with HindIII and inserted into the HindIII locus of the pcDNA3.1-HA vector to express the expression vector pcDNA3.1-HA (PLC-δ1). Was constructed (see FIG. 5). 5 is a genetic map of the expression vector pcDNA3.1-HA (PLC-δ1).

전기 실시예 2에서 배양된 심장근 세포(대조군), 허혈상태가 유발된 심장근 세포(실험군 1), 실시예 2의 방법으로 허혈상태가 유발되고, 전기 작제된 발현벡터 pcDNA3.1-HA(PLC-δ1)로 형질도입되어, PLC-δ1가 과다발현되는 심장근 세포(실험 군 2) 및 실시예 2의 방법으로 허혈상태가 유발되고, 실시예 3의 방법으로 100mM의 칼파스타틴이 처리된 심장근 세포(실험군 3)를 각각 준비하고, 전기 준비된 대조군 및 실험군을 3일동안 배양한 다음, 각 대조군 및 실험군에서 칼슘의 침적정도를 측정하였다(참조: 도 6). Myocardial cells cultured in Example 2 (control), ischemic heart-induced cardiomyocytes (Experimental Group 1), the ischemic state is induced by the method of Example 2, and the expression vector pcDNA3.1-HA (PLC- cardiomyocytes transduced with δ1, overexpressed PLC-δ1 (experimental group 2) and ischemic state induced by the method of Example 2, and treated with 100 mM calpastatin-treated cardiomyocytes (Example 3) Experiment group 3) was prepared, and the control group and the experimental group, which were prepared before, were incubated for 3 days, and then the degree of calcium deposition in each control group and the experimental group was measured (see FIG. 6).

이때, PLC-δ1가 과다발현되는 심장근 세포는 다음과 같이 작제되었다. 전기 실시예 2의 방법으로 배양된 심장근 세포를 혈청이 없는 DMEM(Sigma Chem. Co., USA)배지로 세척하고, 동일한 배지로 희석된 LIPOFECTAMIN PLUS(5㎍/㎖, Sigma Chem. Co., USA)을 5㎍의 발현벡터 pcDNA3.1-HA(PLC-δ1)와 혼합하고, 이를 전기 세척된 심장근 세포에 첨가하였다. 그런 다음, 37℃ CO2 세포배양기에서 12시간동안 배양하고, 배양액을 10%(v/v) 우태아혈청(FBS)을 포함하는 DMEM배지로 교체한 후, 다시 48시간동안 배양하였다.At this time, cardiomyocytes overexpressing PLC-δ1 were constructed as follows. Cardiomyocyte cells cultured by the method of Example 2 were washed with serum-free DMEM (Sigma Chem. Co., USA) medium and diluted with the same medium as LIPOFECTAMIN PLUS (5 μg / ml, Sigma Chem. Co., USA). ) Was mixed with 5 μg of the expression vector pcDNA3.1-HA (PLC-δ1) and added to electro washed cardiomyocytes. Then, the cells were incubated for 12 hours in a 37 ° C. CO 2 cell incubator, and the culture medium was replaced with DMEM medium containing 10% (v / v) fetal calf serum (FBS), followed by another 48 hours.

