KR100557410B1 - Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans - Google Patents

Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans Download PDF

Info

Publication number
KR100557410B1
KR100557410B1 KR1020030075112A KR20030075112A KR100557410B1 KR 100557410 B1 KR100557410 B1 KR 100557410B1 KR 1020030075112 A KR1020030075112 A KR 1020030075112A KR 20030075112 A KR20030075112 A KR 20030075112A KR 100557410 B1 KR100557410 B1 KR 100557410B1
Authority
KR
South Korea
Prior art keywords
leaching
weight
parts
medium
solution
Prior art date
Application number
KR1020030075112A
Other languages
Korean (ko)
Other versions
KR20050040010A (en
Inventor
김동진
안종관
박경호
정헌생
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020030075112A priority Critical patent/KR100557410B1/en
Publication of KR20050040010A publication Critical patent/KR20050040010A/en
Application granted granted Critical
Publication of KR100557410B1 publication Critical patent/KR100557410B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 심해저 망간단괴의 중간생성물인 난용성 매트로부터 미생물인 철산화균(Thiobacillus ferrooxidans, 이하 T.ferrooxidans)을 이용하여 구리, 니켈, 코발트 등을 이온상태로 침출시키는 제련 방법에 관한 것으로서, 그 목적은 금속품위가 낮아 경제적인 가치가 적은 저품위 광석이나 광미 또는 처리시 황화가스의 다량 발생으로 인해 환경오염이 큰 광석이나 유가금속 중간생성물들로부터 미생물을 이용하여 유가금속을 경제적이며 환경친화적인 미생물 침출공정기술을 제공하는데 있다.The present invention relates to a smelting method for leaching copper, nickel, cobalt, etc. in an ionic state using a microorganism, Thiobacillus ferrooxidans (hereinafter referred to as T.ferrooxidans ) , from a poorly soluble mat, an intermediate product of deep sea manganese nodules. Economical and environmentally friendly microorganism leaching of valuable metals by using microorganisms from ore or valuable metal intermediate products with high environmental pollution due to the generation of low-grade ore or tailings or large amount of sulfide gas during treatment To provide process technology.

본 발명의 구성은 미생물침출공정기술을 제공함에 있어, 적절한 배지에 의한 미생물의 배양, 배양된 미생물의 회수, 미생물을 접종한 무기염배지에 의한 매트로부터 유가금속의 침출, 일정시간 침출반응 후 침출잔사로부터 침출액을 분리하는 방법 등을 특징으로 한다. The composition of the present invention provides a microbial leaching process technology, cultivation of microorganisms by appropriate medium, recovery of cultured microorganisms, leaching of valuable metals from the mat by the inorganic salt medium inoculated with microorganisms, leaching after a certain time leaching reaction And a method of separating the leach solution from the residue.

미생물 침출, 망간단괴 중간생성물, 매트, 철산화균, 유가금속, 기질Microbial Leaching, Manganese Nodule Intermediates, Mat, Ferric Oxide, Valuable Metals, Substrates

Description

망간단괴의 중간생성물인 매트로부터 철산화균에 의한 구리, 니켈, 코발트의 미생물침출 제련방법{Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans}Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans}

본 발명은 망간단괴의 중간생성물인 매트로부터 철산화균(T.ferrooxidans)에 의한 구리, 니켈, 코발트의 미생물침출 제련방법에 관한 것이다.The present invention relates to a method for smelting microorganisms of copper, nickel and cobalt by T. ferrooxidans from an intermediate product of manganese nodules.

국내 부존자원의 종류는 다양하나 광채 규모가 작고 품위가 낮기 때문에 수요처가 한정되고 고품위 원료광물 및 1차 가공소재광물의 수입이 지속적으로 증가하고 있다. 또한 기존의 처리방법으로는 경제성이 없어 국내 광산이 대부분 휴·폐광화되고 무역적자는 확대되고 있다. 따라서 단기적으로는 국내의 난용성/저품위 광물자원을 경제적으로 처리하므로 써 부가가치를 부여할 수 있는 신기술의 개발이 필요하다. 장기적으로는 휴·폐광된 광산의 폐광석이나 광미, 또는 중금속 함유 폐기물로부터 유가자원을 회수하고 폐수로 오염된 토양과 지하수 등 심각한 환경오염문제를 억제, 해결할 수 있는 환경 친화적인 처리법 마련이 시급하다. Although there are many kinds of domestic resources, the size of the minerals and their low quality have limited demand for them, and the imports of high-quality raw materials and primary processing materials have continued to increase. In addition, there is no economic feasibility of existing treatment methods, and most domestic mines are closed and abandoned, and trade deficits are expanding. Therefore, in the short term, it is necessary to develop new technologies that can add value by economically treating domestic insoluble / low-grade mineral resources. In the long term, it is urgent to prepare environmentally-friendly treatments to recover valuable resources from waste ore, tailings or heavy metal-containing wastes in abandoned and abandoned mines, and to suppress and solve serious environmental pollution problems such as soil and groundwater contaminated with wastewater.

