KR100568356B1 - A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained - Google Patents

A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained Download PDF

Info

Publication number
KR100568356B1
KR100568356B1 KR1020010083168A KR20010083168A KR100568356B1 KR 100568356 B1 KR100568356 B1 KR 100568356B1 KR 1020010083168 A KR1020010083168 A KR 1020010083168A KR 20010083168 A KR20010083168 A KR 20010083168A KR 100568356 B1 KR100568356 B1 KR 100568356B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
shielding
hot
steel
Prior art date
Application number
KR1020010083168A
Other languages
Korean (ko)
Other versions
KR20030053128A (en
Inventor
김일영
조뇌하
이재영
권순주
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020010083168A priority Critical patent/KR100568356B1/en
Publication of KR20030053128A publication Critical patent/KR20030053128A/en
Application granted granted Critical
Publication of KR100568356B1 publication Critical patent/KR100568356B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Abstract

전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법이 제공된다.Provided is a method of manufacturing a high strength steel sheet having excellent electromagnetic shielding and hot dip plating properties.

본 발명의 강판 제조방법은, 중량%로, C+N+S: 0.0150%이하, Mn:0.2~0.8%, Al:0.6%이하, Si:0.4%이하, Cu와 Sn중 선택된 1종이상의 합:0.1~0.6%, 잔부 철 및 불가피한 불순물을 포함하여 조성되는 강 슬라브를 마련하는 단계; 상기 조성의 강 슬라브를 1110~1290℃의 온도범위로 재가열하는 단계; 상기 재가열된 강 슬라브를 900℃이상에서 마무리 열간압연한후 610~750℃에서 권취하는 단계; 및 상기 권취된 강판을 통상의 조건으로 냉간압연하고 소둔하는 단계;를 포함하여 구성된다.Steel sheet manufacturing method of the present invention, by weight%, C + N + S: 0.0150% or less, Mn: 0.2 ~ 0.8%, Al: 0.6% or less, Si: 0.4% or less, the sum of at least one selected from Cu and Sn Providing a steel slab comprising: 0.1-0.6%, balance iron and inevitable impurities; Reheating the steel slabs of the composition in a temperature range of 1110 to 1290 ° C .; Winding the reheated steel slab at a temperature of 900 ° C. or higher after finishing hot rolling at 610 to 750 ° C .; And cold rolling and annealing the wound steel sheet under normal conditions.

전자파 차폐, 전자기장 차폐, 강판, 항복강도, 용융도금, 열간압연 Electromagnetic shielding, electromagnetic shielding, steel sheet, yield strength, hot dip plating, hot rolling

Description

전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법, 및 그로부터 제조된 강판{A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained}A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained}

본 발명은 건축자재등에 사용되는 전자파 차폐강판에 관한 것으로, 보다 상세하게는, 그 강조성 및 열연조건을 적절히 제어함으로써 차폐능이 25dB(93%이상 차폐) 이상이며, 동시에 항복강도가 22 Kg/㎟이상인 용융도금성이 우수한 냉연강판 제조방법에 관한 것이다.The present invention relates to an electromagnetic shielding steel sheet used in building materials, and more particularly, the shielding ability is more than 25dB (shielding more than 93%) by controlling the emphasis and hot rolling conditions appropriately, and at the same time yield strength of 22 Kg / ㎠ It relates to a cold rolled steel sheet manufacturing method excellent in the hot-plating properties described above.

최근, 전자파의 유해성이 알려지기 시작하면서 이를 차단하기 위한 방법과 재료들이 등장하고 있다. 전자파란 전자기장 성분을 가지는 파동(wave)을 말하는데, 인체에 악영향을 미치는 파를 유해파라 한다. 특히, 최근에 들어 자기적 성질을 갖는 낮은 주파수의 저주파의 인체에 대한 유해성이 부각되고 있고, 송전탑 주위의 자기장(60Hz)이 발암과의 상관성이 알려지면서 국내외적으로 큰 반향을 불러일으키고 있다. Recently, as the harmfulness of electromagnetic waves is known, methods and materials for blocking them have emerged. Electromagnetic waves are waves that have electromagnetic field components. Waves that have an adverse effect on the human body are called harmful waves. In particular, in recent years, the low-frequency low frequency of the magnetic properties of the human body has been highlighted, and the magnetic field (60Hz) around the transmission tower has been known to correlate with carcinogenesis, causing a great response at home and abroad.

전자파가 초래하는 발암등의 위해성 논의 이외에도, 자기적 성질을 갖는 저주파 전자파에 인체가 장기간 노출되면 인체 내에 유도전류가 생성되어 세포막내에 존재하는 Na+, K+, Cl- 등의 각종 이온의 불균형을 초래하여, 호르몬 분비 및 면역 세포에 영향을 주는 것으로 알려져 있다. 또한, 자기장은 인체의 수면과 관련 있는 멜라토닌의 분비량을 변화시켜 장기 노출시 불면증과 등과 관계된다는 연구 결과가 보고되고 있다. In addition to discussing risks such as carcinogenesis caused by electromagnetic waves, long-term exposure of the human body to low-frequency electromagnetic waves with magnetic properties generates induced currents in the human body, resulting in imbalances of various ions such as Na +, K +, and Cl- in the cell membrane. It is known to affect hormone secretion and immune cells. In addition, research has been reported that the magnetic field is associated with insomnia upon long-term exposure by changing the secretion amount of melatonin associated with human sleep.

그러나 상기와 같은 문제를 초래하는 전자파를 차폐하기 위해서는 설비적 차폐기술은 물론 재료적 차폐기술이 병행되어야 하는데, 설비적 차폐 구조에 관한 기술로는 차폐방(shield room)을 구성을 제시하고 있는 미국특허 등록 2001-6282848, 일본 특허공개 평7-32136등을 들 수 있다. 그리고 현재 전자파 차단재로서는 주로 동 (일본 특허 공개 2001-217589)등 전도성이 우수한 재료가 사용되고 있으나 이는 고주파(1 kHz 이상) 전자파에만 효과적이다. However, in order to shield the electromagnetic wave that causes the above problems, not only the facility shielding technology but also the material shielding technology must be used together. As the technology of the facility shielding structure, the United States suggesting a shield room. Patent registration 2001-6282848, Unexamined-Japanese-Patent No. 7-32136, etc. are mentioned. And as an electromagnetic wave shielding material, a material with excellent conductivity such as copper (Japanese Patent Laid-Open No. 2001-217589) is mainly used, but this is effective only for high frequency (1 kHz or more) electromagnetic waves.

한편, 최근 문제가 되는 일반 전원용 주파수(60Hz)에서의 전자파는 저주파로서 시간에 따라 변화하는 시변(time varing) 전기장 및 자기장 성분으로 구성된다. 따라서 시변 전기장과 시변자기장을 함께 고려한 차폐 기술이 요구되고 있다. 그러나 현재까지 시변 전자기장을 효과적으로 차폐하는 강판에 관한 실용화 기술이 개발되어 있지 못한 실정이다. On the other hand, the electromagnetic wave at the general power source frequency (60 Hz), which is a problem recently, is composed of a time varing electric field and a magnetic field component that change with time as a low frequency. Therefore, there is a need for a shielding technology considering both a time-varying electric field and a time-varying magnetic field. However, until now, no practical technology has been developed for steel sheets that effectively shield time-varying electromagnetic fields.

이와 관련된 기술로는 강판의 높은 투자율을 이용한 자기장 차폐 강판이 있을 수 있다. 그러나 종래에 제안된 기술들은 지구 자계와 같은 정자계의 변화에 따른 TV와 모니터의 색변조를 막기 위한 정자계 차폐강판(일본 특허 공개 10-208670, 일본 특허 공개 평10-96067, 국제특허 PCT WO97/11204)으로서, 이는 정자계(static magnetic filed)하에서의 강판의 보자력, 투자율 등을 얻기 위한 것으로 이는 시변 자계에 대한 고려와 전기장에 대한 고려가 없어 전자파 차폐재와는 다소 거리가 있다. The related technology may be a magnetic shielding steel sheet using the high permeability of the steel sheet. However, the conventionally proposed techniques are magnetic field shielding steel sheet for preventing color modulation of TVs and monitors due to changes in the magnetic field such as the earth's magnetic field (Japanese Patent Laid-Open No. 10-208670, Japanese Patent Laid-open No. Hei 10-96067, International Patent PCT WO97 / 11204), which is to obtain the coercive force, permeability, etc. of the steel sheet under static magnetic filed, which is somewhat far from the electromagnetic shielding material because there is no consideration of a time-varying magnetic field and an electric field.

또한, 최근의 전자파 차폐 요구에 따라 건축물의 자기장 차폐를 위한 구조용 강판으로서 규소 강판의 조성을 이용한 열연 후판 등이 제시되고 있다.(일본 특허 공개2001-107201,107202) 그러나 상기 강판들도 규소강판의 높은 정자계하의 투자율 만을 고려하였고, 전기장에 대한 기재가 없으며 냉연 강판이 아니라 열연 강판이므로 가공성, 도금성등에 대한 고려가 되지 않고 있다. In addition, in accordance with recent electromagnetic shielding requirements, hot rolled thick plates using a composition of silicon steel sheets have been proposed as structural steel plates for shielding magnetic fields of buildings (Japanese Patent Laid-Open No. 2001-107201, 107202). Only magnetic permeability under magnetic field is considered, and there is no description of electric field, and it is not a cold rolled steel sheet, but a hot rolled steel sheet, so it is not considered workability and plating property.

한편, 본 발명자들도 저주파에서 자기장 차폐능이 뛰어난 강재를 대한민국 특허출원 제1999-0052018호로 제시한 바 있다. 그러나 이 특허출원에 제시된 발명은 정자계(static magnetic filed)하에서 측정한 투자율과 전도도를 기준으로 얻은 예상 차폐능에 대한 것이므로 실제 차폐능과 차이가 있어 적용에 한계가 있었으며 시변자계 (time varing magnetic field) 하에서의 차폐평가가 필요하였다. On the other hand, the present inventors also presented a steel material excellent in magnetic field shielding ability at low frequency as the Republic of Korea Patent Application 1999-0052018. However, the invention presented in this patent application relates to the expected shielding performance obtained based on the permeability and conductivity measured under static magnetic filed, so it is different from the actual shielding ability, which limits its application and the time varing magnetic field. Evaluation of shielding under the following circumstances was necessary.

이에 따라, 주파수에 따른 강판의 자기장 차폐능을 실기 측정하는 기술(대한 민국특허출원 번호2000-79907,80886)이 개발되어 현재 차폐재 실기 평가에 활용되고 있다.Accordingly, a technique for measuring the magnetic field shielding ability of the steel sheet according to the frequency (Korean Patent Application No. 2000-79907,80886) has been developed and is currently used for the practical evaluation of shielding materials.

여기에서, 강판의 차폐효율(shieldind efficiency)과 차폐효과(shield effect)는 통상 다음과 같은 방식으로 구해진다. Here, the shielding efficiency and shielding effect of the steel sheet are usually obtained in the following manner.

자기장 차폐효율 = (인가 자기장- 투과 자기장)/(인가 자기장)*100Magnetic field shielding efficiency = (applied magnetic field-transmission magnetic field) / (applied magnetic field) * 100

전기장 차폐효율 = (인가 전기장- 투과 전기장)/(인가 전기장)*100Electric field shielding efficiency = (applied electric field-transmission electric field) / (applied electric field) * 100

또는 차폐능을 표현하는 다른 단위인 데시벨(dB)로서 다음과 같이 차폐효과를 표현 할 수 있다.Alternatively, the decibel (dB), which is another unit expressing the shielding ability, may be used to express the shielding effect as follows.

자기장 차폐효과 [dB] = -20log(투과 자기장/ 인가 자기장) Magnetic field shielding effect [dB] = -20 log (transmitting magnetic field / applied magnetic field)

전기장 차폐효과 [dB] = -20log(투과 전기장/ 인가 전기장)Electric field shielding effect [dB] = -20log (transmission electric field / applied electric field)

즉, 차폐효율이 90%(1/10로 전자파감소)인 차폐재의 차폐능은 20dB에 해당되며 차폐효율 95%(1/20로 전자파 감소)인 차폐재의 차폐능은 약 26dB에 해당된다.That is, the shielding ability of the shielding material having a shielding efficiency of 90% (1/10 electromagnetic wave reduction) corresponds to 20 dB, and the shielding ability of the shielding member of the shielding efficiency 95% (1/20 electromagnetic wave reduction) corresponds to about 26 dB.

또한, 본 발명자들은 전자파 차폐능이 있는 냉연강판 표면에 원적외선 분말을 코팅하는 바이오 웨이브 강판을 대한민국 특허출원 제2000-81056호로 출원한 바 있다. 이 특허출원에서는, 시변자계 자기장에 대한 차폐능 향상, 즉 시변자계하에서 높은 투자율을 얻기 위해, 탄소함량이 0.02%이하이고 Si이 0.5-3.5% 포함된 고규소강판을 제시하고 있다. In addition, the present inventors have filed a bio-wave steel sheet for coating far-infrared powder on the surface of a cold rolled steel sheet having electromagnetic shielding capability as Korean Patent Application No. 2000-81056. This patent application proposes a high silicon steel sheet containing less than 0.02% carbon and 0.5-3.5% Si in order to improve the shielding ability against time-varying magnetic fields, that is, to obtain high permeability under time-varying magnetic fields.

그러나 일반 냉연강판에 있어서, 탄소함량이 0.02% 이하이면 강도가 부족하여 건자재 용도로 사용이 부적합하다. 즉, 탄소함량이 낮으면 강재조직의 입자크기가 조대해져서 자기장 차폐성은 우수해지지만, 강도는 하락하기 때문에 우수한 강도가 요구되는 소재로는 적용이 곤란한 것이다. 그리고 규소강판은 강도가 너무 높고 가공성이 매우 불량하여 가공성이 요구되는 건자재 및 가전용 판넬 소재로 적용하는데 많은 문제점을 안고 있다. However, in the general cold rolled steel sheet, if the carbon content is 0.02% or less, the strength is insufficient, so it is not suitable for use in building materials. In other words, when the carbon content is low, the grain size of the steel structure is coarse, so that the magnetic shielding property is excellent. However, since the strength is decreased, it is difficult to apply to a material requiring excellent strength. In addition, the silicon steel sheet has a lot of problems in applying it as a building material and a panel material for home use, which is too high in strength and very poor in workability.

더욱이, 이러한 차폐강판을 건축 외장재등 부식성 환경하에서 사용하기 위해서는 내식성이 요구되며, 이에 따라 그 표면을 용융아연 도금처리할 것이 요구된다. 그러나 상기 실리콘등이 포함된 강판을 용융도금하면, 미도금등과 같은 도금결함이 발생하는 문제가 있다. Moreover, in order to use such a shielded steel sheet in a corrosive environment such as a building exterior material, corrosion resistance is required, and accordingly, a surface of hot dip galvanized is required. However, when the steel plate containing the silicon or the like is hot-plated, there is a problem that plating defects such as unplated or the like occur.

따라서 상기와 같은 전자파 차폐강판을 건축 외장재 등 부식성 환경이 강한 곳에 사용하기 위해서는 내식성이 있을 것이 요구되며, 이에 그 표면의 아연도금 부착량이 100g/mm2 이상인 용융아연 도금강판을 제조할 것이 요구되고 있다.Therefore, in order to use the above-mentioned electromagnetic shielding steel sheet in a strong corrosive environment such as a building exterior material, it is required to have corrosion resistance. Accordingly, it is required to manufacture a hot-dip galvanized steel sheet having a zinc plating adhesion amount of 100g / mm 2 or more. .

따라서 본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 강조성 및 열연조건을 적절히 제어함으로써 항복강도(YS)≥22 kg/㎟ 이상이며, 60Hz에서 시변 전자계에 의한 전자기장 실기 차폐능이 두께 1 mm 기준하여 93%이상(25dB이상)인 용융도금성이 우수한 냉연강판 제조방법을 제공함에 그 목적이 있다. Therefore, the present invention is to solve the above-mentioned problems of the prior art, the yield strength (YS) ≥ 22 kg / mm2 or more by properly controlling the stress and hot rolling conditions, the electromagnetic field practical shielding ability by the time-varying electromagnetic field at 60 Hz thickness 1 It is an object of the present invention to provide a method for manufacturing a cold rolled steel sheet having an excellent hot dip plating property of 93% or more (25 dB or more).

상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,

중량%로, C+N+S: 0.0150%이하, Mn:0.2~0.8%, Al:0.6%이하, Si:0.4%이하, Cu와 Sn중 선택된 1종이상의 합:0.1~0.6%, 잔부 철 및 불가피한 불순물을 포함하여 조성되는 강 슬라브를 마련하는 단계; 상기 조성의 강 슬라브를 1110~1290℃의 온도범위로 재가열하는 단계; 상기 재가열된 강 슬라브를 900℃이상에서 마무리 열간압연한후 610~750℃에서 권취하는 단계; 및 상기 권취된 강판을 통상의 조건으로 냉간압연하고 소둔하는 단계;를 포함하는 전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법에 관한 것이다. By weight%, C + N + S: 0.0150% or less, Mn: 0.2 ~ 0.8%, Al: 0.6% or less, Si: 0.4% or less, sum of at least one selected from Cu and Sn: 0.1 ~ 0.6%, balance iron And providing a steel slab comprising inevitable impurities; Reheating the steel slabs of the composition in a temperature range of 1110 to 1290 ° C .; Winding the reheated steel slab at a temperature of 900 ° C. or higher after finishing hot rolling at 610 to 750 ° C .; And a step of cold rolling and annealing the wound steel sheet under ordinary conditions. The present invention relates to a method of manufacturing a high strength steel sheet having excellent electromagnetic shielding and hot dip plating properties.

이하, 본 발명의 강 조성성분 및 그 제한사유를 설명한다.Hereinafter, the steel composition component of the present invention and the reason for limitation thereof.

철(Fe)은 강자성체로서 강도, 내식성등의 향상을 목적으로 다양한 합금원소가 첨가되거나 탄소함량, 결정입도등이 변화될 수 있기 때문에, 시변자계(60Hz)하의 최대투자율과 전도도 또한 크게 달라져 차폐특성이 달라지게 된다. 그리고 성분계 및 제조조건에 따라 고용강화, 입자미세화등 잘 알려진 재료 강화기구로 인하여 기계적 특성도 크게 달라진다. Since iron (Fe) is a ferromagnetic material, various alloying elements can be added, carbon content, and grain size can be changed for the purpose of improving strength, corrosion resistance, etc., so the maximum permeability and conductivity under the time varying magnetic field (60 Hz) are also greatly changed. Will be different. In addition, mechanical properties are also greatly changed due to well-known material reinforcing mechanisms such as solid solution strengthening and particle refining depending on the component system and manufacturing conditions.

이에, 본 발명자들은 건자재 및 가구용 판넬에 적합한 강도, 즉 항복강도(YS) 18-25Kg/㎟를 가지면서 전자기장에 대한 차폐능이 93%(25dB)이상인 강종을 확보하기 위하여 성분계를 변화시키면서 차폐능과 강도를 측정하는 시험을 거듭한 결과, 각 성분이 전자기장 차폐능과 강도에 미치는 영향을 정립할 수 있었다. 특히, C, N, S, Si, Al, Mn 및 P등이 차폐능과 강도등을 크게 변화시킨다는 것을 알게 되었으며, 그 최적 성분계를 도출할 수 있었다. Accordingly, the present inventors have changed the component system in order to secure a steel grade having a strength suitable for building materials and furniture panels, that is, yield strength (YS) 18-25Kg / mm2 and shielding ability against electromagnetic fields is 93% (25dB) or more. As a result of repeated tests to measure the strength, the effect of each component on the electromagnetic shielding and strength could be established. In particular, it was found that C, N, S, Si, Al, Mn, and P significantly change the shielding ability and strength, and the optimum component system could be derived.

본 발명에서 전자파 차폐능은 N,C,S등 침입형 원소 또는 석출물을 만드는 원소의 함량에 의하여 크게 좌우된다. 또한 탄소, 질소, 유황과 같은 원소는 강중에서 침입형 원소로 작용하여 함량이 증가함에 따라 내부의 스트레인(strain)이 증가하고 Fe3C, AlN등의 석출물을 생성하기 때문에 강도를 높일 수 있다. Electromagnetic shielding ability in the present invention is largely dependent on the content of N, C, S, such as intrusive elements or precipitates. In addition, elements such as carbon, nitrogen, and sulfur act as invasive elements in steel, and as the content thereof increases, internal strain increases, and precipitates such as Fe 3 C and AlN may be increased, thereby increasing strength.

그러나 이와 같은 스트레인(strain)의 증가와 석출물의 생성은 투자율과 전도도를 크게 저하시켜 전자기장 차폐 특성을 크게 저하시키므로 침입형 원소를 첨가하여 강도를 확보하면서 93%이상의 높은 차폐능을 얻는다는 것은 매우 어렵다. 따라서 본 발명에서는 전자기장의 차폐특성에 치명적인 영향을 주는 C+N+S을 0.015중량%이하로 제한된다. However, such an increase in strain and formation of precipitates greatly reduce the magnetic permeability and conductivity, which greatly reduces the electromagnetic shielding properties. Therefore, it is very difficult to obtain high shielding ability of 93% or more while securing strength by adding invasive elements. . Therefore, the present invention is limited to less than 0.015% by weight of C + N + S which has a fatal effect on the shielding characteristics of the electromagnetic field.

전자기장 차폐능과 가공성 확보를 위해 보다 바람직하게는, C와 N의 함량을 각각 0.0030%이하, S를 0.009%이하로 제어하는 것이다.In order to secure the electromagnetic shielding ability and workability, more preferably, the content of C and N is controlled to 0.0030% or less and S to 0.009% or less, respectively.

상기와 같이 침입형 원소인 C, N 및 S의 함량을 최소조건으로 하면 재료의 강도저하를 초래하므로 다른 원소를 첨가하여 고용강화에 따른 강도증가를 유도하여야 한다. 그러나 강도증가를 위하여 첨가하는 원소가 투자율이나 전도도를 너무 저하시키면 전자기장 차폐능을 저하시킬 수도 있으므로 그 첨가원소 및 첨가량을 제한할 것이 요구된다. 특히 첨가 원소는 용융 도금성을 크게 영향을 주므로 용융도금성에 의하여 최적 성분 및 첨가량을 제한할 것이 요구된다. As described above, if the content of the invasive elements C, N, and S is minimized, the strength of the material may be reduced. Therefore, another element should be added to induce strength increase due to solid solution strengthening. However, if the element added to increase the strength is too low the permeability or conductivity may reduce the electromagnetic shielding ability, it is required to limit the element and the amount of addition. In particular, since the additive element greatly affects the hot-dipability, it is required to limit the optimum component and the addition amount by the hot-dipability.

먼저, 본 발명의 강판은 Mn을 포함하는데, 이때 그 첨가량을 0.2~0.8%로 제한한다. Mn을 0.2%이상 첨가하면, 전반적으로 자기장 차폐능이 우수하고 연신율도 우수하며, 또한, 적당한 항복강도를 갖는 강판을 얻을 수 있다. 그러나 0.8%이상으로 첨가되면 용융도금시 도금결함이 발생할 수 있기 때문이다. First, the steel sheet of the present invention includes Mn, in which the amount of addition is limited to 0.2 ~ 0.8%. When 0.2% or more of Mn is added, it is possible to obtain a steel sheet having excellent magnetic field shielding ability, excellent elongation, and moderate yield strength. However, if it is added more than 0.8% may cause plating defects during hot dip plating.

본 발명에서 Si은 그 첨가량을 증대함에 따라 강판의 강도를 효과적으로 증가시킬 수 있으나, 자기장 차폐능은 그 첨가량에 따라 다소 감소한다. In the present invention, the Si can effectively increase the strength of the steel sheet by increasing the amount added, but the magnetic field shielding ability decreases slightly depending on the amount added.

본 발명에서 이러한 Si 함량을 0.4%이하로 제한하는데, 이 한도를 초과하면 산화성이 용이한 Si가 냉연강판 표면에 SiO2 게재물을 많이 형성하여 도금부착성이 불량해지고 미도금으로 인해 도금불량이 발생할 수 있기 때문이다. In the present invention, the Si content is limited to 0.4% or less. When this limit is exceeded, Si easily oxidizes to form a large amount of SiO 2 inclusions on the surface of the cold rolled steel sheet, resulting in poor plating adhesion and poor plating due to unplating. Because it can occur.

또한, 본 발명에서는 Al의 첨가량을 0.6%이하로 제한하는데, 이는 함량을 초과하면 도금 밀착성이 떨어지면서 미도금 불량이 발생할 수 있기 때문이다. In addition, in the present invention, the addition amount of Al is limited to 0.6% or less, because when the content is exceeded, unplating defects may occur while plating adhesion is reduced.

한편, Cu와 Sn은 자기장 차폐능의 큰 저하없이 강판의 강도를 향상시키는 원소들로서, 본 발명에서는 이들을 복합하여 첨가할 수 있으며, 또한 단독으로도 첨가할 수 있다. On the other hand, Cu and Sn are elements that improve the strength of the steel sheet without a significant decrease in the magnetic field shielding ability, in the present invention can be added in combination, or can be added alone.

본 발명에서는 Cu와 Sn중 선택된 1종이상의 합을 0.1~0.6%범위로 제한한다. 왜냐하면 이들의 합이 0.1%미만이면 첨가에 따른 효과가 미약하거나 목표강도(항복강도 22kg/mm2이상)를 확보할 수 없으며, 0.6%를 초과하면 자기장 차폐능이 감소하고 용융도금성이 불량하기 때문이다.In the present invention, the sum of at least one selected from Cu and Sn is limited to 0.1 to 0.6%. If the sum of these is less than 0.1%, the effect of addition is weak or the target strength (yield strength of 22kg / mm 2 or more) cannot be secured, and if it exceeds 0.6%, the magnetic field shielding ability is reduced and the melt plating property is poor. to be.

그리고 이러한 Cu와 Sn은 Si,Al,Mn과 복합 첨가하는 것이 전자기장 차폐능, 강도면에서 유리하는데, 본 발명에서는 복합첨가시 용융도금특성을 고려하여 Cu+Sn+Al+Mn+Si 값을 1%이하로 제한함이 보다 바람직하다. In addition, Cu and Sn are advantageously added in combination with Si, Al, and Mn in terms of electromagnetic shielding ability and strength. In the present invention, Cu + Sn + Al + Mn + Si value is set to 1 in consideration of hot dip plating characteristics. It is more preferable to limit it to% or less.

다음으로, 본 발명의 강판 제조방법을 설명한다. Next, the steel sheet manufacturing method of this invention is demonstrated.

전자파 차폐능은 석출물 Size에 따라 크게 좌우된다. 따라서 석출물을 만드는 원소의 함량을 직접 제어하거나 열처리를 통해 간접적으로 석출물을 유무, 형태 및 크기를 변화시켜 강판의 차폐능을 개선할 수 있다.Electromagnetic shielding ability depends largely on precipitate size. Therefore, the shielding ability of the steel sheet can be improved by directly controlling the content of the element forming the precipitate or indirectly by changing the presence, shape, and size of the precipitate through heat treatment.

연속주조기등을 통하여 주조된 강슬라브는 열간압연에 앞서 재가열되는데, 이러한 재가열온도(SRT; Slab Reheating Temperature)가 높아지면 강 슬라브내 석출물의 재용해가 일어난다. 그리고 이러한 강 슬라브를 열간압연하면, 그 공정중 강판 표면산화로 인해 산화물(scale)이 생성되고, 이 스케일을 제거를 위하여 물을 강판 표면에 고압으로 분사시키는 스케일 제거작업을 하게 된다. The steel slab cast through the continuous casting machine, etc. is reheated prior to hot rolling. When the Slab Reheating Temperature (SRT) is increased, redissolved precipitates in the steel slab occur. When the steel slab is hot rolled, an oxide is generated due to the surface oxidation of the steel sheet in the process, and the scale is removed by spraying water at a high pressure on the surface of the steel sheet to remove the scale.

그러나 이때 그 온도가 낮아져 슬라브내 재용해된 석출물은 재석출이 되어 미세하게 입자내에 분산하게 되면서 강판의 입경도 미세화시키고, 또한 이러한 석출물의 미세화로 인한 입경(grain size) 저하는 후속하는 냉연공정의 소둔과정에서 입자 성장을 방해하는 결과를 초래하여 차폐능의 저하를 야기함을 본 발명자는 확인하였다. 왜냐하면 입경이 큰 소재가 입자내 도메인의 이동이 자유로워져서 시변 자계에 의한 투자율이 증가하며 차폐능이 향상 될 수 있기 때문이다. At this time, however, the temperature is lowered, so that the redissolved precipitate in the slab is reprecipitated and finely dispersed in the particles, thereby miniaturizing the grain size of the steel sheet. The present inventors confirmed that in the annealing process, a result of disturbing particle growth was caused, resulting in a decrease in shielding ability. This is because a material with a large particle diameter frees the movement of domains in a particle, thereby increasing permeability due to a time-varying magnetic field and improving shielding ability.

따라서 본 발명은 우수한 전자기장 차폐능을 갖는 강판 제조를 위해 그 강성분 뿐만 아니라 그 열간압연조건을 제시함을 특징으로 한다.Therefore, the present invention is characterized by suggesting not only the steel components but also the hot rolling conditions for producing a steel sheet having excellent electromagnetic shielding ability.

즉, 본 발명에서는 상술한 조성의 강 슬라브를 제조한후, 이를 재가열하는데, 이때, 그 재가열온도를 1110~1290℃로 제한한다. 만일 이러한 슬라브 재가열온도 (SRT)가 1110℃미만이면 연속작업중 스케일을 제거하는 시간이 충분하지 않아 스케일 결함을 초래하거나, 과도한 온도하락으로 열간압연이 이상역(Ferrite+ Austenite영역)에서 이루어져 판의 재질편차등 문제가 발생할 수 있다. 1290℃ 이상에는 많은 에너지 비용과 이에 따른 설비 비용이 요구되므로 바람직하지 않으며, 또한 온도가 1290℃를 초과하면 강판 표면에 형성된 산화피막 두께가 강하여 스케일제거(descalling)가 어려워 표면결함이 생길 수 있기 때문이다. That is, in the present invention, after manufacturing the steel slab of the above-described composition, and reheating, at this time, the reheating temperature is limited to 1110 ~ 1290 ℃. If the slab reheating temperature (SRT) is less than 1110 ℃, it is not enough time to remove scale during continuous operation, causing scale defects, or hot rolling due to excessive temperature drop in the abnormal zone (Ferrite + Austenite zone). Etc. problems may occur. It is not preferable because a lot of energy costs and equipment costs are required above 1290 ° C, and if the temperature exceeds 1290 ° C, the thickness of the oxide film formed on the surface of the steel sheet is so strong that descaling is difficult and surface defects may occur. to be.

한편, 이러한 본 발명의 재가열 온도범위에서는 (Mn,Cu,Sn)S석출물의 크기가 온도에 따라 커지면서 전자기장 차폐능이 효과적으로 증가될 수 있다. 그러나 그 온도가 1200℃를 초과하면, 슬라브내 재용해된 (Mn,Cu,Sn)S가 재석출되어 미세하게 입자내에 분산되면서 강판의 입경도 미세화시키고, 또한 이러한 석출물의 미세화로 인한 입경(grain size) 저하는 후속하는 냉연공정의 소둔과정에서 입자 성장을 방해하는 결과를 초래하여 차폐능을 다소 저감시킬 수 있다. On the other hand, in the reheating temperature range of the present invention, as the size of the (Mn, Cu, Sn) S precipitate increases with temperature, the electromagnetic shielding ability can be effectively increased. However, if the temperature exceeds 1200 ° C., the redissolved (Mn, Cu, Sn) S in the slab is reprecipitated and finely dispersed in the particles, thereby miniaturizing the grain size of the steel sheet, and also the grain size due to the refinement of these precipitates (grain). Size reduction may result in disturbing particle growth in the subsequent annealing of the cold rolling process, which may reduce the shielding capacity somewhat.

따라서 본 발명에서는 상기 재가열 온도를 1110-1200℃로 제한함이 바람직하다.Therefore, in the present invention, it is preferable to limit the reheating temperature to 1110-1200 ° C.

그리고 본 발명에서는 상기 재가열된 강 슬라브를 마무리압연온도(Final Deforming Temperature: FDT) 900℃이상에서 열간압연한다. 만일 마무리 압연온도가 900℃미만에서 이루어질 경우 이상역 (Ferrite+Austenite영역)압연으로 인하여 판의 재질편차 유발, Orange Peel 등과 같은 표면결함의 유발등 문제가 발생하므로 그 하한을 900℃로 제한함이 바람직하다 In the present invention, the reheated steel slab is hot rolled at a final deforming temperature (FDT) of 900 ° C. or more. If the finish rolling temperature is lower than 900 ℃, the lower limit is limited to 900 ℃ because of problems such as material deviation of plate and surface defects such as Orange Peel due to abnormal zone (Ferrite + Austenite zone) rolling. desirable

이어, 본 발명에서는 열간압연된 강판을 610~750℃에서 권취하는데, 이는 냉간압연제품의 입자크기가 열간압연후의 열연강판의 입자크기에 영향을 크게 받기 때문이다. 즉, 권취온도(Coiling Temperature:CT)가 610℃미만이면, 입자가 충분히 성장하지 못하게 되는 반면에, 750℃를 초과하면 더 이상의 입자크기 증가가 이루어 지지 않기 때문이다. Subsequently, in the present invention, the hot rolled steel sheet is wound at 610 to 750 ° C., because the particle size of the cold rolled product is greatly influenced by the particle size of the hot rolled steel sheet after hot rolling. That is, if the coiling temperature (CT) is less than 610 ℃, the particles do not grow sufficiently, while if it exceeds 750 ℃ no further increase in the particle size.

다음으로, 본 발명에서는 상기 권취된 열연강판을 산세한후, 통상의 조건으로 냉간압연한 후 소둔함으로써 전자파 차폐성 및 용융도금이 우수한 냉연강판을 제조할 수 있다. Next, in the present invention, the pickled hot rolled steel sheet is pickled, cold rolled under normal conditions, and then annealed to produce a cold rolled steel sheet excellent in electromagnetic shielding properties and hot dip plating.

한편, 본 발명에서는 상기 냉연강판을 용융도금함로써 냉연강판 표면에 내식성 원소인 아연이나 알루미늄이 도금된 전자기장 차폐성이 우수한 고강도 도금강판을 제조할 수 있다. On the other hand, in the present invention by hot-dip galvanizing the cold rolled steel sheet can be produced a high-strength plated steel sheet excellent in electromagnetic shielding plated with zinc or aluminum as a corrosion resistant element on the surface of the cold rolled steel sheet.

이와 같이 아연등이 용융도금된 전자파차폐용 도금강판은 미도금된 냉연강판에 비해 전자기장 차폐능이 약간 증가하고 항복강도는 다소 저하되는데, 이는 철보다 전도도가 높고 강도가 낮은 아연이 용융도금에 따라 냉연강판 표면에 많아 부착되어 두께가 증가되기 때문이다. 한편, 용융아연 도금강판의 전자기장 차폐능 및 항복강도는 그 도금전 소재인 냉연강판에 비해 큰 차이가 없는 수준이다 As such, the electromagnetic shielding plated steel sheet, which is hot-dipped with zinc, is slightly increased in electromagnetic field shielding ability and lowers its yield strength, compared to the unplated cold rolled steel sheet. This is because the thickness is increased by attaching a lot to the surface of the steel sheet. On the other hand, the electromagnetic shielding ability and yield strength of the hot-dip galvanized steel sheet is not much different than that of the cold-rolled steel sheet before the plating.

또한, 본 발명에서는 상기와 같이 용융도금된 강판에 색상을 부여하기 위하여, 그 표면에 유기수지 코팅을 행할 수도 있다. In addition, in the present invention, in order to give a color to the hot-dip steel sheet as described above, an organic resin coating may be applied to the surface.

즉, 본 발명에서는 강판에 색상안료를 포함하고 있는 폴리에틸렌등 유기 수지도장처리(소위 PCM 도장:Pre coted Metal)를 하여도 전자기장 차폐능, 기계적 성질이 그대로 유지되는데, 이는 유기수지 및 수지에 들어가는 안료는 비자성 물질로 25㎛정도의 극박 도장을 하기 때문에 차폐능에 변화를 주지 않은 것으로 생각된다.That is, in the present invention, electromagnetic shielding ability and mechanical properties are maintained even when organic resin coating treatment (such as PCM coating: Pre-coated Metal) including color pigment is applied to the steel sheet, which is a pigment that enters the organic resin and resin. Is a nonmagnetic material and is considered to have not changed the shielding ability because of ultrathin coating of about 25㎛.

또한, 본 발명에서는 상기 용융도금강판에 원적외선 방사기능을 부여하기 위해 그 표면에, 원적외선 방사효율이 0.9이상인 원적외선 방사분말을 함유한 두께 15~60㎛의 코팅층을 형성할 수 있다. In addition, in the present invention, in order to give the far-infrared radiation function to the hot-dip galvanized steel sheet, a coating layer having a thickness of 15 to 60 μm containing a far-infrared radiation powder having a far-infrared radiation efficiency of 0.9 or more may be formed on the surface thereof.

보다 바람직하게는, 상기 원적외선 분말은 그 비표면적이 1m2/g이상이고, Mg(OH)2성분이 17~99%포함되어 이루어진 것을 이용하는 것이다.More preferably, the far-infrared powder has a specific surface area of 1 m 2 / g or more and Mg (OH) 2 component containing 17 to 99%.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예1]Example 1

C:0.003%이하, N: 0.003%이하, Mn:0.2%, Al:0.2%, Si:0.2%, Cu:0.2% 및 Sn:0.2%를 포함하여 조성된 강성분 30kg을 다수 진공용해하여 용해재를 얻었다. 30 kg of steel components, including C: 0.003% or less, N: 0.003% or less, Mn: 0.2%, Al: 0.2%, Si: 0.2%, Cu: 0.2% and Sn: 0.2% Got ash.

이러한 용해재들를 표 1과 같이, 재가열온도, 마무리압연온도 및 권취온도를 달리하면서 2mm두께의 열연강판들을 제조하였으며, 이어, 산세를 통하여 열연 스케일을 제거하였다. 그리고 산세된 열연강판들을 50%의 압하율로 냉간압연하여 1 mm두께로 만들고 자체 보유한 연속소둔 시뮬레이터를 사용하여 850℃ 온도로 소둔 하여 냉연강판을 제조하였다. These molten materials, as shown in Table 1, was prepared for the hot rolled steel sheet having a thickness of 2mm while varying the reheating temperature, finishing rolling temperature and winding temperature, and then hot-rolled scale was removed by pickling. The pickled hot rolled steel sheets were cold rolled at a rolling reduction of 50% to a thickness of 1 mm, and annealed at a temperature of 850 ° C. using a self-owned continuous annealing simulator to prepare a cold rolled steel sheet.

이렇게 제조된 냉연강판들을 전자기장 차폐능 분석장치를 사용하여 60 Hz에서의 전자기장 차폐능을 분석하여 그 결과를 표 1에 나타내었으며, 아울러, 만능시험기로 기계적 특성(항복강도)을 측정하여 그 결과를 또한 표 1에 나타 내었다. 또한 이때 냉연강판의 표면을 육안으로 관찰하여 그 표면에서의 스케일 존재여부를 조사하여 그 결과를 또한 나타내었다.The cold rolled steel sheets manufactured as described above were analyzed by using the electromagnetic shielding capability analysis device, and the results of the electromagnetic shielding at 60 Hz were shown in Table 1, and the mechanical properties (yield strength) were measured by a universal testing machine. It is also shown in Table 1. In this case, the surface of the cold rolled steel sheet was visually observed to investigate the presence of scale on the surface.

구분division 열간 압연(℃)Hot rolling (℃) 자기장 차폐능 (dB)Magnetic shielding ability (dB) 전기장 차폐능 (dB)Electric field shielding ability (dB) 항복 강도 (Kg/mm2)Yield strength (Kg / mm2) 표면surface SRTSRT FDTFDT CTCT 발명예1Inventive Example 1 12501250 910910 700700 25.325.3 40.540.5 25.925.9 양호Good 발명예2Inventive Example 2 12001200 910910 700700 25.425.4 40.540.5 25.725.7 양호Good 발명예3Inventive Example 3 11501150 910910 700700 26.526.5 41.041.0 25.325.3 양호Good 비교예1Comparative Example 1 11001100 910910 700700 27.227.2 41.141.1 27.127.1 불량Bad 비교예2Comparative Example 2 11501150 895895 700700 29.229.2 41.241.2 25.825.8 불량Bad 비교예3Comparative Example 3 11501150 870870 700700 24.724.7 40.540.5 26.626.6 불량Bad 발명예4Inventive Example 4 11501150 900900 700700 26.426.4 40.840.8 25.325.3 양호Good 발명예3-1Inventive Example 3-1 11501150 900900 750750 26.526.5 41.141.1 25.825.8 양호Good 발명예5Inventive Example 5 11501150 900900 650650 26.226.2 41.041.0 25.925.9 양호  Good 비교예4Comparative Example 4 11501150 900900 600600 24.524.5 41.041.0 25.925.9 양호Good

표 1에 나타난 바와 같이, 재가열온도와 권취온도등이 적절하게 제어된 본 발명예(1~5)은 모두 전자파 차폐 특성도 우수하였으며, 스케일의 제거가 완전하여 이후 용융도금시, 스케일에 따른 열연성 도금결함도 생성되지 않았다.   As shown in Table 1, Examples 1 to 5 of the present invention, in which the reheating temperature and the coiling temperature were properly controlled, also had excellent electromagnetic shielding characteristics, and the scale was completely removed so that the subsequent hot rolling was performed according to the scale. No plating plating defects were produced.

특히, 본 발명의 재가열온도범위에서 전자기장 차폐능이 크게 증가함을 볼 수 있는데, 본 발명의 강 조성성분인 Mn,Cu,Sn과 불순물인 S황의 결할물질인 (Mn,Cu,Sn)S 화합물의 새로운 석출이 일어나지 않아 조대한 (Mn,Cu,Sn)S 석출물과 조대한 입경(grain size)이 얻어지기 때문인 것으로 판단된다. In particular, it can be seen that the electromagnetic shielding ability is greatly increased in the reheating temperature range of the present invention, the (Mn, Cu, Sn) S compound of the steel composition of the present invention Mn, Cu, Sn and the impurity S sulfur It is believed that coarse (Mn, Cu, Sn) S precipitates and coarse grain sizes are obtained because no new precipitation occurs.

그러나 재가열 온도(SRT)가 1200℃를 초과하는 발명예(1~2)는 스케일 제거(Descaling)가 충분하여 표면결함 방지에는 효과적 이지만 재가열 후 냉각과정에서 (Mn,Cu,Sn)S 화합물의 새로운 석출이 일어나 입경이 다소 미세해져 발명예(3~5)에 비해 전자기장 차폐능이 작음을 알 수 있다. 따라서 보다 높은 차폐능을 얻기 위해서는 재가열 온도를 1110~1200℃범위로 제한함이 바람직한 것이다.However, Inventive Examples (1 ~ 2) whose reheating temperature (SRT) exceeds 1200 ℃ are effective in preventing surface defects due to the sufficient descaling, but the re-heating of the (Mn, Cu, Sn) S compounds during cooling Precipitation occurs and the particle diameter is slightly fine, it can be seen that the electromagnetic shielding ability is smaller than the invention examples (3 to 5). Therefore, in order to obtain a higher shielding capacity, it is desirable to limit the reheating temperature to 1110 ~ 1200 ℃ range.

이에 반하여, 재가열온도가 1110℃미만인 비교예 (1)은 스케일 제거에 필요한 충분한 시간적 확보가 어려워 냉연강판 표면에 결함이 생성되며, 이에 따라 후속하는 용융도금시 용융도금한 강판에도 열연성 결함이 그대로 전사됨을 확인할 수 있었다On the contrary, in Comparative Example (1) having a reheating temperature of less than 1110 ° C., it is difficult to secure sufficient time necessary for removing the scale, and defects are generated on the surface of the cold rolled steel sheet. I could confirm that I was killed

그리고 마무리압연온도(FDT)가 900℃미만인 비교예(2~3)의 경우에도 이상역 (Ferrite+Austenite영역)압연으로 인해 강판의 재질편차 유발, 및 판 휨 현상과 무수히 많은 표면 결함이 관찰되어 용융도금시 도금결함이 유발되었다.In addition, even in Comparative Examples (2 to 3) having a finish rolling temperature (FDT) of less than 900 ° C, due to an abnormal zone (Ferrite + Austenite region) rolling, sheet material variation, plate warpage and numerous surface defects were observed. Plating defects were caused during hot plating.

또한 권취온도가 600℃이하인 비교예(4)에서는 입자가 미세화되면서 전자기장 차폐능이 급격히 저하되었다. In addition, in Comparative Example (4) having a coiling temperature of 600 ° C. or less, the electromagnetic field shielding ability rapidly decreased as the particles became finer.

한편, 표 1에서 권취온도가 높을수록 전자기장 차폐능이 증가하고 강도가 다소 감소하는 경향이 있음을 알 수 있는데, 이는 권취온도가 증가되면 결정립이 다소 성장하여 투자율이 개선되기 때문인 것으로 판단된다.On the other hand, in Table 1, it can be seen that the higher the coiling temperature, the electromagnetic shielding ability is increased and the strength tends to be slightly decreased. This is because the grain permeability is slightly increased and the permeability is improved.

상술한 바와 같이, 본 발명은 강성분 뿐만 아니라 열연조건을 최적으로 제어함으로써 전자파 차폐능 뿐만 아니라 용융도금성도 우수한 내연강판을 효과적으로 제조할 수 있어, 이를 저주파에 노출이 심한 송전선로 부근의 주택이나 학교등 건축용 외장재와 변전실 벽재로 효과적으로 사용할 수 있다. As described above, the present invention can effectively manufacture not only steel components but also hot-rolling conditions, which can effectively manufacture flame retardant steel sheets which are excellent in electromagnetic shielding ability and hot dip plating, and thus can be used in housing near power transmission lines with high exposure to low frequency. It can be effectively used for building exterior materials such as schools and substation room walls.

Claims (5)

중량%로, C+N+S: 0.0150%이하, Mn:0.2~0.8%, Al:0.6%이하, Si:0.4%이하, Cu와 Sn중 선택된 1종이상의 합:0.1~0.6%, 잔부 철 및 불가피한 불순물을 포함하여 조성되는 강 슬라브를 마련하는 단계; By weight%, C + N + S: 0.0150% or less, Mn: 0.2 ~ 0.8%, Al: 0.6% or less, Si: 0.4% or less, sum of at least one selected from Cu and Sn: 0.1 ~ 0.6%, balance iron And providing a steel slab comprising inevitable impurities; 상기 조성의 강 슬라브를 1110~1290℃의 온도범위로 재가열하는 단계; Reheating the steel slabs of the composition in a temperature range of 1110 to 1290 ° C .; 상기 재가열된 강 슬라브를 900℃이상에서 마무리 열간압연한후 610~750℃ 에서 권취하는 단계; 및 Winding the reheated steel slab at a temperature of 900 ° C. or higher after finishing hot rolling at 610 to 750 ° C .; And 상기 권취된 강판을 산세후 통상의 조건으로 냉간압연하고 소둔하는 단계;를 포함하는 전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법Cold rolled and annealed in the usual conditions after pickling the wound steel sheet; electromagnetic shielding and hot-dip galvanizing excellent strength comprising a 제 1항에 있어서, Mn+Cu+Sn+Si+Al: 1.0%이하인 것을 특징으로 하는 전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법The method of claim 1, wherein Mn + Cu + Sn + Si + Al is 1.0% or less. 제 1항에 있어서, C와 N이 각각 0.0030%이하, S가 0.009%이하인 것을 특징으로 하는 전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법The method of claim 1, wherein C and N are each 0.0030% or less, and S is 0.009% or less. 제 1항에 있어서, 상기 재가열 온도가 1110-1200℃ 인 것을 특징으로 하는 전자파 차폐성 및 용융도금성이 우수한 고강도 강판 제조방법The method according to claim 1, wherein the reheating temperature is 1110-1200 ° C. 제 1 내지 4항중 어느 한항에 기재된 방법을 이용하여 제조되는 전자기장 실기 차폐능이 두께 1 mm 기준하여 25dB 이상이고 항복 강도가 22kg/mm2 이상인 강판 Steel sheet manufactured using the method according to any one of claims 1 to 4, wherein the electromagnetic field practical shielding ability is 25 dB or more based on 1 mm thickness, and the yield strength is 22 kg / mm 2 or more.
KR1020010083168A 2001-12-22 2001-12-22 A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained KR100568356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083168A KR100568356B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083168A KR100568356B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained

Publications (2)

Publication Number Publication Date
KR20030053128A KR20030053128A (en) 2003-06-28
KR100568356B1 true KR100568356B1 (en) 2006-04-05

Family

ID=29577739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083168A KR100568356B1 (en) 2001-12-22 2001-12-22 A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained

Country Status (1)

Country Link
KR (1) KR100568356B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280329A (en) * 1986-05-30 1987-12-05 Nippon Kokan Kk <Nkk> Manufacture of inner shielding material for cathode-ray tube excellent in formability and electromagnetic wave-shielding characteristic
JPH02250942A (en) * 1989-03-24 1990-10-08 Nippon Steel Corp Hot rolled steel sheet for mask frame of cathode-ray tube and its manufacture
JPH03232924A (en) * 1990-02-08 1991-10-16 Nippon Steel Corp Production of nonoriented silicon steel sheet by direct rolling
JPH08127817A (en) * 1994-10-31 1996-05-21 Kawasaki Steel Corp Production of high strength hot rolled steel plate for magnetic shielding
JPH10183252A (en) * 1996-12-24 1998-07-14 Nisshin Steel Co Ltd Production of cold rolled steel sheet or hot dip plated steel sheet excellent in surface property and workability
JPH10219409A (en) * 1997-02-06 1998-08-18 Sumitomo Metal Ind Ltd Inner shielding material for magnetic shielding, and its production
KR19990051981A (en) * 1997-12-20 1999-07-05 이구택 Ultrathin steel sheet for TV inner shield with excellent magnetic shielding and manufacturing method
JP2000169945A (en) * 1998-12-03 2000-06-20 Nisshin Steel Co Ltd Material for inner shield and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280329A (en) * 1986-05-30 1987-12-05 Nippon Kokan Kk <Nkk> Manufacture of inner shielding material for cathode-ray tube excellent in formability and electromagnetic wave-shielding characteristic
JPH02250942A (en) * 1989-03-24 1990-10-08 Nippon Steel Corp Hot rolled steel sheet for mask frame of cathode-ray tube and its manufacture
JPH03232924A (en) * 1990-02-08 1991-10-16 Nippon Steel Corp Production of nonoriented silicon steel sheet by direct rolling
JPH08127817A (en) * 1994-10-31 1996-05-21 Kawasaki Steel Corp Production of high strength hot rolled steel plate for magnetic shielding
JPH10183252A (en) * 1996-12-24 1998-07-14 Nisshin Steel Co Ltd Production of cold rolled steel sheet or hot dip plated steel sheet excellent in surface property and workability
JPH10219409A (en) * 1997-02-06 1998-08-18 Sumitomo Metal Ind Ltd Inner shielding material for magnetic shielding, and its production
KR19990051981A (en) * 1997-12-20 1999-07-05 이구택 Ultrathin steel sheet for TV inner shield with excellent magnetic shielding and manufacturing method
JP2000169945A (en) * 1998-12-03 2000-06-20 Nisshin Steel Co Ltd Material for inner shield and its production

Also Published As

Publication number Publication date
KR20030053128A (en) 2003-06-28

Similar Documents

Publication Publication Date Title
JP4174320B2 (en) High strength steel sheet having excellent electrical and magnetic shielding properties and method for producing the same
KR100885145B1 (en) Grain oriented electrical steel sheet with low iron loss and production method for same
US20230050497A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
KR102457575B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100568356B1 (en) A method for manufacturing a high strength steel plate having good electric-magnetic shielding property and platability, and steel plate thus obtained
KR100568354B1 (en) A Method For Manufacturing Galvanized High Strength Steel Plate Having Electric and Magnetic Shielding Property by Cold Rolling Condition
KR100568355B1 (en) A Galvanized Steel Plate Having Superior Electric and Magnetic Shielding Property
KR100544536B1 (en) A Steel Plate Having Superior Electric and Magnetic Shielding Property at time varying electric and magnetic field
KR100544582B1 (en) A High Strength Steel Plate Having Superior Electric and Magnetic Shielding Property
KR100544583B1 (en) A High Strength Steel Plate Having Superior Electric and Magnetic Shielding Property
KR100584731B1 (en) A cold rolled steel sheet for building materials protecting from electromagnetic wave and a method for manufacturing it
KR100584730B1 (en) A cold rolled steel sheet for building materials protecting from electromagnetic wave and a method for manufacturing it
KR102493773B1 (en) Steel sheet having high phospatability and manufacturing method of the same
KR102279909B1 (en) Ferritic stainless steel having high magnetic permeability
KR100494106B1 (en) A high strength PCM steel plate having superior elecrtric and magnetic shielding property
KR20120137931A (en) Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
JP2001107202A (en) Steel sheet for magnetic shield structure and its production method
KR19980052509A (en) Method for manufacturing a low-carbon cold-rolled steel sheet for vacuum deposition plating in which changes in material after plating are suppressed
KR100723184B1 (en) Hot rolled pickled thick steel plate having superior magnetic shielding property and plating steel plate using the same, and the method for manufacturing thereof
KR100723183B1 (en) Hot rolled pickled thin steel plate having superior magnetic shielding property and plating steel plate using the same, and the method for manufacturing thereof
KR100276329B1 (en) The manufacturing method of high strength cold rolling steel sheet with having excellent zinc plating property
JP2984884B2 (en) Non-aging steel sheet for deep drawing and method for producing the same
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
CN117363963A (en) Oriented silicon steel and manufacturing method thereof
KR100455084B1 (en) Method for manufacturing high intensity cold rolled galvanized strip

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180327

Year of fee payment: 13