아울러, 칼슘의 침적정도는 다음의 방법으로 측정하였다. 전기 대조군 및 각 실험군에서 수득한 각각의 심장근 세포를 5㎍/cm2로 유리재질의 커버슬립 위에 접종하고, 0.1μM BrdU 및 10%(v/v) 우태아혈청(FBS)을 포함하는 α-MEM배지에서 하루동안 배양한 후, 0.265g/ℓ의 CaCl2, 0.214g/ℓ의 MgCl2, 0.2g/ℓ의 KCl, 8.0g/ℓ의 NaCl, 1.0g/ℓ의 글루코스, 0.05g/ℓ의 NaH2PO4 및 1.0g/ℓ의 NaHCO3가 포함된 변형된 타이로드 용액(Tyrode's solution)으로 세척하였다. 그런 다음, 칼슘이온 측정용 Fura-2키트(Fura-2 AM, Molecular probes, Eugen, Germany)의 5μM 아세트옥시메틸 에스터를 가하고, 상온에서 20분동안 암실에서 방치한 후, 아르곤 레이져 공초점 현미경(confocal microscopy, Leica, Solms, Germany)을 이용하여 방출되는 플루오로크롬의 형광정도를 측정하였다. 전기 플루오로크롬의 형광은 아르곤 레이져 488mm 선에 의하여 방출되고, 방출된 형광은 510 내지 560mm 대역 여파기(bandpass filter)를 통하여 측정되었다. In addition, the deposition degree of calcium was measured by the following method. Each cardiomyocytes obtained from the control group and each experimental group were inoculated on a cover slip of glass material at 5 μg / cm 2 , and α- containing 0.1 μM BrdU and 10% (v / v) fetal calf serum (FBS). After culturing for one day in MEM medium, 0.265 g / l CaCl 2 , 0.214 g / l MgCl 2 , 0.2 g / l KCl, 8.0 g / l NaCl, 1.0 g / l glucose, 0.05 g / l Washed with a modified Tyrode's solution containing NaH 2 PO 4 and 1.0 g / L of NaHCO 3 . Then, 5 μM acetoxymethyl ester of Fura-2 kit (Fura-2 AM, Molecular probes, Eugen, Germany) for calcium ion measurement was added and left in the dark for 20 minutes at room temperature, followed by argon laser confocal microscopy ( confocal microscopy, Leica, Solms, Germany) was used to measure the fluorescence intensity of the fluorochromes emitted. The fluorescence of the electrofluorochromes was emitted by an argon laser 488 mm line, and the emitted fluorescence was measured through a 510-560 mm bandpass filter.

도 6은 플루오로크롬의 형광도를 이용하여 시료에 침적된 칼슘의 정도를 나타내는 그래프이다. 도 6에서 보듯이, 허혈상태가 유발된 세포에 침적된 칼슘정도에 비하여, PLC-δ1가 과다발현되는 세포는 허혈상태가 유발되지 않은 대조군 및 칼파스타틴이 처리된 세포와 동일한 정도의 낮은 칼슘침적 정도를 나타내었다.6 is a graph showing the degree of calcium deposited on the sample using the fluorescence of fluorochrome. As shown in Figure 6, compared to the calcium deposited on the ischemic cell induced, the cells overexpressing PLC-δ1 is the same low calcium deposition as the control and calpastatin-treated cells not induced ischemic state The degree was shown.

상기 실시예 1 내지 4의 결과를 종합하면, 심장근 세포에서 과량의 칼슘이온이 침적될 경우에는 허혈상태가 유발되며, 허혈상태에서는 PLC-δ1이 칼슘활성화 단백질 분해효소에 의하여 급격히 분해됨을 알 수 있었고, 전기 허혈상태의 심장근 세포내에 PLC-δ1을 과다발현시키면, 최소한 칼슘의 과량 침적이 억제됨을 알 수 있었는 바, PLC-δ1을 이용하면 세포내 칼슘의 과량 침적으로 인하여 유발되는 허혈증상을 예방할 수 있을 것으로 판단되었다.According to the results of Examples 1 to 4, ischemic state is induced when excessive calcium ions are deposited in cardiac muscle cells, and PLC-δ1 is rapidly degraded by calcium activating protease in ischemic state. In addition, overexpression of PLC-δ1 in cardiac muscle cells in the ischemic state showed that at least calcium excessive deposition was suppressed. Using PLC-δ1 prevents ischemia caused by excessive deposition of intracellular calcium. It was judged to be.