미생물 침출법은 미생물의 직·간접 반응기구에 의해 금속광석의 물리·화학 적 성질을 변화시켜 금속을 이온상태로 침출시키는 공정으로 금속함량이 낮아 기존의 건식 및 습식공정으로 처리하기에 부적합한 저품위 광석이나 소량의 귀금속이 분산되어 있는 난용성 광물로부터 유가금속을 회수할 수 있는 경제적인 처리법으로 평가되고 있다. 또한 에너지 사용량이 작고 SO2 가스가 방출되지 않기 때문에 환경문제를 일으키지 않으며, 초기 투자비가 작고 공정/조업이 간단하고 고도의 기술적 지식을 필요로 하지 않는 특징을 갖고 있다. Microbial leaching is a process that changes the physical and chemical properties of metal ores by the direct and indirect reactor of microorganisms and leaches the metal into ionic state. Low-grade ore that is not suitable for treatment by conventional dry and wet processes due to low metal content. However, it is evaluated as an economical treatment method for recovering valuable metals from poorly soluble minerals in which small amounts of precious metals are dispersed. In addition, the energy consumption is small and SO 2 gas is not emitted, so it does not cause environmental problems, has a small initial investment, a simple process / operation, and does not require high technical knowledge.

미생물을 이용한 금속회수공정은 대부분 호기성 분위기 하에서 철산화균이나 황산화균에 의하여 금속을 산화시킨 후 침출시켜 회수한다. 호기성 분위기의 철산화균은 금속의 침출속도가 빠르며 생존력이 다른 균에 비해 우수하다는 장점이 있어 금속을 침출하는데 많이 이용되고 있다. 또한 망간단괴 중간생성물인 매트는 황이 다량 함유되어 있어 기존의 물리화학적 제련방법으로는 유가금속을 회수하기 곤란하다. Most of the metal recovery processes using microorganisms are recovered by leaching the metal by oxidizing iron or sulfated bacteria under an aerobic atmosphere. Iron oxidizing bacteria in aerobic atmosphere are used to leach metals because of the fast leaching rate of metals and excellent viability compared to other bacteria. In addition, since the intermediate product of manganese nodules contains a large amount of sulfur, it is difficult to recover valuable metals by conventional physicochemical smelting methods.

즉, 산 및 알칼리 침출법에 의한 매트의 침출시 강산 및 강알칼리가 요구되나 이 침출법은 환경오염이 매우 심각하고, 배소법에 의한 제련시에는 황화가스가 다량으로 발생하여 설비운영시 많은 문제점을 야기하고 있다. In other words, strong acid and strong alkali are required when leaching mat by acid and alkali leaching method. However, this leaching method is very serious in environmental pollution, and when smelting by roasting method generates large amount of sulfide gas. It is causing.

따라서 망간단괴 중산생성물인 매트로부터 상온 상압하에서 강산 및 강알칼리를 사용하지 않고 대기 오염물질의 배출없이 유가금속을 침출, 회수하는 친환경적인 제련기술의 개발이 절실히 필요하다.Therefore, there is an urgent need to develop an eco-friendly smelting technology that leaches and recovers valuable metals without using strong acids and strong alkalis at room temperature under normal temperature and pressure from manganese nodules, which is a product of manganese nodules.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 구리, 니켈 및 코발트 등과 같은 유가금속을 함유한 망간단괴 중간생성물인 매트로부터 유가금속을 수용액상으로 침출하여 제련하기 위한 생물학적 침출방법을 제공하는데 있다.
SUMMARY OF THE INVENTION An object of the present invention for solving the above problems is to provide a biological leaching method for leaching valuable metals into an aqueous solution from a mat, a manganese nodule intermediate containing valuable metals such as copper, nickel and cobalt. .

상기한 바와 같은 목적을 달성하고 기존 제련법의 단점을 해결하기 위한 본 발명의 실시예인 구성과 그 작용을 상세히 설명하면 다음과 같다.The construction and operation of the embodiment of the present invention for achieving the object as described above and solving the disadvantages of the existing smelting method in detail as follows.

본 발명은 입자크기 - 100 mesh의 망간단괴 중간생성물인 매트(표 1 참조)를 침출시료로, 미생물은 철산화균인 T.ferrooxidans, 탄소원 및 영양소로는 9K 배지(표 2 참조)를, 실험장치로는 황온 항습을 조절할 수 있는 항온진탕조(Shaking incubator)를 사용한 미생물 침출제련방법이다.The present invention particle sizes - as is of 100 mesh manganese nodules intermediates mats (see Table 1) the sample to leaching, the microorganism of the iron hwagyun T.ferrooxidans, a carbon source and nutrients 9K medium (see Table 2), experimental Apparatus is a microbial leaching method using a shaking incubator that can control the humidity and humidity.

표 1. 망간단괴 제련중간상인 매트의 화학조성Table 1. Chemical composition of mat as an intermediate for smelting manganese nodules

ComponentComponent NiNi CuCu CoCo FeFe SS Contents(wt%)Contents (wt%) 39.339.3 24.824.8 3.93.9 11.111.1 20.920.9

표 2. 9K 배지의 화합물 조성(전체 1ℓ를 이루는 해당 성분 g)Table 2. Compound Composition of 9K Medium (g of Components Constituting 1 L in Total)

9K medium (g/ℓ)9K medium (g / ℓ) (NH4)2SO4 (NH 4 ) 2 SO 4 3.03.0 K2HPO4 K 2 HPO 4 0.50.5 MgSO4·H2OMgSO 4 H 2 O 0.50.5 KClKCl 0.10.1 Ca(NO3)2 Ca (NO 3 ) 2 0.01 0.01 FeSO4·7H2OFeSO 4 7H 2 O 45.045.0 용매 증류수Solvent distilled water 나머지Remainder pH 2.0pH 2.0

구체적인 본 발명의 방법은 Specific method of the present invention

항온항습조에서 미생물 균주로 사용되는 철산화균을 배양하는 단계와, Culturing the iron oxide bacteria used as a microbial strain in a constant temperature and humidity bath;

배양된 미생물 균주를 원심분리기에서 분리·농축하는 단계와,Separating and concentrating the cultured microbial strain in a centrifuge,

미생물 균주를 무기염배지(9K)와 매트가 혼합된 반응조에 접종하여 침출시키는 단계를 거쳐 유가금속이 용출된 침출액을 회수하는 미생물침출방법이다.It is a microbial leaching method for recovering the leaching solution of the valuable metal eluted through the step of inoculating the microbial strain into a reaction tank mixed with an inorganic salt medium (9K) and the mat.

상기 항온항습조에서 미생물 균주로 사용되는 철산화균을 배양하는 단계에서 30℃(균의 최적 활성온도)로 일정하게 유지된 항온항습조에서 9K 배지액 100중량부에 철산화균을 1중량부 접종하여 48시간(균의 활성이 가장 좋은 시간이며 이 시간이 지나면 균이 쇠퇴기에 들어간다.) 유지한다. 철산화균이 1중량부를 초과할 경우에는 균의 영양분이 부족하여 생존율이 떨어지며 1중량부 보다 적을 경우에는 배양하는 시간이 48시간 보다 많이 요구된다. Incubating iron oxide bacteria used as a microbial strain in the constant temperature and humidity bath inoculated 1 weight part of iron oxide bacteria in 100 parts by weight of 9K medium solution in a constant temperature and humidity bath maintained constant at 30 ℃ (optimal activity temperature of the bacteria). Maintain 48 hours (the best time for the activity, after which time the bacteria enter the decline phase). If the iron oxidizing bacteria exceeds 1 part by weight, the survival rate is low due to the lack of nutrients of the bacteria, if less than 1 part by weight requires more than 48 hours to incubate.

상기 배양된 미생물 균주를 원심분리기에서 분리·농축하는 단계에서는 9K 배지액과 균이 혼합된 100중량부의 배양액 기준으로 9000rpm에서 10분간, 3000rpm에서 5분간, 2500rpm에서 5분간, 최종적으로 9000rpm에서 10분간 원심분리한 다음 상등액을 제거하여 균주만을 침전 시킨 후 이를 사용하기 쉽게 희석하기 위하여 표 2의 9K 용액에서 FeSO4·7H2O가 제거되어 제조된 무기염용액과 균주를 혼합하여 농축한다. In the step of separating and concentrating the cultured microbial strain in a centrifugal separator, 10 minutes at 9000 rpm, 5 minutes at 3000 rpm, 5 minutes at 2500 rpm, and 10 minutes at 9000 rpm based on 100 parts by weight of the culture medium mixed with 9K medium and bacteria. After centrifugation, the supernatant was removed to precipitate only the strain, and then the mixture was concentrated by mixing the strain with the inorganic salt solution prepared by removing FeSO 4 · 7H 2 O from the 9K solution of Table 2 in order to easily dilute it.

상기 배양액의 원심분리단계의 속도 및 시간 한정 이유는 상기 각 수치에서 가장 좋은 원심분리 결과가 나오기 때문이다.The reason for the speed and time limitation of the centrifugation step of the culture is that the best centrifugation results are obtained at each of the above values.

즉, 9000rpm에서 10분간 원심분리하는 이유는 배양액 중의 모든 고형물을 침전시키기 위함이고, 3000rpm에서 5분간 원심분리하는 이유는 침전된 고형물 중에서 가벼운 균주는 빼고 무거운 철수산화물(자로사이트) 만을 침전시키기 위함이고, 2500rpm에서 5분간 원심분리하는 이유는 재차 가벼운 균주는 빼고 무거운 철수산화물(자로사이트) 만을 침전시키기 위함이고, 최종적으로 9000rpm에서 10분간 원심분리하는 이유는 침전물이 제거된 용액 중 균주만을 침전시킨 후 상등액을 제거하기 위함이다. That is, the reason for centrifugation at 9000 rpm for 10 minutes is to precipitate all solids in the culture solution, and the reason for centrifugation at 3000 rpm for 5 minutes is to precipitate only heavy iron hydroxide (zarosite) without light strains from the precipitated solids. , 5 minutes centrifugation at 2500rpm is to precipitate only heavy iron hydroxide (zarosite) except light strain again, finally centrifugation at 9000rpm for 10 minutes after precipitation of the strain in the solution removed This is to remove the supernatant.

또한 상기 표 2의 9K 용액에서 FeSO4·7H2O가 제거되어 제조된 무기염 용액(mineral salt)과 균주는 혼합 후 이후 단계에서 필요한 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추면 되므로 특정 혼합비에 맞추지 않아도 되므로 적당히 사용하기 좋은 용액으로 만들면 된다.In addition, the inorganic salt solution (mineral salt) and strain prepared by removing FeSO 4 · 7H 2 O from the 9K solution of Table 2 is required for the subsequent step after mixing OD (Optical density) value 0.1 (good viability of the bacteria) Since it does not have to be adjusted to a specific mixing ratio, it can be made into a suitable solution.

미생물 균주를 무기염배지(9K)와 매트가 혼합된 반응조에 접종하여 침출시키는 단계는 무기염배지에 매트를 고액비로 무기염배지 용액 100중량부에 1 내지 20중량부를 혼합한 다음, 상기 균주와 무기염 용액의 혼합 용액을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 1∼10일 동안 침출 반응시킨다. Inoculating and leaching the microbial strain into the reaction tank mixed with the inorganic salt medium (9K) and the mat is mixed with 1 to 20 parts by weight to 100 parts of the inorganic salt medium solution in a high liquid ratio of the mat in the inorganic salt medium, and then the strain and The mixed solution of the inorganic salt solution was inoculated to an optical density (OD) value of 0.1 (good viability of bacteria) measured on a spectrophotometer, and then adjusted to 30 ° C. (good bacterial activity). After installation in the shake bath, the leaching reaction for 1 to 10 days while rotating to 180rpm (lower than 180rpm, less stirring effect, high solution overflow occurs).

상기 침출반응에서 무기염배지의 초기 pH를 1-4로 한다.In the leaching reaction, the initial pH of the inorganic salt medium is 1-4.

또한 침출반응에서 9K 배지에 추가로 기질로 첨가되는 Fe2+의 농도는 FeSO7H2O를 9K 배지 100중량부 기준 0.1 내지 1.2 중량부를 첨가하여 진행한다. In addition, the concentration of Fe 2+ added as a substrate in the 9K medium in the leaching reaction proceeds by adding 0.1 to 1.2 parts by weight of FeSO 4 · 7H 2 O based on 100 parts by weight of 9K medium.

기질을 첨가하는 이유는 철산화균에 의해 첨가된 Fe2+가 Fe3+로 산화되면서 이때 산화된 Fe3+가 강력한 산화제 역할을 하여 유가금속을 용출시키는 역할을 하기 때문이다. The reason for the addition of the substrate is that Fe 2+ added by iron oxidizing bacteria is oxidized to Fe 3+, and the oxidized Fe 3+ serves as a powerful oxidant to elute valuable metals.

정해진 반응시간 후, 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기(Atomic Absorption Spectrophotometer)로 분석하여 유가금속의 침출율을 측정하였다. After a predetermined reaction time, the reactor was dismantled to separate solid and liquid by a pump filter, and the ion concentration of copper, nickel, and cobalt in the solution was analyzed by atomic absorption spectrophotometer to determine the leaching rate of valuable metals. Measured.

이하 본 발명에 따른 바람직한 실시예를 설명하겠다.Hereinafter will be described a preferred embodiment according to the present invention.

실시예 1Example 1

무기염배지 용액 100중량부에 매트 5중량부를 혼합하고 철산화균을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 1일 동안 반응시킨다. 5 parts by weight of the mat was mixed with 100 parts of the inorganic salt medium solution, and the iron oxide bacteria were inoculated in accordance with the OD (Optical density) value of 0.1 (good viability of the bacteria) measured on a spectrophotometer, and then incubated at 30 ° C. After being installed in a shaker adjusted to the state of the best activity of the reaction, it is reacted for 1 day while rotating to 180rpm (lower than 180rpm, less stirring effect, higher solution occurs).

상기 침출반응에서 무기염배지의 초기 pH를 2로 하고, 기질로 추가 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 0.5중량부로 하여 첨가하여 실험을 행하였다. In the leaching reaction, the initial pH of the inorganic salt medium was set to 2, and the experiment was performed by adding the concentration of Fe 2+ added as a substrate to 0.5 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 3에서 보듯이 24시간에서도 금속들이 소량 침출됨을 알 수 있다.After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 3, it can be seen that the metals are leached even in 24 hours.

표 3. 미생물에 의한 유가금속의 침출율 (Fe2+:5g/ℓ, 고액비:5%, pH:2)Table 3. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 5g / ℓ, Solids Ratio: 5%, pH: 2)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 1일1 day 1515 88 33

실시예 2Example 2

무기염배지 용액 100중량부에 매트 20중량부를 혼합하고 철산화균을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180 rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 10일 동안 반응시킨다. 상기 침출반응에서 무기염배지의 초기 pH를 1, 추가 기질로 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 0.5 중량부로 하여 실험을 행하였다. 20 parts by weight of the mat is mixed with 100 parts of the inorganic salt medium solution, and the iron oxide bacteria are inoculated in accordance with the OD (Optical density) value of 0.1 (good viability of the bacteria) measured on a spectrophotometer, and then incubated at 30 ° C. After the reaction was installed in a shaker adjusted to the best state of the reaction, the reaction was performed for 10 days while rotating at 180 rpm (less than 180 rpm, the stirring effect is low, and the solution overflows). In the leaching reaction, the initial pH of the inorganic salt medium was 1 and the concentration of Fe 2+ added as an additional substrate was 0.5 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 4에서 보듯이 고액비 20% 하에서도 미생물에 의해 금속들이 침출됨을 알 수 있다. After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 4, it can be seen that metals are leached by microorganisms even under a high liquid ratio of 20%.

표 4. 미생물에 의한 유가금속의 침출율 (Fe2+:5g/ℓ, 고액비:20%, pH:1 )Table 4. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 5g / ℓ, Solids Ratio: 20%, pH: 1)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 10일10 days 1717 3030 55

실시예 3Example 3

무기염배지 용액 100중량부에 매트 5중량부를 혼합하고 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 10일 동안 반응시킨다. 상기 침출반응에서 무기염배지의 초기 pH를 4, 기질로 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 0.5중량부로 하여 실험을 행하였다. 5 parts by weight of the mat was mixed with 100 parts of the inorganic salt medium solution, and inoculated to an optical density (OD) value of 0.1 (good bacterial viability) measured on a spectrophotometer, and then inoculated at 30 ° C. After being installed in the shaking tank adjusted to the best condition, the reaction is rotated for 180 days while rotating at 180 rpm (less than 180 rpm, the stirring effect is low, and the solution overflows). In the leaching reaction, the initial pH of the inorganic salt medium was 4, and the concentration of Fe 2+ added as the substrate was 0.5 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 4에서 보듯이 무기염배지 초기 pH 4에서 니켈의 침출율은 약 56% 이며, 구리 및 코발트는 각각 40% 및 21 %로 나타났다. After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 4, the leaching rate of nickel at the initial pH of the inorganic salt medium was about 56%, and copper and cobalt were 40% and 21%, respectively.

표 5. 미생물에 의한 유가금속의 침출율 (Fe2+:5g/ℓ, 고액비:5%. pH:4)Table 5. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 5g / ℓ, Solids Ratio: 5%. PH: 4)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 10일10 days 4040 5656 2121

실시예 4Example 4

무기염배지 용액 100중량부에 매트 1중량부를 혼합하고 철산화균을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 10일 동안 반응시킨다. 상기 침출반응에서 무기염배지의 초기 pH를 1, 기질로 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 0.5중량부로 하여 실험을 행하였다. 1 part by weight of the mat is mixed with 100 parts by weight of the inorganic salt medium, and the iron oxide bacteria are inoculated in accordance with the OD (Optical density) value 0.1 (good viability of the bacteria) measured on a spectrophotometer, and then incubated at 30 ° C. After the reaction was installed in the shaking bath adjusted to the state of the best (), the reaction was rotated for 10 days while rotating to 180rpm (lower than 180rpm, less agitation effect, higher solution occurs). In the leaching reaction, the initial pH of the inorganic salt medium was 1, and the concentration of Fe 2+ added as a substrate was 0.5 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 4에서 보듯이 무기배지용액 100중량부에 매트 1중량부 혼합시 니켈의 침출율은 약 42% 이며, 구리 및 코발트는 각각 78% 및 13 %로 나타났다. After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 4, the leaching rate of nickel was about 42% when mixing 1 part by weight of the mat with 100 parts of the inorganic medium solution, and copper and cobalt were 78% and 13%, respectively.

