KR100571522B1 - Solid state joining method of fine grain metal plate by surface moving friction welding method - Google Patents

Solid state joining method of fine grain metal plate by surface moving friction welding method Download PDF

Info

Publication number
KR100571522B1
KR100571522B1 KR1020040047599A KR20040047599A KR100571522B1 KR 100571522 B1 KR100571522 B1 KR 100571522B1 KR 1020040047599 A KR1020040047599 A KR 1020040047599A KR 20040047599 A KR20040047599 A KR 20040047599A KR 100571522 B1 KR100571522 B1 KR 100571522B1
Authority
KR
South Korea
Prior art keywords
welding
probe
friction welding
welding method
joining
Prior art date
Application number
KR1020040047599A
Other languages
Korean (ko)
Other versions
KR20050122483A (en
Inventor
한흥남
이창길
김성준
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020040047599A priority Critical patent/KR100571522B1/en
Publication of KR20050122483A publication Critical patent/KR20050122483A/en
Application granted granted Critical
Publication of KR100571522B1 publication Critical patent/KR100571522B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/121Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/126Workpiece support, i.e. backing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Abstract

본 발명은 얇은 판상의 용접부재를 마찰열로 접합하는 표면이동마찰용접법에 관한 것이며, 특히, 미세립구조를 가지는 용접부재를 그 미세립의 크기를 변화하지 않고 접합할 수 있는 표면이동마찰용접법에 관한 것이다.The present invention relates to a surface moving friction welding method for joining a thin plate-like welding member with frictional heat, and more particularly, to a surface moving friction welding method capable of joining a welding member having a fine grain structure without changing its size. will be.

본 발명은 표면부에서 프로브와 접합부재 사이에 발생한 강한 소성변형을 활용하여 미세립 금속판재를 결정립의 크기를 그대로 유지하거나 혹은 더욱 작게 하면서 접합하는 표면이동마찰용접법을 제공하고, 또한 두꺼운 미세립 판재의 용접시 1차 접합면의 반대쪽 면에 재차 한번의 용접을 실시하는 표면이동마찰용접법을 제공하고, 또한 두꺼운 미세립판재의 용접시 환봉의 프로브를 대칭형으로 설치하여 이중패스용접을 실시하는 표면이동마찰용접법을 제공한다.The present invention provides a surface friction friction welding method for joining the micro-grain metal sheet while maintaining or reducing the size of the crystal grains by utilizing the strong plastic deformation generated between the probe and the joining member at the surface portion, and also thick micro-grain plate Provides a surface transfer friction welding method that once again performs welding on the opposite side of the primary joint surface during welding, and also double-pass welding by installing a round bar probe symmetrically when welding thick fine plate material. Provide friction welding method.

본 발명에 따르면, 미세립 금속판재의 맞대기 접합시 표면이동 마찰용접법을 활용하여 미세화된 결정립의 크기를 그대로 유지하거나, 혹은 더욱 작게함으로써 재료의 미세조직적 손실없이 미세립 금속판재를 접합시킬 수 있다.According to the present invention, when the butt joints of the fine grain metal sheets are bonded to each other by using the surface moving friction welding method, the size of the fine grains can be maintained as it is, or by making them smaller.

표면이동마찰용접, 결정입도, 미세립, 판재Surface moving friction welding, grain size, fine grain, plate

Description

표면이동마찰용접법에 의한 미세립 금속판재의 고상접합방법{Method for solid phase welding the metal plates having ultrafine grains by surface friction welding process}Method for solid phase welding the metal plates having ultrafine grains by surface friction welding process

도 1은 표면이동마찰용접법의 용접장치 및 공정의 개략도,1 is a schematic view of a welding apparatus and process of the surface movement friction welding method,

도 2는 이중패스용접의 공정 개략도,2 is a process schematic diagram of double pass welding;

도 3은 동시이중패스용접의 공정 개략도,3 is a process schematic diagram of simultaneous double pass welding;

도 4는 두께 1.0mm의 1050알루미늄 미세립 판재의 표면이동 마찰용접후 단면사진과 부위별 결정립도,Figure 4 is a cross-sectional photograph and grain size of each part after the surface movement friction welding of 1050 aluminum fine grain plate of 1.0mm thickness,

도 5는 두께 1.0mm의 1050알루미늄 미세립 판재의 표면이동 마찰용접후 단면사진과 부위별 결정립간 방위차 분포도,5 is a cross-sectional photograph of the 1050 aluminum fine grain plate having a thickness of 1.0 mm and the orientation difference distribution between the grains according to the site after friction welding;