이상에서 상세히 설명하고 입증하였듯이, 포스포리파제 C-δ를 유효성분으로 포함하고, 약제학적으로 허용되는 담체를 포함하는 허혈증상 치료제를 제공한다. 본 발명의 허혈증상 치료제는 세포에 과량의 칼슘이 침적되어 허혈상태가 유발되는 증상을 예방할 수 있으므로, 허혈증의 예방 및 치료에 널리 활용될 수 있을 것이다.As described in detail and demonstrated above, it provides a therapeutic agent for ischemic symptoms comprising phospholipase C-δ as an active ingredient and a pharmaceutically acceptable carrier. The ischemic treatment agent of the present invention can prevent a symptom of causing an ischemic state due to deposition of excess calcium in a cell, and thus may be widely used for the prevention and treatment of ischemia.

<110> JANG, Yang Soo HWANG, Gi Chul <120> Pharmaceutical Composition for Recovering Ischemia <160> 1 <170> KopatentIn 1.6 <210> 1 <211> 2569 <212> DNA <213> phospholipase C <400> 1 atggactcgg gtagggactt cctgaccctg cacgggctcc aggatgaccc ggaccttcag 60 gcccttctga agggcagcca gcttctgaag gtgaagtcca gctcgtggcg tagggaacgc 120 ttctacaagc tacaggagga ctgcaagacc atctggcagg aatctcgaaa ggtcatgagg 180 tccccggagt cgcagctgtt ctccatcgag gacattcagg aggtacggat gggacaccgc 240 acagaaggcc tggagaagtt tgcccgagac atccccgagg atcgatgctt ctccattgtc 300 ttcaaggacc agcgcaacac cctagacctc attgccccat caccagctga cgctcagcac 360 tgggtgcagg gcctgcgcaa gatcatccac cactccggct ccatggacca gcggcagaag 420 ctgcagcact ggattcactc ctgcttgcga aaggctgata aaaacaagga caacaagatg 480 aacttcaagg agctgaagga cttcctgaag gagctcaaca tccaggtgga tgacggctac 540 gccaggaaga tcttcaggga atgtgaccac tcccagacag actcgctgga ggatgaggag 600 attgagacct tctacaagat gctgacccag cgcgcagaga tcgaccgtgc ttttgaggag 660 gccgcaggat ccgcggagac cctgtcggtg gagaggctag tgacgtttct gcagcaccag 720 cagcgggagg aggaggcagg gccagccttg gccctctctc tcattgagcg ctacgagccc 780 agtgagactg ccaaggccca gcggcagatg accaaggatg gcttcctcat gtacttgctg 840 tcggctgacg gtaacgcctt cagcctggca caccgccgtg tctaccagga catggaccag 900 ccactgagtc actacttagt gtcttcttcc cacaacacct acctgctgga agaccagctc 960 acagggccca gcagcacgga ggcctacatc cgggctctgt gcaaaggctg ccggtgcttg 1020 gagctcgact gctgggatgg tcccaaccag gaacccatca tctaccacgg ctacactttt 1080 acctctaaga tacttttctg tgacgtgctc agggccatca gggactatgc cttcaaggca 1140 tccccctacc cagtcatcct gtccctggag aaccactgta gcctggagca acaacgagtc 1200 atggcccgtc acctgagggc tatcctgggg cccatactgt tggaccagcc actggatggg 1260 gttaccacga gcctgccttc acctgagcaa ctgaagggca agatcctgtt gaaagggaag 1320 aagctgggag ggctgctgcc tgctggaggg gagaatgggt ccgaagccac tgacgtgtct 1380 gacgaggtag aggctgctga aatggaggac gaggctgtgc gcagccaagt gcaacacaag 1440 cccaaggagg ataaactaaa gctggtgccg gagctctccg acatgatcat ttactgcaag 1500 agcgtccact ttggtggctt ctccagtcct ggcacctctg ggcaggcatt ctatgagatg 1560 gcttccttct ctgagagccg tgccctccgg ttgctgcaag aatcaggaaa tggttttgtc 1620 cgtcataacg tgagctgtct gagcaggatc tacccggctg ggtggagaac agattcctcc 1680 aactacagtc ctgtggagat gtggaacggg ggctgccaga ttgttgctct gaacttccaa 1740 acccctgggc cagaaatgga tgtttacctt ggctgcttcc aggacaatgg aggctgtggg 1800 tatgtgctga aacccgcctt tctgagagac cccaacacca ccttcaactc acgtgccctg 1860 actcaggggc cctggtggcg tccagagagg ctccgtgtcc ggatcatctc tggacagcag 1920 ctgccaaagg tcaataagaa taagaattct atcgtggacc ccaaggtgat cgtggagatc 1980 catggcgtgg gccgggacac cggtagccgt cagacagcag ttattaccaa taatggtttc 2040 aacccacggt gggacatgga gtttgagttt gaggtaacag tgcctgacct tgccctcgta 2100 cgcttcatgg tagaggatta tgattcctct tctaagaacg actttattgg ccagagtact 2160 atcccctgga acagcctcaa gcaggggtac cgccatgtcc acctcttgtc taagaatgga 2220 gaccagcatc catcagccac actttttgtg aagatctcca tccaggacta agcccggggg 2280 tctgatgcag tccgacctga gtgagtggag ctgtgtccgc