표 6. 미생물에 의한 유가금속의 침출율 (Fe2+:5g/ℓ, 고액비:1%, pH:1)Table 6. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 5g / ℓ, Solids Ratio: 1%, pH: 1)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 10일10 days 7878 4242 1313

실시예 5Example 5

무기염배지 용액 100중량부에 매트 5중량부를 혼합하고 철산화균을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 10일 동안 반응시킨다. 상기 침출반응에서 무기염배지의 초기 pH를 1, 기질로 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 1.2중량부로 하여 실험을 행하였다. 5 parts by weight of the mat was mixed with 100 parts of the inorganic salt medium solution, and the iron oxide bacteria were inoculated in accordance with the OD (Optical density) value of 0.1 (good viability of the bacteria) measured on a spectrophotometer, and then incubated at 30 ° C. After the reaction was installed in the shaking bath adjusted to the state of the best (), the reaction was rotated for 10 days while rotating to 180rpm (lower than 180rpm, less agitation effect, higher solution occurs). In the leaching reaction, the initial pH of the inorganic salt medium was 1, and the concentration of Fe 2+ added as the substrate was 1.2 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 4에서 보듯이 기질로 첨가되는 Fe2+의 농도가 9K 배지 100중량부 기준 1.2중량부 첨가시 니켈의 침출율은 약 42% 이며, 구리 및 코발트는 각각 78% 및 13 %로 나타났다. After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 4, the leaching rate of nickel was about 42% when the concentration of Fe 2+ added as the substrate was added at 1.2 parts by weight based on 100 parts by weight of 9K medium, and copper and cobalt were 78% and 13%, respectively. .

표 7. 미생물에 의한 유가금속의 침출율 (Fe2+:12g/ℓ, 고액비:5%, pH:1)Table 7. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 12g / ℓ, Solids Ratio: 5%, pH: 1)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 10일10 days 7878 4242 1313

실시예 6Example 6

무기염배지 용액 100중량부에 매트 5중량부를 혼합하고 철산화균을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1(균의 생존력이 양호한 값)에 맞추어 접종한 다음, 30℃(균의 활성이 가장 양호한 상태)로 조절된 진탕조에 설치한 후 180rpm(180rpm보다 낮으면 교반효과가 적고, 높으면 용액이 넘치는 현상이 발생)으로 회전시키면서 10일 동안 반응시킨다. 상기 침출반응에서 무기염배지의 초기 pH를 1, 기질로 첨가되는 Fe2+의 농도를 9K 배지 100중량부 기준 0.1중량부로 하여 실험을 행하였다. 5 parts by weight of the mat was mixed with 100 parts of the inorganic salt medium solution, and the iron oxide bacteria were inoculated in accordance with the OD (Optical density) value of 0.1 (good viability of the bacteria) measured on a spectrophotometer, and then incubated at 30 ° C. After the reaction was installed in the shaking bath adjusted to the state of the best (), the reaction was rotated for 10 days while rotating to 180rpm (lower than 180rpm, less agitation effect, higher solution occurs). In the leaching reaction, the initial pH of the inorganic salt medium was 1, and the concentration of Fe 2+ added as the substrate was 0.1 parts by weight based on 100 parts by weight of 9K medium.

상기 반응용액을 180rpm으로 교반하면서 반응온도 30℃에서 행하였다. The reaction solution was performed at a reaction temperature of 30 ° C. while stirring at 180 rpm.

반응시간 완료 후 반응기를 해체하여 펌프 필터(pump filter)로 고·액 분리 후 용액중의 구리, 니켈, 코발트의 이온농도를 원자흡광분석기로 분석하여 용출효율을 측정하였다. 그 결과 표 4에서 보듯이 기질로 첨가되는 Fe2+의 농도를 0.1 중량부에서 니켈의 침출율은 약 38% 이며, 구리 및 코발트는 각각 81% 및 13 %로 나타났다. After completion of the reaction time, the reactor was dismantled and the solid and liquid separation was performed using a pump filter. The ion concentrations of copper, nickel, and cobalt in the solution were analyzed by atomic absorption spectrometer to measure the elution efficiency. As a result, as shown in Table 4, the leaching rate of nickel at about 0.1 parts by weight of Fe 2+ added as a substrate was about 38%, and copper and cobalt were 81% and 13%, respectively.

표 8. 미생물에 의한 유가금속의 침출율 (Fe2+:1g/ℓ, 고액비:5%, pH:1)Table 8. Leaching Rate of Valuable Metals by Microorganisms (Fe 2+ : 1g / ℓ, Solids Ratio: 5%, pH: 1)

반응시간Reaction time 금속의 침출율(%)Leaching rate of metal (%) 구리Copper 니켈nickel 코발트cobalt 10일10 days 8181 3838 1313

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

본 발명에 의하여 유가금속을 함유하고 있는 난용성인 매트로부터 상온 상압하에서 조업이 가능하며 환경친화적인 생물학적 금속 침출공정을 제공함으로써 기존의 제련공정에서는 환경오염이 많은 황화광으로부터 유가금속을 회수하는 신제련공정이다. 또한 본 발명은 생물학적 방법에 의해 매트로부터 침출된 용출액으로부터 물리·화학적 제련방법을 이용하여 유가금속을 효과적으로 제련할 수 있다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다.According to the present invention, it is possible to operate under room temperature and normal pressure from a poorly soluble mat containing valuable metals, and provides an environmentally friendly biological metal leaching process to recover valuable metals from sulphide, which has a lot of environmental pollution in the existing smelting process. It is a process. In addition, the present invention is a useful invention having the advantage of effectively smelting valuable metals from the eluate leached from the mat by a biological method using a physico-chemical smelting method is an invention that is expected to be used in industry.

Claims (5)

철산화균을 배양 후 배지와 광물의 혼합물에 접종하여 침출에 의해 금속을 회수하는 방법에 있어서,In the method of recovering the metal by leaching by inoculating the iron oxide bacteria in the culture medium and the mixture of minerals, 30℃로 일정하게 유지된 항온항습조에서 무기염배지(9K)액 100중량부에 균 1중량부를 접종하여 48시간 배양하는 철산화균을 배양하는 단계와; Culturing the iron oxide bacterium incubated for 48 hours by inoculating 1 part by weight of the bacterium in an inorganic salt medium (9K) solution in a constant temperature and humidity bath maintained at 30 ° C; (NH4)2SO4, K2HPO4, MgSO4·H2O, KCl, Ca(NO3)2, FeSO4·7H2O 및 용매 증류수로 조성된 9K 배지액과 철산화균이 혼합된 100중량부의 배양액 기준으로, 9000rpm에서 10분간 원심분리하여 배양액 중의 모든 고형물을 침전시키는 단계와, 이후 3000rpm에서 5분간 원심분리하여 침전된 고형물 중에서 가벼운 균주는 빼고 무거운 철수산화물(자로사이트) 만을 침전시키는 단계와, 이후 2500rpm에서 5분간 원심분리하여 재차 가벼운 균주는 빼고 무거운 철수산화물(자로사이트) 만을 침전시키는 단계와, 최종적으로 9000rpm에서 10분간 원심분리하여 상기 침전물이 제거된 용액중에서 균주만을 침전시킨 후 상등액을 제거하는 분리 단계와; 이후 상기 분리 단계에서 분리침전된 균주덩어리와 (NH4)2SO4, K2HPO4, MgSO4·H2O, KCl, Ca(NO3)2 및 용매 증류수로 조성된 무기염 용액(mineral salt)을 혼합하여 농축하는 단계;로 이루어진 배양액 중에서 배양된 미생물 균주를 원심분리기에서 분리·농축하는 단계와;(NH 4 ) 2 SO 4 , K 2 HPO 4 , MgSO 4 · H 2 O, KCl, Ca (NO 3 ) 2 , FeSO 4 · 7H 2 O and 9K medium and iron oxide bacteria Based on 100 parts by weight of the culture, centrifugation at 9000 rpm for 10 minutes to precipitate all solids in the culture, and then centrifugation at 3000 rpm for 5 minutes to precipitate only heavy iron hydroxide (zarosite) without light strains. And then centrifuging at 2500 rpm for 5 minutes to precipitate only heavy iron hydroxide (zarosite) without the light strain again, and finally to precipitate only the strain in the solution from which the precipitate was removed by centrifugation at 9000 rpm for 10 minutes. A separation step of removing the supernatant; The inorganic salt solution (mineral) composed of the precipitate mass separated and precipitated in the separation step and (NH 4 ) 2 SO 4 , K 2 HPO 4 , MgSO 4 · H 2 O, KCl, Ca (NO 3 ) 2, and solvent distilled water. salt) mixing and concentrating; separating and concentrating the microbial strain cultured in the culture consisting of a centrifuge; 분리 농축된 미생물 균주 배양액을 초기 pH를 1-4로 조정한 다음 반응조 내의 (NH4)2SO4, K2HPO4, MgSO4·H2O, KCl, Ca(NO3)2, FeSO4·7H2O 및 용매 증류수로 조성된 무기염배지(9K) 100중량부에 망간단괴 중간생성물인 매트가 1-20중량부 혼합된 혼합물에 철산화균 농축액을 분광 광도계(Spectrophotometer)에서 측정된 O.D(Optical density) 값 0.1에 맞추어 접종한 다음, 30℃로 조절된 진탕조에 설치한 후 180rpm으로 회전시키면서 1-10일 동안 침출 반응시키되, 침출반응에서 9K 배지에 추가로 기질로 첨가되는 Fe2+의 농도는 FeSO7H2O를 9K 배지 100중량부 기준 0.1 내지 1.2 중량부를 첨가하여 진행하는 침출반응단계;를 거쳐 매트로부터 구리, 니켈 밑 코발트를 이온상태로 침출시키는 방법을 특징으로 하는 망간단괴의 중간생성물인 매트로부터 철산화균에 의한 구리, 니켈, 코발트의 미생물침출 제련방법.A separate concentrate the microbial strain culture solution was adjusted to an initial pH to 1-4, and then in the reaction tank (NH 4) 2 SO 4, K 2 HPO 4, MgSO 4 · H 2 O, KCl, Ca (NO 3) 2, FeSO 4 OD measured on a spectrophotometer in a mixture containing 1-20 parts by weight of an intermediate salt of manganese nodule in 100 parts by weight of inorganic salt medium (9K) composed of 7H 2 O and solvent distilled water. Optical density) was inoculated at a value of 0.1, and then placed in a shaker controlled at 30 ° C., followed by leaching for 1-10 days while rotating at 180 rpm. The leaching reaction of Fe 2+ was added as a substrate to 9K medium. The concentration is a leaching reaction proceeding by adding 0.1 to 1.2 parts by weight based on 100 parts by weight of FeSO 4 · 7H 2 O based on 9K medium; Manganese nodules characterized in that the leaching of cobalt under ions in the ion state from the mat From nickel, an intermediate product of , Cobalt microbial leaching smelting method. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020030075112A 2003-10-27 2003-10-27 Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans KR100557410B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030075112A KR100557410B1 (en) 2003-10-27 2003-10-27 Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030075112A KR100557410B1 (en) 2003-10-27 2003-10-27 Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans

Publications (2)

Publication Number Publication Date
KR20050040010A KR20050040010A (en) 2005-05-03
KR100557410B1 true KR100557410B1 (en) 2006-03-06

Family

ID=37241920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030075112A KR100557410B1 (en) 2003-10-27 2003-10-27 Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans

Country Status (1)

Country Link
KR (1) KR100557410B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360292B1 (en) * 2013-08-14 2014-02-11 한국지질자원연구원 Recovery of valuable metals from spent catalyst using moderate thermophilic bacteria
KR101360291B1 (en) * 2013-08-14 2014-02-11 한국지질자원연구원 A novel sequential process of bioleaching and chemical leaching for dissolving ni, v, and mo from spent petroleum refinery catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907981A (en) * 2016-05-10 2016-08-31 北京理工大学 Method for removing heavy metals in urban waste incineration flying ash through bioleaching technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360292B1 (en) * 2013-08-14 2014-02-11 한국지질자원연구원 Recovery of valuable metals from spent catalyst using moderate thermophilic bacteria
KR101360291B1 (en) * 2013-08-14 2014-02-11 한국지질자원연구원 A novel sequential process of bioleaching and chemical leaching for dissolving ni, v, and mo from spent petroleum refinery catalyst

Also Published As

Publication number Publication date
KR20050040010A (en) 2005-05-03

Similar Documents

Publication Publication Date Title
Brandl et al. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste
AU600071B2 (en) Thermophilic microbial treatment of precious metal ores
Abbruzzese et al. Biological and chemical processing of low-grade manganese ores
Deng et al. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms
Zhou et al. Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study
CN106867921B (en) Acidithiobacillus and method for treating acid mine wastewater and recycling iron resources by using same
Song et al. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization
US20150027901A1 (en) Biomining enhancement method
US5030426A (en) Biomining of gallium and germanium containing ores
CN109957649B (en) Method for preparing high-quality iron ore concentrate and cooperatively recovering copper and zinc from complex sulfur ore concentrate
Bosecker Microbial recycling of mineral waste products
CN111321294B (en) Method for improving leaching efficiency of chalcopyrite by directionally regulating and controlling indigenous microbial community
KR100557410B1 (en) Bioleaching refining method of copper, nickel and cobalt from Mn nodule-matte by T.ferrooxidans
US3272621A (en) Extraction of metal values using denitrifying microorganisms
Zhang et al. Two-stage chemical-biological oxidation process for low-grade refractory gold concentrate with high arsenic and sulfur
KR100557411B1 (en) Bioleaching method of zinc from sphalerite concentrate by T.ferrooxidans
US20070264703A1 (en) Microorganism and Method for Leaching Mineral Sulphides
Sethurajan et al. BIOLEACHING OF COPPER FROM BLACK SHALE ORE USING MESOPHILIC MIXED POPULATIONS IN AN AIR UP-LIFT BIOREACTOR.
KR101048526B1 (en) Bleaching of Bronze Ore by Silver Catalyst
CN111004921A (en) Method for recovering copper in scrap copper smelting slag
US6379919B1 (en) Method for isolating thiocyanate resistant bacteria
CN112899184B (en) Microbial agent for extracting copper from high-salt vulcanized electroplating sludge and extraction method
Spasova et al. Leaching of gold from a polymetallic sulphide ore
Natarajan Biotechnology in gold processing
US20230399717A1 (en) Process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 18