도 6은 두께 1.0mm의 1050알루미늄 미세립 판재의 TIG 용접후 단면사진과 부위별 결정립도.Figure 6 is a cross-sectional photograph and grain size after the TIG welding of 1050 aluminum fine grain plate of 1.0mm thickness.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1, 2 : 접합부재 3, 3', 7, 7' : 환봉형 프로브1, 2: joining members 3, 3 ', 7, 7': round bar probe

4 : 용접부위 6 : 소성영역 4 welding part 6 plastic area

본 발명은 얇은 판상의 용접부재를 마찰열로 접합하는 표면이동마찰용접법에 관한 것이며, 특히, 미세립구조를 가지는 용접부재를 그 미세립의 크기를 변화하지 않고 접합할 수 있는 표면이동마찰용접법에 관한 것이다.The present invention relates to a surface moving friction welding method for joining a thin plate-like welding member with frictional heat, and more particularly, to a surface moving friction welding method capable of joining a welding member having a fine grain structure without changing its size. will be.

마찰용접법은 용접하고자 하는 부재를 대상으로 마찰에 의하여 열이 발생하는 원리를 이용하여 마찰을 조절하여 적당량의 열을 발생시키고, 마찰부와 인접한 영역에 소성유동을 생성시켜 접합하는 용접법이다. 이 마찰용접법은 수십년간 연구개발되어 오고 있으며, 기존의 용융용접과 대비하여 볼 때 고상용접이라는 장점을 가지고 있으나, 용접부재 하나가 반드시 축대칭이어야 하며, 특정한 방향의 연속용접을 필요하는 구조물에는 사용할 수 없다는 결점도 가지고 있다.The friction welding method is a welding method in which an appropriate amount of heat is generated by controlling friction using a principle that heat is generated by friction for a member to be welded, and plastic plastic flow is generated in an area adjacent to the friction part to be joined. This friction welding method has been researched and developed for decades and has the advantage of solid phase welding compared to conventional melt welding. However, one welding member must be axisymmetric and used for structures requiring continuous welding in a specific direction. It also has the drawback of not being able to.

이러한 종래의 단순한 마찰용접법을 개선한 방법으로 제3의 단단한 프로브(Probe)와 프로브핀(Probe pin)을 도입한 마찰교반용접(WO93/10935, WO95/26254)이 개발되었다. 이 마찰교반용접의 원리는 접합부재 이음부의 맞대기 면을 따라 특수한 나사한 형태의 돌기를 가지는 환봉모양의 경질재료로 된 프로브핀을 고속으로 회전시키면서 삽입하면 프로브핀과 접합부재와의 상호마찰에 의해 열이 발생한다. 이 마찰열에 의해 주변의 소재는 열적으로 연화되며 프로브 핀의 회전에 의한 강제적인 소성유동으로 혼합되어 접합이 이루어진다. 그러나, 마찰교반용접에서는 프로브 핀의 존재로 인해 지금까지 알려진 바로는 접합부재의 두께가 적어도 1.2mm 이상에서만 적용이 가능하고, 용접말단에서 프로브 핀의 삽입으로 인해 생기는 빈 공간을 채울 있는 재료가 선단부에 더 이상 존재하지 않아서 용접결 함(Key hole)이 유발되는 단점이 있다.As a method of improving the conventional simple friction welding method, friction stir welding (WO93 / 10935, WO95 / 26254) introducing a third hard probe and a probe pin has been developed. The principle of this friction stir welding is to insert the probe pin made of a hard rod-shaped hard material with a special screw-shaped protrusion along the butt face of the joining member joint at high speed, and then the friction between the probe pin and the joining member. Heat is generated. By the frictional heat, the surrounding material is thermally softened and mixed in a forced plastic flow by the rotation of the probe pin to form a joint. However, in friction stir welding, it is possible to apply only the thickness of the joining member to at least 1.2 mm or more because of the existence of the probe pin, and the material to fill the empty space caused by the insertion of the probe pin at the welding end is known. There is a disadvantage that the key hole is caused because it no longer exists in the.

상기의 마찰용접과는 달리 1.2mm 이하의 박판용접이 가능하고, 용접말단에 용접결함을 남기지 않고 연속용접이 가능한 표면이동 마찰용접법(대한민국 특허출원 10-2003-68113)이 본 발명자들에 의하여 개발된 바 있다. Unlike the friction welding described above, a surface-moving friction welding method (Korean Patent Application No. 10-2003-68113), which enables thin sheet welding of 1.2 mm or less and enables continuous welding without leaving a welding defect at the welding end, is developed by the present inventors. It has been.

한편, 최근 합금성분이나 치수의 변화없이 강도와 연성이 우수한 금속판재의 제조를 위해 결정립을 미세화시키는 기술이 많이 개발되고 있다. 그러나 통상의 용융용접법으로는 접합부위의 금속이 일단 용융되었다가 응고되는 현상을 거치게 됨으로써 재료의 미세립구조를 더 이상 유지하는 것이 불가능하게 된다. 더욱이 응고조직의 형성으로 인해 기계적 성질이 크게 나빠지게 된다. 그러므로 미세화된 금속판재를 실제품에 활용하기 위해서는 미세화된 결정립의 크기를 그대로 유지하거나 혹은 더욱 작게 함으로써 재료의 미세조직적 손실없이 미세립 금속판재를 접합시키는 기술이 필수적이다. On the other hand, in recent years, many techniques have been developed for miniaturizing grains for the production of metal sheets having excellent strength and ductility without changing alloying components or dimensions. However, in the usual melt welding method, the metal at the junction portion is melted and solidified once, thereby making it impossible to maintain the fine grain structure of the material. Moreover, due to the formation of coagulation tissue, the mechanical properties are greatly deteriorated. Therefore, in order to utilize the refined metal sheet material in a real product, it is essential to maintain the size of the refined crystal grains intact or to make the size of the fine metal sheet material bonded without the microstructure loss of the material.

본 발명은 상기와 같은 문제점을 달성하기 위하여 미세립의 결정립을 갖는 미세립 금속판재에 대한 맞대기 접합에 있어서, 접합시 접합부위의 결정립 크기가 금속판재의 결정립크기를 유지하는 표면이동 마찰용접법을 제공하는데 그 목적이 있다.The present invention provides a surface-moving friction welding method in the butt joint to a fine metal sheet having a fine grain in order to achieve the above problems, the grain size of the joining portion at the time of joining to maintain the grain size of the metal sheet Its purpose is to.

본 발명은 상술한 기술적 과제를 달성하기 위하여 표면부에서 프로브와 접합부재 사이에 발생한 강한 소성변형을 활용하여 미세립 금속판재를 결정립의 크기를 그대로 유지하거나 혹은 더욱 작게 하면서 접합하는 표면이동마찰용접법을 제공한다.The present invention utilizes a strong plastic deformation generated between the probe and the bonding member in the surface portion in order to achieve the above-described technical problem surface transfer friction welding method for joining the fine grain metal sheet material while maintaining or reducing the size of the crystal grains as it is; to provide.

또한, 본 발명은 두꺼운 미세립 판재의 용접시 1차 접합면의 반대쪽 면에 재차 한번의 용접을 실시하는 표면이동마찰용접법을 제공한다.In addition, the present invention provides a surface movement friction welding method of performing one welding again on the opposite side of the primary bonding surface when welding the thick fine grain plate material.

또한, 본 발명은 두꺼운 미세립판재의 용접시 환봉의 프로브를 대칭형으로 설치하여 이중패스용접을 실시하는 표면이동마찰용접법을 제공한다.In addition, the present invention provides a surface movement friction welding method for performing double pass welding by symmetrically installing the probe of the round bar when welding the thick fine plate material.

이하, 도면을 참조하여 본 발명에 대하여 자세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail with reference to drawings.

도 1은 본 발명에 의한 마찰용접법의 개략도를 나타낸 그림이다.1 is a view showing a schematic diagram of a friction welding method according to the present invention.