acctcggcca aggctgacat 2340 tattgcaccg acctctggcg cggagcctga ggccctgaac tgccttcagt gccaacacat 2400 cgcttgagct tctgcctctc tggaggccca ggagtggtcc gatccccgga gcgctccaaa 2460 attccgttag gaacaacact gcatccctct ccctaccctc tagctgtctt tatggataag 2520 tttttataaa aaaaaaaaat caaaagaaaa aaaaaaaaaa aaaaaaaaa 2569 <110> JANG, Yang Soo          HWANG, Gi Chul <120> Pharmaceutical Composition for Recovering Ischemia <160> 1 <170> KopatentIn 1.6 <210> 1 <211> 2569 <212> DNA <213> phospholipase C <400> 1 atggactcgg gtagggactt cctgaccctg cacgggctcc aggatgaccc ggaccttcag 60 gcccttctga agggcagcca gcttctgaag gtgaagtcca gctcgtggcg tagggaacgc 120 ttctacaagc tacaggagga ctgcaagacc atctggcagg aatctcgaaa ggtcatgagg 180 tccccggagt cgcagctgtt ctccatcgag gacattcagg aggtacggat gggacaccgc 240 acagaaggcc tggagaagtt tgcccgagac atccccgagg atcgatgctt ctccattgtc 300 ttcaaggacc agcgcaacac cctagacctc attgccccat caccagctga cgctcagcac 360 tgggtgcagg gcctgcgcaa gatcatccac cactccggct ccatggacca gcggcagaag 420 ctgcagcact ggattcactc ctgcttgcga aaggctgata aaaacaagga caacaagatg 480 aacttcaagg agctgaagga cttcctgaag gagctcaaca tccaggtgga tgacggctac 540 gccaggaaga tcttcaggga atgtgaccac tcccagacag actcgctgga ggatgaggag 600 attgagacct tctacaagat gctgacccag cgcgcagaga tcgaccgtgc ttttgaggag 660 gccgcaggat ccgcggagac cctgtcggtg gagaggctag tgacgtttct gcagcaccag 720 cagcgggagg aggaggcagg gccagccttg gccctctctc tcattgagcg ctacgagccc 780 agtgagactg ccaaggccca gcggcagatg accaaggatg gcttcctcat gtacttgctg 840 tcggctgacg gtaacgcctt cagcctggca caccgccgtg tctaccagga catggaccag 900 ccactgagtc actacttagt gtcttcttcc cacaacacct acctgctgga agaccagctc 960 acagggccca gcagcacgga ggcctacatc cgggctctgt gcaaaggctg ccggtgcttg 1020 gagctcgact gctgggatgg tcccaaccag gaacccatca tctaccacgg ctacactttt 1080 acctctaaga tacttttctg tgacgtgctc agggccatca gggactatgc cttcaaggca 1140 tccccctacc cagtcatcct gtccctggag aaccactgta gcctggagca acaacgagtc 1200 atggcccgtc acctgagggc tatcctgggg cccatactgt tggaccagcc actggatggg 1260 gttaccacga gcctgccttc acctgagcaa ctgaagggca agatcctgtt gaaagggaag 1320 aagctgggag ggctgctgcc tgctggaggg gagaatgggt ccgaagccac tgacgtgtct 1380 gacgaggtag aggctgctga aatggaggac gaggctgtgc gcagccaagt gcaacacaag 1440 cccaaggagg ataaactaaa gctggtgccg gagctctccg acatgatcat ttactgcaag 1500 agcgtccact ttggtggctt ctccagtcct ggcacctctg ggcaggcatt ctatgagatg 1560 gcttccttct ctgagagccg tgccctccgg ttgctgcaag aatcaggaaa tggttttgtc 1620 cgtcataacg tgagctgtct gagcaggatc tacccggctg ggtggagaac agattcctcc 1680 aactacagtc ctgtggagat gtggaacggg ggctgccaga ttgttgctct gaacttccaa 1740 acccctgggc cagaaatgga tgtttacctt ggctgcttcc aggacaatgg aggctgtggg 1800 tatgtgctga aacccgcctt tctgagagac cccaacacca ccttcaactc acgtgccctg 1860 actcaggggc cctggtggcg tccagagagg ctccgtgtcc ggatcatctc tggacagcag 1920 ctgccaaagg tcaataagaa taagaattct atcgtggacc ccaaggtgat cgtggagatc 1980 catggcgtgg gccgggacac cggtagccgt cagacagcag ttattaccaa taatggtttc 2040 aacccacggt gggacatgga gtttgagttt gaggtaacag tgcctgacct tgccctcgta 2100 cgcttcatgg tagaggatta tgattcctct tctaagaacg actttattgg ccagagtact 2160 atcccctgga acagcctcaa gcaggggtac cgccatgtcc acctcttgtc taagaatgga 2220 gaccagcatc catcagccac actttttgtg aagatctcca tccaggacta agcccggggg 2280 tctgatgcag tccgacctga gtgagtggag ctgtgtccgc acctcggcca aggctgacat 2340 tattgcaccg acctctggcg cggagcctga ggccctgaac tgccttcagt gccaacacat 2400 cgcttgagct tctgcctctc tggaggccca ggagtggtcc gatccccgga gcgctccaaa 2460 attccgttag gaacaacact gcatccctct ccctaccctc tagctgtctt tatggataag 2520 tttttataaa aaaaaaaaat caaaagaaaa aaaaaaaaaa aaaaaaaaa 2569

Claims (3)

포스포리파제 C-δ(phospholipase C-δ, PLC-δ)를 유효성분으로 하고, 약제학적으로 허용되는 담체를 포함하는 심장근의 허혈증상 치료제.A therapeutic agent for cardiac muscle ischemia comprising phospholipase C-δ (PL-δ) as an active ingredient and a pharmaceutically acceptable carrier. 제 1항에 있어서,The method of claim 1, 포스포리파제 C-δ(phospholipase C-δ, PLC-δ)은 포스포리파제 C-δ1(phospholipase C-δ1, PLC-δ1)인 것을 특징으로 하는Phospholipase C-δ, PLC-δ is characterized in that the phospholipase C-δ1 (PLo-δ1, PLC-δ1) 심장근의 허혈증상 치료제.Treatment for ischemic symptoms of myocardium. 진핵세포에서 포스포리파제 C-δ(phospholipase C-δ, PLC-δ)를 발현시킬 수 있는 발현벡터를 심장근 세포에 형질도입(transfection)시켜서, 심장근 세포내에서 PLC-δ를 과다발현시키는 단계를 포함하는, 사람을 제외한 포유동물에서 심장근의 허혈증을 치료 또는 예방하는 방법.Transducing the expression vector capable of expressing phospholipase C-δ in eukaryotic cells to cardiomyocytes, thereby overexpressing PLC-δ in cardiomyocytes. A method of treating or preventing ischemia of the heart muscle in a mammal, except humans.
KR1020030085985A 2003-11-29 2003-11-29 Pharmaceutical Composition for Recovering Ischemia KR100573881B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030085985A KR100573881B1 (en) 2003-11-29 2003-11-29 Pharmaceutical Composition for Recovering Ischemia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030085985A KR100573881B1 (en) 2003-11-29 2003-11-29 Pharmaceutical Composition for Recovering Ischemia

Publications (2)

Publication Number Publication Date
KR20050052127A KR20050052127A (en) 2005-06-02
KR100573881B1 true KR100573881B1 (en) 2006-04-26

Family

ID=37248249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030085985A KR100573881B1 (en) 2003-11-29 2003-11-29 Pharmaceutical Composition for Recovering Ischemia

Country Status (1)

Country Link
KR (1) KR100573881B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077183A (en) * 1996-01-11 1999-10-25 더 웰레슬레이 호스피탈 파운데이션 Compositions Containing Calcium Inflow Blockers To Inhibit Cell Growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990077183A (en) * 1996-01-11 1999-10-25 더 웰레슬레이 호스피탈 파운데이션 Compositions Containing Calcium Inflow Blockers To Inhibit Cell Growth

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Arch Biochem Biophys. 2003 Mar 15;411(2):174-82 *
Circulation. 2002 Apr 30;105(17):2024-9. *
J Mol Cell Cardiol 33. 431-440 (2001) *
J Steroid Biochem Mol Biol. 2004 Jul;91(3):131-8., 동일발명자 *
Life Sci. 2003 Aug 1;73(11):1453-62 *

Also Published As

Publication number Publication date
KR20050052127A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
Xie et al. Fibroblast growth factor signalling in osteoarthritis and cartilage repair
Petrache et al. Caspase‐dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF‐α‐mediated bovine pulmonary endothelial cell apoptosis
Chrzanowska-Wodnicka et al. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions.
Kuroki et al. High glucose induces alteration of gap junction permeability and phosphorylation of connexin-43 in cultured aortic smooth muscle cells.
AVERNA et al. Changes in intracellular calpastatin localization are mediated by reversible phosphorylation
Castellani et al. Control of semaphorin signaling
Sin et al. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)–HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes
Majerus Inositol phosphate biochemistry
Moriya et al. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase.
Azpiazu et al. Tissue non-specific alkaline phosphatase and vascular calcification: a potential therapeutic target
Haghighi et al. The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase
Bhupathy et al. Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes
Pattni et al. Ins (1, 4, 5) P3 metabolism and the family of IP3-3Kinases
US20090142347A1 (en) Tissue-Nonspecific Alkaline Phosphatase (TNAP): a Therapeutic Target for Arterial Calcification
Communi et al. D‐myo‐inositol 1, 4, 5‐trisphosphate 3‐kinase A is activated by receptor activation through a calcium: calmodulin‐dependent protein kinase II phosphorylation mechanism
Edelman et al. Doublecortin kinase-2, a novel doublecortin-related protein kinase associated with terminal segments of axons and dendrites
KR101238755B1 (en) A pharmaceutical composition for the treatment of a joint disease comprising PAK inhibitor
Ikehara et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B)
Erneux et al. Inositol (1, 4, 5) P3 3-kinase isoenzymes: catalytic properties and importance of targeting to F-actin to understand function
Bastian et al. Inhibition of human skin phospholipase A2 by “lipocortins” is an indirect effect of substrate/lipocortin interaction
Yang et al. Epidermal growth factor induces activation of protein kinase FA and ATP. Mg-dependent protein phosphatase in A431 cells
Thoenen et al. Nerve growth factor
Navarro et al. Inhibition of tyrosine protein kinases by halomethyl ketones
Nalaskowski et al. The families of kinases removing the Ca2+ releasing second messenger Ins (1, 4, 5) P3
KR100573881B1 (en) Pharmaceutical Composition for Recovering Ischemia

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130415

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140314

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee