KR100565425B1 - Slurry Composition for Chemical Mechanical Polishing of Copper - Google Patents

Slurry Composition for Chemical Mechanical Polishing of Copper Download PDF

Info

Publication number
KR100565425B1
KR100565425B1 KR1020030057521A KR20030057521A KR100565425B1 KR 100565425 B1 KR100565425 B1 KR 100565425B1 KR 1020030057521 A KR1020030057521 A KR 1020030057521A KR 20030057521 A KR20030057521 A KR 20030057521A KR 100565425 B1 KR100565425 B1 KR 100565425B1
Authority
KR
South Korea
Prior art keywords
acid
potassium
polishing
weight
metal
Prior art date
Application number
KR1020030057521A
Other languages
Korean (ko)
Other versions
KR20050019626A (en
Inventor
정재훈
이길성
이인경
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020030057521A priority Critical patent/KR100565425B1/en
Publication of KR20050019626A publication Critical patent/KR20050019626A/en
Application granted granted Critical
Publication of KR100565425B1 publication Critical patent/KR100565425B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching

Abstract

본 발명은 옥사이드층과 금속층간의 선택비가 개선되고 연마시 산화막의 디싱 및 에로젼 등의 결함이 없는 구리배선용 CMP (Chemical Mechanical Polishing) 슬러리 조성물에 관한 것으로서, 보다 상세하게는 금속 산화물의 미분말, 과산화 화합물, 1 이상의 카르복시기를 가지는 카르복시산 화합물, 폴리에틸렌 글리콜, 유기화합물첨가제 및 탈이온수를 포함한 구리배선용 CMP 슬러리 조성물에 관한 것이다. 본 발명에 따른 조성물은 구리배선층 및 옥사이드 층간의 선택비가 커서 CMP 공정에 적용시 발생하는 옥사이드 에로젼, 부식, 피트, 디싱, 스크래치 등의 연마결함을 현저히 감소시킬 수 있다.The present invention relates to a chemical mechanical polishing (CMP) slurry composition for copper wiring, in which the selectivity between the oxide layer and the metal layer is improved and there are no defects such as dishing and erosion of the oxide film during polishing, and more particularly, fine powder and peroxide of the metal oxide. The present invention relates to a CMP slurry composition for copper wiring comprising a compound, a carboxylic acid compound having at least one carboxyl group, polyethylene glycol, an organic compound additive, and deionized water. The composition according to the present invention can significantly reduce the polishing defects such as oxide erosion, corrosion, pits, dishing, scratches, etc. generated during the CMP process due to the large selectivity between the copper wiring layer and the oxide layer.

Description

구리배선용 CMP 슬러리 조성물 {Slurry Composition for Chemical Mechanical Polishing of Copper}CMP slurry composition for copper wiring {Slurry Composition for Chemical Mechanical Polishing of Copper}

본 발명은 옥사이드층과 금속층간의 선택비가 개선되고 연마시 산화막의 디싱 및 에로젼 등의 결함이 없는 구리배선용 CMP (Chemical Mechanical Polishing) 슬러리 조성물에 관한 것으로서, 보다 상세하게는 금속 산화물, 과산화 화합물, 1 이상의 카르복시기를 가지는 카르복시산 화합물, 폴리에틸렌 글리콜, 유기화합물첨가제 및 탈이온수를 포함한 구리배선 CMP용 슬러리 조성물에 관한 것이다.The present invention relates to a chemical mechanical polishing (CMP) slurry composition for copper wiring, in which the selectivity between the oxide layer and the metal layer is improved and free from defects such as dishing and erosion of the oxide layer during polishing, and more particularly, metal oxides, peroxide compounds, The present invention relates to a slurry composition for copper wiring CMP containing a carboxylic acid compound having at least one carboxyl group, polyethylene glycol, an organic compound additive, and deionized water.

IC 회로의 집적도 증가를 위해 개발된 집적회로의 다중막 연마공정 또는 이중상감공정 등에서는 웨이퍼 표면의 광역 평탄화를 위해 주로 CMP 공정이 사용된다. CMP 공정이란, 반도체 제조시 웨이퍼 표면을 연마패드와 슬러리를 사용하여 평탄화하는 연마 방법으로, 폴리우레탄 재질의 연마패드 상에 슬러리 조성물을 떨어뜨리고 웨이퍼와 접촉시킨 후 회전 및 직선운동을 혼합한 오비탈 운동을 실시하여 웨이퍼를 기계적 및 화학적으로 연마하는 공정을 말하는 바, 이 때, 상기 슬러리는 일반적으로 물리적 연마작용을 하는 연마제 (abrasive) 및 화학적 연마작용을 하는 활성 성분, 예를 들어 에천트 (etchant) 또는 산화제를 포함하고 있어, 물리화학적으로 웨이퍼 표면 상의 돌출된 부분을 선택적으로 식각함으로써 평탄한 표면을 제공하게 된다. 상기 CMP 공정을 보다 상세히 설명하자면, 먼저 웨이퍼 또는 금속층위에 SOG 또는 BPSG, O3-TEOS, USG, P-TEOS, low-k, FOX 등의 저유전막을 증착(deposition)하고 포토리소그래피(photolithography) 공정과 건식 에칭(dry etch) 공정을 이용하여 저유전막질 내에 고랑(trench)을 형성한 다음 금속층과 저유전막과의 접착성을 향상하기 위해서 티타늄(titanium), 티타늄 나이트라이드 (titanium nitride), 탄탈륨(tantalum), 탄탈륨 나이트라이드(tantalum nitride) 등의 경계층(barrier layer)를 증착한다. 그 다음에 금속배선 또는 플러그에 텅스텐 또는 알루미늄, 구리 등의 전도성 물질을 채워 증착한다. 최종적으로 금속연마용 슬러리를 사용한 CMP 공정에서 저유전막 위의 모든 금속층을 제거하여 금속 배선 및 플러그, 비아 등을 형성시킨다.In the multi-layer polishing process or the double damascene process of the integrated circuit developed to increase the integration degree of the IC circuit, the CMP process is mainly used for the planarization of the wafer surface. The CMP process is a polishing method for flattening the wafer surface using a polishing pad and a slurry during semiconductor manufacturing. An orbital motion in which a slurry composition is dropped on a polishing pad made of polyurethane and is in contact with a wafer is mixed with rotational and linear motion. And a process for polishing the wafer mechanically and chemically, wherein the slurry is generally an abrasive with physical polishing and an active component with chemical polishing, such as an etchant. Or an oxidant, thereby physically and chemically etching the protruding portions on the wafer surface to provide a flat surface. To describe the CMP process in detail, first, a low dielectric film such as SOG or BPSG, O3-TEOS, USG, P-TEOS, low-k, FOX, etc. is deposited on a wafer or a metal layer, and a photolithography process is performed. A trench is formed in the low dielectric layer using a dry etch process, and then titanium, titanium nitride, and tantalum are used to improve the adhesion between the metal layer and the low dielectric layer. a barrier layer such as tantalum) and tantalum nitride is deposited. Then, the metal wire or plug is filled with a conductive material such as tungsten, aluminum, or copper and deposited. Finally, in the CMP process using the slurry for metal polishing, all metal layers on the low dielectric film are removed to form metal wires, plugs, vias, and the like.

CMP 슬러리는 연마대상에 따라 절연층 연마용 슬러리와 금속 연마용 CMP 슬러리로 나눌 수 있는데, 금속 배선연마용 슬러리는 금속층과 절연층에서의 연마속도 차이를 가져야 하며, 금속배선에서는 높은 연마속도가 요구되며, 절연층에서는 낮은 연마속도가 요구된다. 속도차이가 적게 되면 패턴 밀도가 높은 부분만 부분적으로 연마속도가 높아지는 현상이 발생하여 패턴 밀도가 높은 곳에서 에로젼(erosion) 등의 결함이 발생될 수 있기 때문이다. 따라서, 절연층의 연마속도를 낮게 하여 부분적인 연마속도 증가현상을 방지해야 한다. CMP slurry can be divided into insulating layer polishing slurry and metal polishing CMP slurry according to the polishing object. Metal wire polishing slurry should have difference in polishing speed between metal layer and insulating layer, and high polishing speed is required for metal wiring. In the insulating layer, a low polishing rate is required. This is because when the speed difference is small, only a portion having a high pattern density may have a high polishing rate, and defects such as erosion may occur at a high pattern density. Therefore, the polishing rate of the insulating layer should be lowered to prevent the partial polishing rate increase phenomenon.                         

한편, Cu 배선에 있어서의 층간 절연막에 대하여 보면, 초기에는 SiO2 또는 FSG(SiOF, k=3.4~3.6)를 사용하였으며, 이 경우 이중 상감공정의 에칭 스토퍼 (etching stopper)막으로서 SiN 막(k=7정도)을 중간에 끼워 넣을 필요가 있다. 또, CMP의 end point 종점이 곤란할 경우, CMP stopper 막으로서도 SiN막을 설정하고 있다. 또한, Cu의 제 2세대 공정에서는 k=2.5 전후의 low-k막을 채용하고 있다. 특히 유기계인 low-k 막을 채용하면, etch stopper 막에 SiO2를 사용할 수 있다. k=2.5 전후의 유기계 low-k 막은, 크게 나누어 비F계 polymer(SiLK, BCB, FLARE, PAE 등), F계 polymer(a-C:F, Parylene-F등), 및 유기 SOG 등, 셋으로 나눌 수 있으며, 이 중, 내열성, 탈 gas 성이 우수한 SiLK, FLARE등의 비F계 polymer가 유력시되고 있다. 한편, Cu 배선 형성은 공정 비용관점에서 이중상감공정을 채용하고 있으므로 디싱 (dishing) 또는 부식 (erosion)과 같은 CMP공정의 결함(weak point)이 나타날 가능성이 많고, W 배선에 비하여 soft한 금속이므로 연마시 표면 scratch가 많이 발생할 수 있는 단점이 있다. On the other hand, as for the interlayer insulating film in the Cu wiring, SiO 2 or FSG (SiOF, k = 3.4 to 3.6) was initially used. In this case, the SiN film (k was used as an etching stopper film in the double damascene process. = 7) you need to insert it in the middle. In addition, when the end point endpoint of CMP is difficult, a SiN film is also set as a CMP stopper film. In the second generation process of Cu, a low-k film around k = 2.5 is employed. In particular, by employing an organic low-k film, SiO 2 can be used as an etch stopper film. Organic low-k membranes before and after k = 2.5 are roughly divided into three groups: non-F polymers (SiLK, BCB, FLARE, PAE, etc.), F polymers (aC: F, Parylene-F, etc.), and organic SOG. Among them, non-F polymers such as SiLK and FLARE, which are excellent in heat resistance and degassing, are being considered. On the other hand, since Cu wiring is adopting a double damascene process from the viewpoint of process cost, it is likely that a weak point of a CMP process such as dishing or erosion may appear, and is a soft metal compared to W wiring. There is a disadvantage that a lot of surface scratches can occur when polishing.

CMP 공정으로 구리재질의 배선 및 플러그나 비아 등을 형성시 요구되는 요소들을 어느 정도 이루고 있으나 상기에서 언급한 바와 같이 연마속도 뿐만 아니라 부식 등의 문제점은 현재에도 계속 남아있어 반도체 제조시 수율 저하 및 생산성 저하로 인한 제조 비용이 많이 소요된다. 따라서, 당해 기술분야에는 연마막질에 따른 우수한 선택비를 가지고 있으며, 금속 연마시 결함과 디싱(dishing)의 발생이 적은 CMP 슬러리에 대한 요구가 있어왔다.The CMP process has achieved some of the elements required to form copper wires and plugs or vias. However, as mentioned above, problems such as polishing rate and corrosion still remain. Manufacturing costs due to degradation are high. Accordingly, there is a need in the art for a CMP slurry having excellent selectivity according to the quality of the abrasive film and less occurrence of defects and dishing during metal polishing.

본 발명자들은 전술한 문제들을 해결하기 위하여 예의 연구한 결과, 금속 산화물, 과산화 화합물, 1 이상의 카르복시기를 가지는 카르복시산 화합물, 폴리에틸렌 글리콜, 유기화합물첨가제 및 탈이온수를 포함한 구리배선용 CMP 슬러리 조성물의 경우, 선택비가 크게 향상되고, 연마시 결함이 현저히 감소한다는 사실을 확인하고 본 발명을 완성하게 되었다.The present inventors have diligently studied to solve the above problems, and as a result, the selection ratio of the CMP slurry composition for copper wiring including a metal oxide, a peroxide compound, a carboxylic acid compound having one or more carboxyl groups, polyethylene glycol, an organic compound additive, and deionized water is It has been found to be greatly improved and that the defects in polishing are significantly reduced, thus completing the present invention.

결국 본 발명은 선택비의 문제가 크게 개선되고 연마시 결함 발생율을 크게 줄일 수 있는 금속 CMP 슬러리를 제공하기 위한 것이다.
After all, the present invention is to provide a metal CMP slurry that can greatly improve the problem of the selectivity ratio and greatly reduce the incidence of defects during polishing.

상기 목적을 달성하기 위한 본 발명의 한 측면은 금속 산화물, 과산화 화합물, 1 이상의 카르복시기를 가지는 카르복시산 화합물, 폴리에틸렌 글리콜, 유기화합물첨가제 및 탈이온수를 포함한 구리배선용 CMP 슬러리 조성물에 관한 것이다.One aspect of the present invention for achieving the above object relates to a CMP slurry composition for copper wiring comprising a metal oxide, a peroxide compound, a carboxylic acid compound having at least one carboxyl group, polyethylene glycol, an organic compound additive and deionized water.

본 발명의 또 다른 한 측면은 상기 조성물을 사용한 금속 연마방법에 관한 것이다.
Another aspect of the invention relates to a method of polishing a metal using the composition.

이하, 본 발명에 관해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 연마제로서 사용되는 금속산화물은 실리카, 알루미나, 세리아, 지르코니아 및 티타니아로 구성된 군에서 선택되는 1종 이상으로, 발연법과 졸-겔법 중 어떤 방법으로 제조된 것이든 모두 사용 가능하며, 그 중에서도 실리카를 사 용하는 것이 경제성 및 웨이퍼 오염 방지의 측면에서 가장 바람직하다. 이들 금속산화물의 1차 입자크기(TEM 측정 결과)는 10~70nm, 바람직하게는 20~40nm이고, 비표면적은 100~300m2/g인 것이 바람직하다. 1차 입자가 10nm 미만으로 너무 작으면 연마속도(removal rate)가 떨어져 생산성(throughput) 측면에서 바람직하지 못하고, 반대로 70nm보다 클 경우에는 연마속도가 증가하여 생산성 측면에서는 유리하나 분산에 어려움이 있고 거대입자(large particle)가 다량 존재하여 μ-스크래치를 다량 유발하므로 바람직하지 않다. 이들 금속산화물은 수분산상태에서의 2차 입자가 평균 100~200nm의 크기를 갖도록 분산되는 것이 바람직하고, 장기간 분산안정성을 유지하기 위해서는 금속산화물 표면의 수산기 농도가 0.5~4 ea/n㎡인 것이 바람직하다. 상기 금속산화물의 슬러리 내 함량은 슬러리 총 중량의 0.1~50중량%, 바람직하게는 1~50중량%이다.The metal oxide used as the abrasive in the present invention is one or more selected from the group consisting of silica, alumina, ceria, zirconia, and titania, and any one produced by any of the fume method and the sol-gel method may be used. The use of silica is most preferred in view of economics and wafer contamination. these The primary particle size (TEM measurement result) of the metal oxide is 10 to 70 nm, preferably 20 to 40 nm, and the specific surface area is preferably 100 to 300 m 2 / g. If the primary particles are too small, less than 10 nm, the removal rate is low, which is undesirable in terms of throughput. On the contrary, when the primary particles are larger than 70 nm, the removal rate is increased, which is advantageous in terms of productivity, but difficult to disperse and large. It is not preferable because a large amount of particles are present to cause a large amount of μ-scratches. These metal oxides are preferably dispersed such that secondary particles in an aqueous dispersion have an average size of 100 to 200 nm, and in order to maintain dispersion stability for a long time, the hydroxyl group concentration on the surface of the metal oxide is 0.5 to 4 ea / nm 2. desirable. The content of the metal oxide in the slurry is 0.1 to 50% by weight, preferably 1 to 50% by weight of the total weight of the slurry.

금속 CMP에서 연마 메카니즘은 금속 표면을 산화시켜 산화막을 형성하고 이 산화막을 CMP 슬러리의 화학적 물리적 작용에 의해서 제거시키는 연속적이며 반복적인 과정에 의한 연마 메카니즘을 가지고 있는 바, 본 발명에 따른 조성물에 있어 금속표면을 산화시키는 산화제로는 과산화수소(hydrogen peroxide), 포타슘 페리시아나이드(potassium ferricyanide), 포타슘 디크로메이트 (potassium dichromate), 포타슘 이오데이트(potassium iodate), 포타슘 브로메이트(potassium bromate), 바나듐 트리옥시드 (vanadium trioxide), 차아염소산(hypochlorous acid), 차아염소산나트륨(sodium hypochlorite), 차아염소산 칼륨(potassium hypochlorite), 차아 염소산 칼슘(calcium hypochlorite), 차아염소산 마그네슘(magnesium hypochlorite), 질산철(ferric nitrate), KMgO4 등이 있다. 바람직하게는 과산화수소를 사용하며, 이 때, 그 첨가량은 슬러리 총 중량의 0.1 내지 5중량% 이며, 보다 바람직하게는 0.1 wt% 내지 1.0중량%이다. 5중량% 보다 많은 양을 첨가하면 연마속도는 높아지나 부식 현상으로 인한 라인 리세스(line recess) 또는 피팅 (pitting) 현상이 일어나 반도체 회로작동에 문제를 일으킬 소지가 많으며, 이보다 0.1 중량% 미만으로 첨가시에는 연마속도 저하로 상기에서 언급한 문제점을 가질 수 있게 된다.The polishing mechanism in metal CMP has a polishing mechanism by a continuous and repeated process of oxidizing the metal surface to form an oxide film and removing the oxide film by chemical and physical action of the CMP slurry. Oxidizing agents that oxidize surfaces include hydrogen peroxide, potassium ferricyanide, potassium dichromate, potassium iodate, potassium bromate, and vanadium trioxide. (vanadium trioxide), hypochlorous acid, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, magnesium hypochlorite, ferric nitrate , KMgO 4 and the like. Preferably, hydrogen peroxide is used, wherein the addition amount is 0.1 to 5% by weight of the total weight of the slurry, more preferably 0.1 to 1.0% by weight. If more than 5% by weight is added, the polishing rate is increased, but line recess or pitting due to corrosion may occur, which may cause problems in the operation of the semiconductor circuit. At the time of addition, the polishing rate may be reduced to have the above-mentioned problems.

본 발명에 따른 조성물은 컴플렉스화제 (complexing agent)로서 카르복시산 화합물을 사용하여 산화막층 형성시 발생되는 구리산화물 이온인 Cu+ 및 Cu2+이온들을 킬레이트(chelate) 또는 컴플랙스(complex)시켜 산화막층을 강화시켜 이물질의 침투를 방지함과 동시에 높은 연마속도를 유지시켜 과연마에 의한 dishing이나 erosion등의 문제를 해결하는 바, 사용가능한 카르복실산 화합물의 예는 시트르산 (citric acid), 락트산 (lactic acid), 마론산 (malonic acid), 타르타르산 (tartaric acid), 숙신산 (succinic acid), 아세트산 (acetic acid), 옥살산 (oxalic acid), 아미노산(amino acid), 아미노설퓨릭산(amino sulfuric acid), 인산(phosphoric acid), 포스포닉산(phosphonic acids) 및 이들의 염 등이 있다. 바람직하게는 암모늄 타르타레이트 (Ammonium Tartrate)를 사용하며, 첨가량은 슬러리 총 중량의 0.1 내지 5 중량%, 보다 바람직하게는 0.1wt% 내지 1중량%의 범위이 다.The composition according to the present invention chelates or complexes Cu + and Cu 2+ ions, which are copper oxide ions generated when forming an oxide layer using a carboxylic acid compound as a complexing agent, to strengthen the oxide layer. By preventing the infiltration of foreign substances and maintaining a high polishing rate to solve problems such as dishing or erosion by overpolishing, examples of the carboxylic acid compounds that can be used include citric acid, lactic acid, lactic acid, Malonic acid, tartaric acid, succinic acid, acetic acid, oxalic acid, amino acid, amino sulfuric acid, phosphoric acid acid), phosphonic acids and salts thereof. Preferably ammonium tartrate is used, and the addition amount is in the range of 0.1 to 5% by weight, more preferably 0.1 to 1% by weight of the total weight of the slurry.

본 발명에 따른 슬러리는 폴리에틸렌 글리콜을 함유하는 바, 이는 연마제인 금속산화물의 분산안정성을 향상시키기 위한 것이다. 바람직하게는 분자량이 15,000 내지 25,000인 폴리에틸렌 글리콜을 사용한다, 상기 폴리에틸렌 글리콜의 첨가량은 조성물의 총 중량을 기준으로 0.01 내지 0.1 중량%로 한다.The slurry according to the present invention contains polyethylene glycol, which is intended to improve the dispersion stability of the metal oxide, which is an abrasive. Preferably, polyethylene glycol having a molecular weight of 15,000 to 25,000 is used. The amount of the polyethylene glycol added is 0.01 to 0.1% by weight based on the total weight of the composition.

본 발명에 따른 슬러리는 아민 화합물 (즉, 암모늄 또는 아민 계열과 그들의 염)을 포함하는 바, 이들은 연마 입자들이 금속표면에 흡착되는 것을 방지한다. Cu 배선의 연마가 진행되어 배리어층(barrier layer)이 표면으로 노출되기 시작하면, 더 이상 연마가 급속하게 진행되지 않도록 하는 첨가제가 필요하다. 본 발명의 경우, Cu 등의 금속표면에는 반응하지 않고 TaN와 SiO2와 같은 질화물/산화물 표면에 흡착되어 연마가 진행되는 것을 저해하는 성분으로서, TMAH (Tetramethylammoniumhydroxide: 테트라메틸 암모늄히드록시드), n-부틸아민, 또는 트리메탄올아민을 사용한다. 이들 첨가제 들의 각각의 첨가량은 슬러리 총 중량의 0.01wt%에서 0.5wt%정도가 적당하다.
The slurry according to the invention comprises an amine compound (ie ammonium or amine series and their salts), which prevents the abrasive particles from adsorbing on the metal surface. As polishing of the Cu wiring proceeds and the barrier layer begins to be exposed to the surface, an additive is needed so that the polishing does not proceed rapidly any further. In the present invention, TMAH (Tetramethylammoniumhydroxide), nA, which is adsorbed on nitride / oxide surfaces such as TaN and SiO 2 and does not react with metal surfaces such as Cu and inhibits the progress of polishing, n -Butylamine, or trimethanolamine. The amount of each of these additives added is suitably about 0.01 wt% to 0.5 wt% of the total weight of the slurry.

본 발명에 따른 슬러리 조성물은 반도체 공정에 있어 금속 연마를 위한 CMP 공정에 유용하게 사용할 수 있으며, 바람직하게는 구리금속의 연마를 위해 사용할 수 있다. The slurry composition according to the present invention can be usefully used in the CMP process for metal polishing in the semiconductor process, preferably can be used for polishing of copper metal.                     

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the structure and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

[실시예]EXAMPLE

실시예 1Example 1

실리카 400g, 탈이온수 3526g, 타르타르산 암모늄염(Ammonium Tartrate) 40g, 폴리에틸렌글리콜(PEG: 분자량 15,000) 2.0g, 과산화수소 12g, TMAH 20g의 혼합물을 5ℓ의 폴리에틸렌 플라스크에서 2,000rpm에서 2시간 동안 고속 교반시킨 혼합물에 고압 분산방법을 이용하여 1,200psi에서 1회 동안 분산시켰다. 이렇게 해서 얻어진 슬러리를 1㎛ 뎁스(depth) 필터를 이용하여 여과한 후, 아래와 같은 조건에서 1분간 연마한 후 연마에 의해 제거된 두께변화로부터 연마속도를 측정하였다. 결과를 표1에 나타내었다.A mixture of 400 g of silica, 3526 g of deionized water, 40 g of ammonium tartrate, 2.0 g of polyethylene glycol (PEG: 15,000 molecular weight), 12 g of hydrogen peroxide, and 20 g of TMAH was added to a mixture at high speed of stirring at 2,000 rpm for 2 hours in a 5 L polyethylene flask. Dispersion was performed once at 1,200 psi using a high pressure dispersion method. The slurry thus obtained was filtered using a 1 μm depth filter, and then polished for 1 minute under the following conditions, and then the polishing rate was measured from the thickness change removed by polishing. The results are shown in Table 1.

o 연마기 Model: 6EC (STRASBAUGH 사)   o Grinder Model: 6EC (STRASBAUGH)

o 연마조건:   o Polishing condition:

- 패드 형태(Pad type): IC1400/SubaⅣ Stacked(Rodel 사)    Pad type: IC1400 / SubaIV Stacked (Rodel)

- 플레튼 속도(Platen Speed) : 80 rpm    Platen Speed: 80 rpm

- 퀼 속도(Quill Speed) : 80 rpm    Quill Speed: 80 rpm

- 압력 : 8 psi    Pressure: 8 psi

- 후방 압력(Back Pressure) : 0 psi    Back Pressure: 0 psi

- 온 도 : 25℃     -Temperature: 25 ℃                     

- 슬러리 흐름 (Slurry flow) : 150 ㎖/min    Slurry flow: 150 ml / min

o 연마대상 :    o Polishing target:

구리가 증착된 6인치 웨이퍼6-inch wafer with copper

실시예 2 내지 3Examples 2 to 3

상기 실시예 1에서 TMAH의 첨가량을 하기 표 1에 나타난 바와 같이 한 것을 제외하고는 실시예 1과 동일한 방법으로 연마용 슬러리를 제조하고 연마성능을 평가하였다. 결과는 표 1에 나타내었다.
A polishing slurry was prepared in the same manner as in Example 1 except that the amount of TMAH added in Example 1 was as shown in Table 1 below, and the polishing performance was evaluated. The results are shown in Table 1.

실시예 4Example 4

상기 실시예 1에서 TMAH 대신에 n-부틸아민을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 연마용 슬러리를 제조하고 연마성능을 평가하였다. Except that n-butylamine was added instead of TMAH in Example 1 to prepare a polishing slurry in the same manner as in Example 1 and evaluated the polishing performance.

결과는 표 1에 나타내었다.
The results are shown in Table 1.

실시예 5Example 5

상기 실시예 1에서 TMAH 대신에 트리에탄올 아민을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 연마용 슬러리를 제조하고 연마성능을 평가하였다. 결과는 표1에 나타내었다.
A polishing slurry was prepared in the same manner as in Example 1 except that triethanol amine was added instead of TMAH in Example 1, and the polishing performance was evaluated. The results are shown in Table 1.

비교예 1Comparative Example 1

상기 실시예 1에서 TMAH를 첨가하지 않은 것을 제외하고는 실시예 1과 동일 한 방법으로 연마용 슬러리를 제조하고 연마성능을 평가하였다. Except that TMAH was not added in Example 1 to prepare a polishing slurry in the same manner as in Example 1 and evaluated the polishing performance.

결과는 표1에 나타내었다.The results are shown in Table 1.

구 분division 유기화합물첨가제Organic compound additive 첨가량(g)Addition amount (g) Cu layer 연마속도 (Å/min)Cu layer polishing rate (Å / min) barrier layer(TaN) 연마속도 (Å/min)barrier layer (TaN) polishing rate (Å / min) Oxide layer 연마속도 (Å/min)Oxide layer polishing rate (Å / min) 실시예1 실시예2 실시예3 실시예4 실시예5 비교예1Example 1 Example 2 Example 3 Example 4 Example 5                                                  Comparative Example 1 TMAH TMAH TMAH n-부틸아민 트리에탄올아민 -TMAH TMAH TMAH n-butylamine triethanolamine                                                  - 20g 12g 4g 20g 20g -20g 12g 4g 20g 20g                                                  - 4,410 4,340 4,250 4,350 4,300 4,1204,410 4,340 4,250 4,350 4,300                                                  4,120 30 260 380 69 70 26530 260 380 69 70                                                  265 77 110 150 88 98 32577 110 150 88 98                                                  325

상기 표로부터, 본 발명에 따른 조성물의 경우, 선택비가 우수한 것을 알 수 있다.
From the table, it can be seen that in the case of the composition according to the present invention, the selectivity is excellent.

이상에서 상세히 설명한 바와 같이, 본 발명의 슬러리 조성물은 Cu와 같은 금속층, TaN 층 및 옥사이드층(Oxide layer)의 선택비가 크게 개선되어 구리배선의 CMP 공정시 구리산화막의 디싱 및 에로젼 등의 문제를 방지함과 동시에 높은 연마속도를 달성할 수 있다.As described in detail above, in the slurry composition of the present invention, the selectivity of the metal layer such as Cu, the TaN layer, and the oxide layer is greatly improved, thereby preventing problems such as dishing and erosion of the copper oxide layer during the CMP process of copper wiring. At the same time, it is possible to achieve a high polishing rate.

Claims (5)

금속 산화물 0.1 내지 50 중량%, 과산화 화합물 0.1 내지 5 중량%, 1 이상의 카르복시기를 가지는 카르복시산 화합물 0.1 내지 5 중량%, 폴리에틸렌 글리콜 0.01 내지 0.1 중량%, TMAH, n-부틸아민, 트리메탄올아민에서 선택되는 한 종 이상의 유기화합물 첨가제 0.01 내지 0.5 중량% 및 탈이온수를 포함한 금속 CMP용 슬러리 조성물.Selected from 0.1 to 50% by weight of metal oxide, 0.1 to 5% by weight of peroxide compound, 0.1 to 5% by weight of carboxylic acid compound having at least one carboxyl group, 0.01 to 0.1% by weight of polyethylene glycol, TMAH, n-butylamine, trimethanolamine Slurry composition for metal CMP comprising 0.01 to 0.5% by weight of at least one organic compound additive and deionized water. 제 1항에 있어서, 금속산화물은 실리카, 알루미나, 세리아, 지르코니아, 티타니아 및 이들의 혼합물로 구성된 군에서 선택되며, 1차 입자크기는 10~70nm이고, 비표면적은 100~300m2/g이며, 2차 입자의 크기는 100 내지 200㎚이고 표면의 수산기 농도가 0.5 내지 4 ea/㎚2 인 것을 특징으로 하는 조성물.The method of claim 1, wherein the metal oxide is selected from the group consisting of silica, alumina, ceria, zirconia, titania and mixtures thereof, the primary particle size is 10 ~ 70nm, the specific surface area is 100 ~ 300m 2 / g, The size of the secondary particles is 100 to 200nm, the composition characterized in that the hydroxyl concentration of the surface is 0.5 to 4 ea / nm 2 . 제 1항에 있어서, 상기 과산화 화합물은 과산화수소(hydrogen peroxide), 포사슘 페리시아나이드(potassium ferricyanide), 포타슘 디크로메이트 (potassium dichromate), 포타슘 이오데이트(potassium iodate), 포타슘 브로메이트(potassium bromate), 바나듐 트리옥시드 (vanadium trioxide), 차아염소산 (hypochlorous acid), 차아염소산나트륨(sodium hypochlorite), 차아염소산 칼륨 (potassium hypochlorite), 차아염소산 칼슘(calcium hypochlorite), 차아염소산 마그네슘(magnesium hypochlorite), 질산철(ferric nitrate), 또는 KMgO4 이고, 카르복시산 화합물은 시트르산 (citric acid), 락트산 (lactic acid), 마론산 (malonic acid), 타르타르산(tartaric acid), 숙신산 (succinic acid), 아세트산 (acetic acid), 옥살산 (oxalic acid), 아미노산(amino acid), 아미노설퓨릭산(amino sulfuric acid), 인산(phosphoric acid), 포스포닉산 (phosphonic acids) 또는 이들의 염인 것을 특징으로 하는 조성물.The method of claim 1, wherein the peroxide compound is hydrogen peroxide (hydrogen peroxide), potassium ferricyanide (potassium ferricyanide), potassium dichromate (potassium chromium), potassium iodate (potassium iodate), potassium bromate (potassium bromate), Vanadium trioxide, hypochlorous acid, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, magnesium hypochlorite, iron nitrate (ferric nitrate), or KMgO 4 , the carboxylic acid compound is citric acid, lactic acid, malonic acid, tartaric acid, succinic acid, acetic acid, Oxalic acid, amino acid, amino sulfuric acid, phosphoric acid, phosphonic acids or salts thereof Characterized in that the composition. 제 1항에 있어서, 상기 폴리에틸렌글리콜의 분자량은 15,000 내지 25,000인 것을 특징으로 하는 조성물.The composition of claim 1, wherein the polyethylene glycol has a molecular weight of 15,000 to 25,000. 제 1항 내지 제 4항 중 어느 한 항에 따른 조성물을 사용한 금속 연마 방법.A metal polishing method using the composition according to any one of claims 1 to 4.
KR1020030057521A 2003-08-20 2003-08-20 Slurry Composition for Chemical Mechanical Polishing of Copper KR100565425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030057521A KR100565425B1 (en) 2003-08-20 2003-08-20 Slurry Composition for Chemical Mechanical Polishing of Copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030057521A KR100565425B1 (en) 2003-08-20 2003-08-20 Slurry Composition for Chemical Mechanical Polishing of Copper

Publications (2)

Publication Number Publication Date
KR20050019626A KR20050019626A (en) 2005-03-03
KR100565425B1 true KR100565425B1 (en) 2006-03-30

Family

ID=37228849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030057521A KR100565425B1 (en) 2003-08-20 2003-08-20 Slurry Composition for Chemical Mechanical Polishing of Copper

Country Status (1)

Country Link
KR (1) KR100565425B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673635B1 (en) * 2004-12-30 2007-01-24 제일모직주식회사 Copper cmp slurry
KR101385043B1 (en) * 2011-12-30 2014-04-15 제일모직주식회사 CMP slurry compositions and polishing method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109960A (en) * 2000-06-05 2001-12-12 윤종용 Slurry for chemical mechanical polishing metal layer, method of preparing the same, and method of metallization for semiconductor device using the same
KR20020077636A (en) * 2001-04-05 2002-10-12 삼성전자 주식회사 Chemical mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109960A (en) * 2000-06-05 2001-12-12 윤종용 Slurry for chemical mechanical polishing metal layer, method of preparing the same, and method of metallization for semiconductor device using the same
KR20020077636A (en) * 2001-04-05 2002-10-12 삼성전자 주식회사 Chemical mechanical polishing slurry, and chemical mechanical polishing process and shallow trench isolation process employing the same

Also Published As

Publication number Publication date
KR20050019626A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP6128161B2 (en) Method for chemical mechanical polishing of substrates
EP2035523B1 (en) Compositions and methods for polishing silicon nitride materials
JP5596344B2 (en) Silicon oxide polishing method using colloidal silica
US20080003829A1 (en) Chemical mechanical polishing slurry
US6930054B2 (en) Slurry composition for use in chemical mechanical polishing of metal wiring
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
KR101854499B1 (en) Cmp slurry composition for copper wire and polishing method using the same
US9676966B2 (en) Chemical mechanical polishing composition and process
KR100680509B1 (en) Metal cmp slurry composition that favor mechanical removal of metal oxides with reduced susceptibility to micro-scratching
KR100565425B1 (en) Slurry Composition for Chemical Mechanical Polishing of Copper
KR100504608B1 (en) Slurry Composition for Polishing Copper Wire
KR101279966B1 (en) CMP slurry composition for polishing metal wiring and polishing method using the same
KR101279969B1 (en) CMP slurry composition for polishing metal wiring and polishing method using the same
KR100725550B1 (en) Cu CMP Slurry And Cu Polishing Method Using Thereof
KR100611466B1 (en) CMP slurry for polishing Cu line
JP4984032B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
KR100565426B1 (en) Slurry for chemical and mechanical polishing of Tungsten line
KR100649859B1 (en) CMP Slurry for Polishing of Cu Lines
KR100552381B1 (en) Slurry Composition for Chemical Mechanical Polishing of Metal
KR100432637B1 (en) CMP slurry for polishing copper wirings
KR100660753B1 (en) Cmp precursor ? slurry for semiconductor manufacturing having high dispersion stability
KR20030035637A (en) Slurry for chemical and mechanical polishing of Cu lines
KR100600598B1 (en) Slurry Composition for Chemical Mechanical Polishing of Tungsten Wire
KR100546788B1 (en) Slurry Composition for Polishing Metal having High-selectivity
KR100725552B1 (en) Composition of slurry for CMP

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141223

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200214

Year of fee payment: 15