미세립 구조를 가지는 두개의 판상의 두 개의 접합부재(1,2)의 맞대기 용접에서 회전동력원에 결합된 환봉형 프로브(3)가 적절한 마찰열의 발생을 위해 일정한 압력으로 고속회전하면서 두 부재사이의 접합요구선(5)을 수평운동을 통해 연속적으로 지남에 따라 대략 프로브 지름 크기의 너비를 가지는 용접부(4)가 형성되면서 접합된다. 환봉형 프로브(3)의 회전으로 인해 발생한 소성영역(6)은 프로브(3) 직하, 즉 접합부재(1,2)의 표면에서 발생한 마찰열과 소성변형에 의한 가공발열로 인해 연화되고, 강제적이고 극심한 소성유동으로 인해 접합된다. 이러한 방법을 적용할 때 환봉형 프로브의 회전속도와 직선이동속도에 따라 소성영역(6)의 결정립의 크기는 접합부재(1, 2)의 결정립의 크기와 대비할 때 비슷하거나 더 작게 되며, 도 1에서 측면부의 결정립의 형상을 모식적으로 나타내었다.In the butt welding of two plate-shaped joining members 1 and 2 having a fine grain structure, the annular probe 3 coupled to the rotational power source rotates at a high pressure at a constant pressure to generate proper frictional heat. As the joint request line 5 is continuously passed through the horizontal motion, the weld part 4 having a width of approximately the probe diameter is formed. The plastic region 6 generated due to the rotation of the round bar-shaped probe 3 is softened due to frictional heat generated directly under the probe 3, that is, at the surface of the joining members 1 and 2, and due to the processing heat generated by plastic deformation. Bonded due to extreme plastic flow. When applying this method, the size of the grains of the plastic region 6 is similar or smaller depending on the size of the grains of the joining members 1 and 2 according to the rotational speed and the linear movement speed of the round bar probe. The shape of the crystal grains at the side part is schematically shown in.

접합과정에서 야기되는 극심한 소성유동은 전위쎌 조직의 형성이나 연속 혹은 불연속적인 동적 재결정을 일으켜 고경각 입계를 가지는 미세 결정립의 접합부 를 확보할 수 있게 해준다. 이 경우 가급적 저온에서의 소성변형이 미세결정립을 얻기에 유리하다고 알려져 있다. 하지만 접합시 너무 과도한 프로브의 회전속도 혹은 너무 큰 프로브 반경은 과도한 소성변형을 유발하며 접합부의 온도를 재료의 재결정온도를 훨씬 웃도는 영역까지 올리게 된다. 이렇게 되면 접합부재에 생성된 결정립은 결정립 성장을 하게 되어 더 이상 미세한 상태를 유지할 수 없다. 반면, 임계 크기 이하의 낮은 프로브의 회전속도 혹은 너무 작은 프로브 반경에서는 접합에 필요한 온도상승이나 소성변형양의 확보가 불가능하게 된다. 따라서 본 발명에서는 미세한 결정립을 갖는 미세립 금속판재에 대한 맞대기 접합에 있어서, 접합시 접합부위의 결정립 크기가 금속판재의 결정립크기를 유지하면서도 접합이 가능한 표면이동 마찰용접 방법을 제공하고자 한다.       The extreme plastic flows caused by the bonding process can lead to the formation of dislocation 쎌 structures or continuous or discontinuous dynamic recrystallization, thus ensuring the connection of fine grains with high grain boundaries. In this case, plastic deformation at low temperature is known to be advantageous to obtain microcrystalline grains. However, too much probe rotation speed or too large probe radius during bonding will cause excessive plastic deformation and increase the temperature of the junction to an area well above the recrystallization temperature of the material. In this case, the grains generated in the joining member are grain grown and can no longer maintain a fine state. On the other hand, it is impossible to secure the amount of temperature rise or plastic deformation required for bonding at a low rotation speed of the probe below the critical size or too small a probe radius. Accordingly, in the present invention, in butt bonding to a fine metal sheet having fine grains, the present invention seeks to provide a surface-moving friction welding method in which the grain size of the bonding portion can be bonded while maintaining the grain size of the metal sheet.

고상접합에 필요한 접합부의 온도는 적어도 접합하고자 하는 소재의 재결정온도를 참조하여 대략 재료의 용융온도(Tm, 단위 : 절대온도)의 70% 이상은 되어야 한다. 반면에 접합소재가 미세립을 유지하기 위해서는 소재의 온도가 용융온도의 90%를 넘어서는 곤란하다. 따라서 소재의 접합조건과 미세립의 유지조건을 감안한 접합부의 온도범위는 식 1로 표현된다.The junction temperature required for solid-state bonding should be at least 70% of the melting temperature (T m , unit: absolute temperature) of the material, with reference to the recrystallization temperature of the material to be joined. On the other hand, in order for the bonded material to maintain fine grains, it is difficult for the temperature of the material to exceed 90% of the melting temperature. Therefore, the temperature range of the joint considering the bonding conditions of the material and the retention conditions of the fine grains is expressed by Equation 1.

[식 1][Equation 1]

Figure 112004027435009-pat00001
Figure 112004027435009-pat00001

한편, 정상상태에서 접합도중 재료에서 발생한 가공발열량과 외부로 빠져나가는 열량과의 관계는 식 2와 같다.On the other hand, the relationship between the calorific value of heat generated from the material during the joining in the steady state and the amount of heat escaping to the outside is shown in Equation 2.

[식 2][Equation 2]

Figure 112004027435009-pat00002
Figure 112004027435009-pat00002

여기서,

Figure 112004027435009-pat00003
는 소성일이 열로 변환되는 정도를 표현하는 계수로 대개 0.9에서 1사이의 값을 갖는다.
Figure 112004027435009-pat00004
는 재료의 전단유동응력으로 온도와 전단변형율속도의 함수이다.
Figure 112004027435009-pat00005
는 접합부에 야기되는 평균 전단변형율 속도이며 프로브의 회전속도와 프로브의 직경에 의존한다. D와 t는 각각 프로브의 직경과 접합부재의 두께이다. k와 h는 접합부재의 열전도도와 프로브와 접합부재 사이의 열전달 계수이며 온도의 함수이다. Te는 주위 온도이며, T와 Te의 단위는 절대온도(K) 이다.
Figure 112004027435009-pat00006
는 접합부 경계에서의 거리에 따른 온도구배이다. here,
Figure 112004027435009-pat00003
Is a coefficient representing the degree to which the plastic work is converted into heat, and is usually between 0.9 and 1.
Figure 112004027435009-pat00004
Is the shear flow stress of the material, a function of temperature and shear strain rate.
Figure 112004027435009-pat00005
Is the average shear strain velocity at the joint and depends on the probe rotation speed and the probe diameter. D and t are the diameter of the probe and the thickness of the joining member, respectively. k and h are the thermal conductivity of the joint and the heat transfer coefficient between the probe and the joint and are a function of temperature. T e is the ambient temperature, and the unit of T and T e is the absolute temperature (K).
Figure 112004027435009-pat00006
Is the temperature gradient over distance at the junction boundary.

접합부에 야기되는 평균 전단변형율 속도는 식 3과 같다.The average shear strain rate at the joint is given by

[식 3][Equation 3]

Figure 112004027435009-pat00007
Figure 112004027435009-pat00007

여기서 S는 프로브의 회전속도이다. 식 3을 식 2에 대입하여 풀면 정상상태에서 접합부의 온도를 계산할 수 있다. 이렇게 구한 접합부의 온도가 식 1을 만족하도록 프르브의 직경과 회전속도가 선택되어야만 접합부위의 결정립 크기가 미세한 결정립크기를 유지하면서 접합이 가능한 용접이 가능해 진다.Where S is the rotational speed of the probe. Solving equation 3 into equation 2 solves the temperature of the junction at steady state. The diameter and rotation speed of the probe should be selected so that the temperature of the joint thus obtained satisfies Equation 1, so that welding can be performed while maintaining the grain size of the grain having a small grain size.

또한, 본 발명에서는 표면마찰에 의한 소성유동을 재료 내부에까지 침투시켜야 하므로 두꺼운 판재의 용접은 단패스(Single Pass)로 불가능하다. 이러한 경우에는 1차 접합면의 반대쪽 면에 재차 한 번의 용접을 실시하는 이중패스(Double Pass)용접을 실시한다. 도 2에 그 공정 개략도를 나타낸다.In addition, in the present invention, the plastic flow due to the surface friction has to penetrate into the inside of the material, so welding of a thick plate is impossible in a single pass. In this case, double pass welding is performed once again on the opposite side of the primary joint surface. The process schematic diagram is shown in FIG.

이 때 접합하고자 하는 판재(1,2)의 두께에 따라 프로브(3')의 직경을 변화시킬 수 있다.In this case, the diameter of the probe 3 ′ may be changed according to the thickness of the plates 1 and 2 to be joined.

도 3에는 또 다른 방법으로 두 개의 환봉의 프로브(7, 7')를 대칭형으로 설치하여 이중패스용접을 한꺼번에 실시하는 동시이중패스용접을 통하여 보다 두꺼운 판재의 접합이 가능하고, 이를 활용하여 결정립을 미세화하거나, 또는 미세한 초기 결정립의 크기를 그대로 유지할 수 있게 된다.In another method of FIG. 3, two round bar probes 7 and 7 ′ are installed in a symmetrical manner, and a double pass welding is performed at the same time, thereby enabling the joining of thicker plates through simultaneous double pass welding. It is possible to miniaturize or maintain the size of the fine initial grains as it is.

실시예Example

약 2.17㎛의 결정입도를 가지는 1.0mm 두께의 1050알루미늄 합금판재를 프로브의 지름이 5mm이고 회전속도 1600rpm, 용접속도 100mm/min의 조건에서 본 발명자들이 제안한 방법인 표면이동 마찰용접법을 사용하여 용접하였다. 이러한 용접조건에 대하여 수학식 2와 수학식 3을 이용하여 접합부의 온도를 계산하면 803K (530oC)가 얻어지는데, 이 온도는 일반적인 알루미늄 합금의 용융온도인 933K (660oC)에 대해 0.86Tm에 해당하므로 수학식 1을 만족한다. 따라서 이 용접조건에서는 접합부위의 결정립 크기가 미세한 결정립크기를 유지하면서 접합이 가능하다.A 1.0 mm thick 1050 aluminum alloy sheet with a grain size of about 2.17 μm was welded using the surface-moving friction welding method proposed by the present inventors under conditions of a probe diameter of 5 mm, a rotation speed of 1600 rpm, and a welding speed of 100 mm / min. . For these welding conditions, the temperature of the joint is calculated using Equations 2 and 3 to obtain 803K (530 o C), which is 0.86 for 933K (660 o C), the melting temperature of a typical aluminum alloy. Since it corresponds to T m , Equation 1 is satisfied. Therefore, in this welding condition, the joining can be performed while maintaining the grain size with a small grain size of the joint.

도 4는 상기 재료에 대한 용접부위의 단면사진과 모재와 용접부위의 결정입도를 EBSD (Electron Back Scattered Diffraction) 방법으로 관찰한 사진이다. 소성영역의 형태는 표면부위에서 가장 크고 내부로 갈수록 작아지는 양상을 보인다. 상기 용접조건에서 소성변형이 가장 극심한 표면부위(b)의 결정입도는 1.1㎛으로 가장 작고, 아래로 갈수록(c) 다소 커짐을 알 수 있으나, 대략 2.04㎛ 정도로 모재(a)의 것과 유사하거나 혹은 더욱 미세화되었음을 확인할 수 있었다. FIG. 4 is a cross-sectional photograph of a welded portion of the material and a grain size of the base material and the welded portion are observed by EBSD (Electron Back Scattered Diffraction) method. The shape of the plastic zone is the largest on the surface and decreases toward the inside. In the welding conditions, the grain size of the surface portion (b) with the highest plastic deformation was 1.1 µm, which was the smallest, and it was found that (c) was somewhat larger, but it was similar to that of the substrate (a) at about 2.04 µm. It could be confirmed that further refinement.

도 5는 용접부위에서 결정립들의 방위차이의 분포를 도시하였다. 도 5에서 보듯이 용접부위에서 결정립들의 방위차가 충분히 큰 대각입계의 분포가 많음을 알 수 있으며, 용접부 상층(b)에서는 오히려 모재부(a)보다도 대각입계의 양이 많아 졌음을 알 수 있다. 용접부 중심(c)에서도 모재부(a)와 유사한 수준의 대각입계양을 보이고 있다. 이를 통해 표면이동마찰용접법을 이용하여 안정한 결정립을 얻을 수 있음을 알 수 있다.5 shows the distribution of the orientation difference of the grains in the welded portion. As shown in FIG. 5, it can be seen that there are many distributions of diagonal grain boundaries having sufficiently large azimuth differences of the grains in the welded portion, and that the amount of the diagonal grain boundaries is increased in the upper portion (b) of the weld portion rather than the base material portion (a). The weld center (c) also shows a diagonal grain boundary similar to that of the base material (a). Through this, it can be seen that stable grains can be obtained by using the surface moving friction welding method.

도 6은 비교예로서 동일한 알루미늄 합금판재를 접합함에 있어서, 종래의 용접방법인 TIG 용접을 실시하고 결정립도의 관찰결과를 도시하였다. 용접시 다량의 입열로 인한 온도상승으로 인해 열열향부(a)의 결정립크기는 무려 60㎛ 정도 성장하였으며, 용접부(c)와 경계부(b)의 결정입도도 25㎛ 내외로 상당히 조대해졌음을 확인할 수 있다. 이를 통해 본 발명에서 제시한 표면이동 마찰용접법을 활용하는 방법이 미세립 금속판재를 효과적으로 접합할 수 있음을 알 수 있다.FIG. 6 shows the results of observing the grain size by performing the TIG welding, which is a conventional welding method, in joining the same aluminum alloy plate as the comparative example. Due to the temperature increase due to the large amount of heat input during welding, the grain size of the thermally-heat-directed portion (a) was increased to about 60㎛, and the grain size of the welded portion (c) and the boundary portion (b) was considerably coarse to about 25㎛. have. Through this, it can be seen that the method using the surface moving friction welding method proposed in the present invention can effectively bond the fine metal sheet material.

본 발명에 따르면, 미세립 금속판재의 맞대기 접합시 표면이동 마찰용접법을 활용하여 미세화된 결정립의 크기를 그대로 유지하거나, 혹은 더욱 작게 함으로써 재료의 미세조직적 손실없이 미세립 금속판재를 접합시킬 수 있다.According to the present invention, when the butt joints of the fine grain metal sheets are bonded to each other by using the surface moving friction welding method, the size of the fine grains can be maintained as it is, or even smaller.

Claims (4)

하기 식 2와Equation 2 below 식 2 :
Figure 112006016205419-pat00020
Equation 2:
Figure 112006016205419-pat00020
(여기서,
Figure 112006016205419-pat00021
는 소성일이 열로 변환되는 정도를 표현하는 계수,
Figure 112006016205419-pat00022
는 재료의 전단유동응력,
Figure 112006016205419-pat00023
는 접합부에 야기되는 평균 전단변형율 속도, D는 프로브의 직경, t는 접합부재의 두께, k는 접합부재의 열전도도, h는 프로브와 접합부재 사이의 열전달 계수, Te는 주위 온도,
Figure 112006016205419-pat00024
는 접합부 경계에서의 거리에 따른 온도구배.)
(here,
Figure 112006016205419-pat00021
Is a coefficient representing the degree to which the plastic work is converted into heat,
Figure 112006016205419-pat00022
Is the shear flow stress of the material,
Figure 112006016205419-pat00023
Is the average shear strain velocity at the joint, D is the diameter of the probe, t is the thickness of the joint, k is the thermal conductivity of the joint, h is the heat transfer coefficient between the probe and the joint, Te is the ambient temperature,
Figure 112006016205419-pat00024
Is the temperature gradient according to the distance from the junction boundary.)
하기 식 3을Equation 3 below 식 3 :
Figure 112006016205419-pat00025
Equation 3:
Figure 112006016205419-pat00025
(여기서, S는 프로브의 회전속도) Where S is the rotational speed of the probe 이용하여 정상상태에서 접합부의 온도(T)를 계산하고, 계산된 접합부의 온도(T)가 용융부재의 용융온도(Tm)의 0.7Tm<T<0.9Tm을 만족하는 프로브의 해당 직경(D)과 해당 회전속도(S)에 의하여 표면부에서 프로브와 접합부재 사이에 발생한 강한 소성변형을 활용하여 미세립 금속판재를 결정립의 크기를 그대로 유지하거나 혹은 더욱 작게 하면서 접합하는 표면이동마찰용접법.Calculate the temperature (T) of the junction at steady state using the corresponding diameter (D) of the probe whose calculated temperature (T) satisfies 0.7Tm <T <0.9Tm of the melting temperature (Tm) of the molten member. And a surface friction friction welding method for joining the fine grain metal sheet material while maintaining or reducing the size of the crystal grains by utilizing the strong plastic deformation generated between the probe and the joining member at the surface portion by the rotation speed (S).
삭제delete 청구항 1에 있어서,The method according to claim 1, 두꺼운 미세립 판재의 용접시 1차 접합면의 반대쪽 면에 재차 한번의 용접을 실시하는 표면이동마찰용접법.Surface-friction welding method in which a thick fine grain plate is welded once again on the opposite side of the primary joint surface. 청구항 1에 있어서,The method according to claim 1, 두꺼운 미세립판재의 용접시 환봉의 프로브를 상하로 대칭형으로 설치하여 이중패스용접을 실시하는 표면이동마찰용접법.Surface transfer friction welding method in which double-pass welding is performed by symmetrically installing the round bar probe up and down when welding thick fine grain material.
KR1020040047599A 2004-06-24 2004-06-24 Solid state joining method of fine grain metal plate by surface moving friction welding method KR100571522B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040047599A KR100571522B1 (en) 2004-06-24 2004-06-24 Solid state joining method of fine grain metal plate by surface moving friction welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040047599A KR100571522B1 (en) 2004-06-24 2004-06-24 Solid state joining method of fine grain metal plate by surface moving friction welding method

Publications (2)

Publication Number Publication Date
KR20050122483A KR20050122483A (en) 2005-12-29
KR100571522B1 true KR100571522B1 (en) 2006-04-17

Family

ID=37294307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040047599A KR100571522B1 (en) 2004-06-24 2004-06-24 Solid state joining method of fine grain metal plate by surface moving friction welding method

Country Status (1)

Country Link
KR (1) KR100571522B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152533B1 (en) * 2006-10-02 2012-06-01 니폰게이긴조쿠가부시키가이샤 Method of welding
WO2017217651A1 (en) * 2016-06-14 2017-12-21 한국항공우주산업 주식회사 Customized microstructure controlling method and apparatus for improving metal plate formability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061664A (en) * 1998-07-17 2000-02-29 Boeing Co:The Method for friction agitation welding of two metal works, welding joined part of two metal works and welding lap joined part of two metal works
KR20020074068A (en) * 2001-03-15 2002-09-28 가부시끼가이샤 히다치 세이사꾸쇼 Welding processes for iron-base ultra fine grained materials and structural components manufactured by the processes
KR20020084224A (en) * 2001-01-23 2002-11-04 히다찌 겐끼 가부시키가이샤 Friction joining method and friction joined body
US20030116608A1 (en) * 2001-12-26 2003-06-26 The Boeing Company High strength friction stir welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061664A (en) * 1998-07-17 2000-02-29 Boeing Co:The Method for friction agitation welding of two metal works, welding joined part of two metal works and welding lap joined part of two metal works
KR20020084224A (en) * 2001-01-23 2002-11-04 히다찌 겐끼 가부시키가이샤 Friction joining method and friction joined body
KR20020074068A (en) * 2001-03-15 2002-09-28 가부시끼가이샤 히다치 세이사꾸쇼 Welding processes for iron-base ultra fine grained materials and structural components manufactured by the processes
US20030116608A1 (en) * 2001-12-26 2003-06-26 The Boeing Company High strength friction stir welding

Also Published As

Publication number Publication date
KR20050122483A (en) 2005-12-29

Similar Documents

Publication Publication Date Title
Ouyang et al. Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper
Malarvizhi et al. Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum–AZ31B magnesium alloys
Zhang et al. On the metallurgical joining mechanism during ultrasonic spot welding of NiTi using a Cu interlayer
Haddadi et al. Microstructural and mechanical performance of aluminium to steel high power ultrasonic spot welding
Yang et al. Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy
Esmaeili et al. A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30)
Sun et al. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints
Zhang et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints
Bagheri et al. Nanoparticles addition in AA2024 aluminum/pure copper plate: FSSW approach, microstructure evolution, texture study, and mechanical properties
Xu et al. Wetting and oxidation during ultrasonic soldering of an alumina reinforced aluminum–copper–magnesium (2024 Al) matrix composite
US8404992B2 (en) Method of welding metallic glass with crystalline metal by high-energy beam
Jayaraman et al. Establishing relationship between the base metal properties and friction stir welding process parameters of cast aluminium alloys
Wang et al. Effects of welding parameters on microstructures and mechanical properties of disk laser beam welded 2A14-T6 aluminum alloy joint
Chua et al. Influence of pulse energy density in micro laser weld of crack sensitive Al alloy sheets
Xu et al. Effects of Zn on intermetallic compounds and strength of Al/Mg joints ultrasonically soldered in air
Ji et al. Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler
Bhushan et al. Optimization of parameters for maximum tensile strength of friction stir welded AA6082/Si 3 N 4 and AA6082/SiC composite joints
Zhang et al. Microstructure and mechanical properties of laser welded-brazed titanium/aluminum joints assisted by titanium mesh interlayer
Zhu et al. Microstructural and mechanical integrity of Cu/Cu interconnects formed by self-propagating exothermic reaction methods
KR100571522B1 (en) Solid state joining method of fine grain metal plate by surface moving friction welding method
Xiao et al. Bonding and strengthening mechanism of ultrasonically soldered 7075 Al joint using Ni-foam/Sn composite solder foil
Liu et al. Improving joint morphologies and tensile strength of Al/Mg dissimilar alloys friction stir lap welding by changing Zn interlayer thickness
Zhang et al. Effect of longitudinal magnetic field on CMT welding of Al-alloy
He et al. Coupling effect of axial ultrasonic vibration and tool thread on the microstructure and properties of the friction stir lap welding joint of Al/Mg dissimilar alloys
Yuqing et al. Improving tensile-shear properties of friction stir lap welded dissimilar Al/Mg joints by eliminating hook defect and controlling interfacial reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee