KR100554071B1 - An optical focusing system generating near field - Google Patents

An optical focusing system generating near field Download PDF

Info

Publication number
KR100554071B1
KR100554071B1 KR1019990014192A KR19990014192A KR100554071B1 KR 100554071 B1 KR100554071 B1 KR 100554071B1 KR 1019990014192 A KR1019990014192 A KR 1019990014192A KR 19990014192 A KR19990014192 A KR 19990014192A KR 100554071 B1 KR100554071 B1 KR 100554071B1
Authority
KR
South Korea
Prior art keywords
optical system
light
near field
condensing
focused
Prior art date
Application number
KR1019990014192A
Other languages
Korean (ko)
Other versions
KR20000066820A (en
Inventor
이철우
신동호
진대제
정승태
조건호
유장훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019990014192A priority Critical patent/KR100554071B1/en
Publication of KR20000066820A publication Critical patent/KR20000066820A/en
Application granted granted Critical
Publication of KR100554071B1 publication Critical patent/KR100554071B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Abstract

본 발명은 니어필드를 발생하는 집속광학계이다. 본 발명의 집속광학계는 입사되는 광빔을 굴절시키는 안쪽부분과, 반사되어 들어오는 광빔을 재반사시키는 바깥부분으로 된 제 1면, 및 제 1면의 안쪽부분에서 굴절된 광빔을 바깥부분으로 반사시키는 곡율을 갖는 곡면부분과, 바깥부분에서 반사된 광빔을 집광하여 니어필드를 형성하는 집광부분으로 된 제 2면을 포함하며, 곡면부분의 곡율에 따라, 반사되어 집광부분에 집속되는 광의 집속각도가 커지는 것을 특징으로 한다. 따라서, 본 발명은 집속광학계의 형상 및 재질을 크게 바꾸지 않고서도 미소스폿을 형성하여 기록밀도를 높일 수 있으며, 재료비 상승이나 조립공정의 어려움을 초래하지 않는다.The present invention is a focused optical system for generating near fields. The converging optical system of the present invention has a curvature for reflecting an inner portion for refracting an incident light beam, a first surface having an outer portion for rereflecting a reflected light beam, and a light beam refracted at an inner portion of the first surface to an outer portion. And a second surface comprising a curved portion having a light condensed portion and a light condensing portion condensing a light beam reflected from an outer portion to form a near field, and the focusing angle of the light reflected and focused on the condensing portion increases according to the curvature of the curved portion. It is characterized by. Therefore, the present invention can increase the recording density by forming a micro spot without greatly changing the shape and material of the focusing optical system, and does not cause an increase in material cost or difficulty in the assembly process.

Description

니어필드를 발생하는 집속광학계{An optical focusing system generating near field}An optical focusing system generating near field

도 1은 니어필드를 발생하는 종래의 집속광학계를 설명하기 위한 도면,1 is a view for explaining a conventional focusing optical system for generating a near field;

도 2a 및 2b는 도 1에 도시된 집속광학계의 스폿크기의 시뮬레이션결과를 보여주는 도면,2A and 2B show simulation results of spot sizes of the focused optical system shown in FIG. 1;

도 3은 본 발명의 일 실시예에 따른 집속광학계를 설명하기 위한 도면,3 is a view for explaining a focused optical system according to an embodiment of the present invention;

도 4는 본 발명의 다른 실시예에 따른 집속광학계를 설명하기 위한 도면,4 is a view for explaining a focusing optical system according to another embodiment of the present invention;

도 5a 및 5b는 본 발명에 따른 집속광학계의 스폿크기의 시뮬레이션결과를 보여주는 도면,5a and 5b are views showing the simulation results of the spot size of the focusing optical system according to the present invention;

도 6은 본 발명에 따른 집속광학계를 설계하기 위한 데이터의 일예를 보여주는 도면.6 shows an example of data for designing a focused optical system according to the present invention;

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 레이저광 300, 400 : 집속광학계10: laser light 300, 400: focusing optical system

407 : 니어필드형성부 407: near field forming unit

본 발명은 니어필드(near field)를 발생하는 집속광학계에 관한 것이다.The present invention relates to a focused optical system for generating a near field.

광기록/재생장치의 기록용량을 늘이기 위한 여러가지 방법들이 연구되고 있으며, 그 기본은 사용되는 광의 파장을 줄이는 것과 사용되는 대물렌즈의 개구수를 높임으로써 집광 스폿의 크기를 줄이는 것이다. 또한, 집광 스폿의 크기를 줄이기 위하여 니어필드를 발생하는 집속광학계를 사용한다. Various methods for increasing the recording capacity of the optical recording / reproducing apparatus have been studied, and the basis thereof is to reduce the size of the condensing spot by reducing the wavelength of light used and increasing the numerical aperture of the objective lens used. In addition, a focusing optical system that generates a near field is used to reduce the size of the focusing spot.

이러한, 종래의 니어필드를 발생하는 집속광학계를 도 1 및 도 2를 참조하여 설명한다. Such a focused optical system for generating a near field will be described with reference to FIGS. 1 and 2.

도 1에 보여지는 집속광학계(100)는 레이저광(10)을 출사하는 광원(미도시)쪽에 위치한 안쪽부분(101) 및 바깥부분(103)으로 구성된 제 1면과, 기록매체쪽(광원쪽의 반대편)에 위치한 광을 집광하는 집광부분(107) 및 집광부분(107)을 제외한 평면부분(105)으로 구성된 제 2면을 구비한다. 설명의 편이를 위해 집속광학계의 광원쪽 면을 제 1면으로 그리고 그 반대쪽인 기록매체쪽 면을 제 2면으로 정한다. 제 1면의 안쪽부분(101)은 기록매체쪽으로 들어간 구면 형상을 갖는 것으로, 광원쪽으로부터 입사하는 레이저광(10)을 발산하는 형태로 굴절시킨다. 바깥부분(103)은 비구면 형상을 갖는 것으로, 안쪽부분(101)에 의해 굴절된 다음 제 2면의 평면부분(105)에서 반사된 레이저광(10)을 제 2면의 집광부분(107) 쪽으로 반사시킨다. 바깥부분(103)은 또한 외부로부터 들어오는 외부광을 반사시킨다. 제 2면의 집광부분(107)은 바깥부분(103)에서 반사되어 입사하는 레이저광을 투과시키며, 평면부분(105)은 외부광 및 바깥부분(103)에서 반사된 다음 입사하는 레이저광을 반사시킨다. The focusing optical system 100 shown in FIG. 1 has a first surface composed of an inner portion 101 and an outer portion 103 positioned at a light source (not shown) for emitting a laser light 10, and a recording medium side (the light source side). And a second surface consisting of a light collecting portion 107 for collecting light located on the opposite side of the plane) and a planar portion 105 except for the light collecting portion 107. For convenience of explanation, the light source side of the focusing optical system is defined as the first side and the recording medium side opposite to the second side. The inner portion 101 of the first surface has a spherical shape that has entered the recording medium, and is refracted in the form of diverging the laser light 10 incident from the light source side. The outer portion 103 has an aspheric shape, and the laser beam 10 is refracted by the inner portion 101 and then reflected from the planar portion 105 of the second surface toward the condensing portion 107 of the second surface. Reflect. The outer portion 103 also reflects external light coming from the outside. The light collecting portion 107 of the second surface transmits the laser light reflected from the outer portion 103 and enters, and the planar portion 105 reflects the external light and the laser light incident from the outer portion 103 and then incident. Let's do it.

이와 같은 집속광학계(100)는 안쪽부분(101)의 구경(aperture)이 집속광학계(100)의 구경보다 충분히 작도록 설계된다. 즉, 안쪽부분(101)이 바깥부분(103)에 비하여 집속광학계(100)의 제 1면을 차지하는 비율이 훨씬 적도록 설계된다. 그리고, 바깥부분(103)에서 반사된 레이저광(10)의 대부분이 제 2면의 집광부분(107)에 집광되도록 설계된다. 따라서, 도 1의 집속광학계(100)는 안쪽부분(101)을 통해 입사하는 레이저광(10)의 대부분을 제 2면의 집광부분(107)에 광스폿으로 집광시킨다. 집광부분(107)에 집광되는 광스폿은 대략 0.35 ∼ 0.4μm의 크기를 가지며, 니어필드를 형성한다.Such a focused optical system 100 is designed such that the aperture of the inner portion 101 is sufficiently smaller than the aperture of the focused optical system 100. In other words, the inner portion 101 is designed to occupy a much smaller proportion of the first surface of the focusing optical system 100 than the outer portion 103. In addition, most of the laser light 10 reflected from the outer portion 103 is designed to be focused on the light collecting portion 107 of the second surface. Accordingly, the converging optical system 100 of FIG. 1 condenses most of the laser light 10 incident through the inner portion 101 as a light spot on the condensing portion 107 of the second surface. The light spot focused on the light collecting portion 107 has a size of about 0.35 to 0.4 μm, and forms a near field.

도 2a 및 2b는 상술한 집속광학계의 스폿크기의 시뮬레이션결과를 보여주는 도면으로, 도 2a는 1.4μm단위로 스폿 크기를 시뮬레이션한 것이다. 도 2b는 스폿크기를 계산하기 위한 것으로, 스폿의 크기를 계산하는 여러가지 방법중 반치폭(半値幅)을 계산하여 스폿의 크기로 한다. 여기서, 반치폭이 대략 0.35 ∼ 0.4μm의 크기를 가지므로, 스폿의 크기는 대략 0.35 ∼ 0.4μm임을 알 수 있다. 2A and 2B are diagrams showing simulation results of the spot size of the focusing optical system described above, and FIG. 2A is a simulation of the spot size in units of 1.4 μm. FIG. 2B is for calculating the spot size, and among the various methods for calculating the spot size, calculates the half width to determine the spot size. Here, since the half width has a size of about 0.35 to 0.4 μm, it can be seen that the size of the spot is about 0.35 to 0.4 μm.

하지만, 상술한 니어필드를 발생하는 집속광학계를 사용하는 광픽업에서의 스폿의 크기가 대략 0.35 ∼ 0.4μm인데, 기록밀도를 높이기 위해서 스폿의 크기를 더욱 미소하게 하려면 집속광학계의 형상 및 재질을 크게 바꾸어야 하는 문제점이 있었다. However, the spot size in the optical pickup using the focused optical system that generates the near-field described above is approximately 0.35 to 0.4 μm. To make the spot smaller in order to increase the recording density, the shape and material of the focused optical system are greatly increased. There was a problem that had to be changed.

따라서, 본 발명의 목적은 집속광학계의 형상 및 재질을 크게 바꾸지 않고서도 용이하게 기록밀도를 높일 수 있도록 스폿의 크기를 미소하게 할 수 있는 니어 필드를 발생하는 집속광학계를 제공함에 있다.Accordingly, it is an object of the present invention to provide a focused optical system that generates a near field capable of making the spot small in size so that the recording density can be easily increased without greatly changing the shape and material of the focused optical system.

이와 같은 목적을 달성하기 위한 본 발명에 따른 니어필드를 발생하는 집속광학계는 입사되는 광빔을 굴절시키는 안쪽부분과, 반사되어 들어오는 광빔을 재반사시키는 바깥부분으로 된 제 1면, 및 제 1면의 안쪽부분에서 굴절된 광빔을 바깥부분으로 반사시키는 곡율을 갖는 곡면부분과, 바깥부분에서 반사된 광빔을 집광하여 니어필드를 형성하는 집광부분으로 된 제 2면을 포함하며, 곡면부분의 곡율에 따라, 반사되어 집광부분에 집속되는 광의 집속각도가 커지는 것을 특징으로 한다. In order to achieve the above object, a near-field focusing optical system according to the present invention includes a first surface having an inner part for refracting incident light beams, an outer part for rereflecting reflected light beams, and a first surface. And a curved surface portion having a curvature for reflecting the light beam refracted by the inner portion to an outer portion, and a second surface consisting of a condensing portion for condensing the light beam reflected from the outer portion to form a near field, and according to the curvature of the curved portion. , The focusing angle of the light reflected and focused on the condensing portion is increased.

이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 상세히 기술하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 일 실시예에 따른 집속광학계를 설명하기 위한 도면이다. 도 3에 보여진 집속광학계(300)는 도 1에 도시된 집속광학계의 제 2면의 평면부분(105) 대신에 광원쪽으로 들어간 곡면형상인 볼록부분(305)을 구비한다. 즉, 레이저광(10)을 출사하는 광원(미도시)쪽에 위치한 안쪽부분(301) 및 바깥부분(303)으로 구성된 제 1면과, 기록매체쪽(광원쪽의 반대편)에 위치한 광을 집광하는 집광부분(307) 및 집광부분(307)을 제외한 곡율을 갖는 볼록부분(305)으로 구성된 제 2면을 구비한다. 3 is a view for explaining a focusing optical system according to an exemplary embodiment of the present invention. The converging optical system 300 shown in FIG. 3 has a convex portion 305 which is curved toward the light source instead of the planar portion 105 of the second surface of the condensing optical system shown in FIG. That is, a first surface comprising an inner portion 301 and an outer portion 303 located on the light source (not shown) side that emits the laser light 10, and a light condensing light located on the recording medium side (the opposite side of the light source side). And a second surface composed of a convex portion 305 having a curvature except for the light collecting portion 307 and the light collecting portion 307.

제 1면의 안쪽부분(301)은 광원쪽으로부터 입사하는 레이저광(10)을 발산하는 형태로 굴절시킨다. 바깥부분(303)은 안쪽부분(301)에 의해 굴절된 다음 제 2면의 볼록부분(305)에서 반사된 레이저광(10)을 제 2면의 집광부분 (307) 쪽으로 반사시킨다. 제 2면의 집광부분(307)은 바깥부분(303)에서 반사되어 입사하는 레이저광을 투과시키며, 볼록부분(305)은 외부광 및 바깥부분(303)에서 반사된 다음 입사하는 레이저광을 반사시킨다. 여기서, 제 2면의 볼록부분(305)은 안쪽부분(301)에 의해 굴절된 레이저광(10)을 바깥부분(303) 쪽으로 곡율에 따라 반사시킨다. 제 2면의 집광부분(307)은 바깥부분(303)에서 반사된 다음 입사하는 레이저광의 집속각도가 커진다. 이렇게 하여 집광된 광의 스폿크기는 집속각도의 sin값에 반비례하므로 스폿크기의 축소효과를 가지며, 재생 밀도측면에서도 대략 2배의 기록밀도가 향상된다. 집광부분(307)에 집광되는 광스폿을 대략 0.15μm의 크기를 가지며, 니어필드를 형성한다. The inner portion 301 of the first surface is refracted in the form of diverging the laser light 10 incident from the light source side. The outer portion 303 is refracted by the inner portion 301 and then reflects the laser light 10 reflected from the convex portion 305 of the second surface toward the condensing portion 307 of the second surface. The condensing portion 307 of the second surface transmits the laser light reflected from the outer portion 303 and enters, and the convex portion 305 reflects the external light and the laser light incident from the outer portion 303 and then enters. Let's do it. Here, the convex portion 305 of the second surface reflects the laser light 10 refracted by the inner portion 301 according to the curvature toward the outer portion 303. The condensing portion 307 of the second surface is reflected from the outer portion 303 and the focusing angle of the incident laser light is increased. In this way, the spot size of the focused light is inversely proportional to the sin value of the focusing angle, so that the spot size is reduced, and the recording density is approximately doubled in terms of reproduction density. The light spot focused on the light collecting portion 307 has a size of approximately 0.15 μm, and forms a near field.

도 4는 본 발명의 다른 실시예에 따른 집속광학계를 설명하기 위한 도면으로, 본 발명에 따른 볼록부분을 갖는 집속광학계를 니어필드형성부(407)를 가지는 집속광학계에 적용한 것이다. 도 4에 보여진 집속광학계(400)는 제 2면에 집광면(417)을 갖는 니어필드형성부(407)를 구비하며, 제 2면에서 니어필드형성부(407)를 제외한 광원쪽으로 볼록한 볼록부분(405)을 구비한다. 니어필드형성부(407)는 집속광학계(400)의 제 2면의 일부를 구성하는 것으로, 원통형상을 가지며 제 2면의 중심에 설치된다. 집속광학계(400)는 안쪽부분(401) 및 바깥부분(403)으로 구성된 제 1면과, 니어필드형성부(407) 및 니어필드형성부(407)가 차지하는 부분을 제외한 곡율을 갖는 볼록부분(405)으로 구성된 제 2면을 구비한다.4 is a view for explaining a focusing optical system according to another exemplary embodiment of the present invention, in which a focusing optical system having a convex portion according to the present invention is applied to a focusing optical system having a near field forming unit 407. The converging optical system 400 shown in FIG. 4 includes a near field forming portion 407 having a condensing surface 417 on a second surface, and a convex portion convex toward the light source except for the near field forming portion 407 on a second surface. 405. The near field forming unit 407 constitutes a part of the second surface of the focusing optical system 400 and has a cylindrical shape and is installed at the center of the second surface. The converging optical system 400 has a first surface composed of an inner portion 401 and an outer portion 403 and a convex portion having a curvature except for portions occupied by the near field forming portion 407 and the near field forming portion 407 ( A second side composed of 405.

안쪽부분(401)은 입사하는 레이저광(10)을 발산하는 형태로 굴절시키며, 볼 록부분(405)은 안쪽부분(401)에 의해 굴절된 레이저광(10)을 바깥부분(403) 쪽으로 곡율에 따라 반사시킨다. 바깥부분(403)은 볼록부분(405)에 의해 반사된 다음 입사하는 레이저광(10)을 니어필드형성부(407) 쪽으로 반사시킨다. 도 4의 집속광학계에 의해 최종적으로 집광되는 광스폿은 기록매체쪽에 위치한 니어필드형성부(407)의 집광면(417)에 형성된다. 여기서, 집광면(417)에 형성되는 스폿의 크기는 볼록부분(405)의 반사각이 크기 때문에 집속각도도 크므로 미소한 스폿의 크기를 얻을 수 있다. 집광면(417)에 집광되는 광스폿은 대략 0.15μm의 크기를 가지며, 니어필드를 형성한다.The inner part 401 is refracted to emit an incident laser light 10, and the convex part 405 is curvature of the laser light 10 refracted by the inner part 401 toward the outer part 403. Reflect accordingly. The outer portion 403 reflects the incident laser light 10 toward the near field forming portion 407 after being reflected by the convex portion 405. The light spot finally focused by the converging optical system of FIG. 4 is formed on the condensing surface 417 of the near field forming section 407 located on the recording medium side. Here, the spot formed on the condensing surface 417 has a large focusing angle because the reflection angle of the convex portion 405 is large, so that a small spot size can be obtained. The light spot focused on the light collecting surface 417 has a size of approximately 0.15 μm and forms a near field.

도 5a 및 5b는 상술한 집속광학계의 스폿크기의 시뮬레이션결과를 보여주는 도면으로, 도 5a는 0.9μm단위로 스폿의 크기를 시뮬레이션한 것이다. 도 5b는 스폿크기를 계산하기 위한 것으로, 스폿의 크기를 계산하는 여러가지 방법중 반치폭(半値幅)을 계산하여 스폿의 크기로 한다. 여기서, 반치폭이 대략 0.15μm의 크기를 가지므로, 스폿의 크기는 대략 0.15 μm임을 알 수 있다.5A and 5B show simulation results of the spot size of the focusing optical system described above. FIG. 5A simulates the spot size in units of 0.9 μm. FIG. 5B is for calculating the spot size, and among the various methods for calculating the spot size, calculates the half width to obtain the spot size. Here, since the half width has a size of about 0.15 μm, it can be seen that the size of the spot is about 0.15 μm.

도 6은 본 발명에 따른 집속광학계를 설계하기 위한 데이터의 일예를 보여주는 도면으로, 제 2면의 볼록부분이 볼록렌즈형상을 가지므로 반지름이 큰 것을 알수 있다. 도 6의 데이터를 참조로 당업자가 집속광학계를 설계하는 것은 용이실시하므로 상세한 설명을 생략한다.6 is a view showing an example of data for designing a focused optical system according to the present invention, and it can be seen that the radius of the convex portion of the second surface has a convex lens shape. Since a person skilled in the art can easily design a focusing optical system with reference to the data of FIG. 6, a detailed description thereof will be omitted.

따라서, 상술한 실시예에서 알 수 있듯이, 종래의 집속광학계의 스폿크기는 0.35 ∼ 0.4μm인데 반하여 본 발명의 볼록부분을 갖는 집속광학계의 스폿크기는 0.15μm로 대략 40%정도로 감소했음을 알수 있고, 기록밀도는 대략 2.2배 증가하게 된다. Therefore, as can be seen from the above embodiment, the spot size of the conventional condensing optical system is 0.35 to 0.4 μm, whereas the spot size of the condensing optical system having the convex portion of the present invention is reduced to about 40% by 0.15 μm, The recording density increases approximately 2.2 times.

상술한 바와 같이, 본 발명은 집속광학계의 형상 및 재질을 크게 바꾸지 않고서도 미소스폿을 형성하여 기록밀도를 높일 수 있으며, 재료비 상승이나 조립공정의 어려움을 초래하지 않는다.As described above, the present invention can increase the recording density by forming microspots without greatly changing the shape and material of the focusing optical system, and does not cause material cost increase or difficulty in assembly process.

Claims (2)

니어필드를 발생하는 집속광학계에 있어서,In a focused optical system generating near field, 입사되는 광빔을 굴절시키는 안쪽부분과, 반사되어 들어오는 광빔을 재반사시키는 바깥부분으로 된 제 1면; 및A first surface having an inner portion for refracting the incident light beam and an outer portion for rereflecting the reflected light beam; And 상기 제 1면의 안쪽부분에서 굴절된 광빔을 상기 바깥부분으로 반사시키는 광원쪽으로 들어간 곡율을 갖는 곡면부분과, 상기 바깥부분에서 반사된 광빔을 집광하여 니어필드를 형성하는 집광부분으로 된 제 2면을 포함하며, A second surface having a curved portion having a curvature that enters the light source that reflects the light beam refracted by the inner portion of the first surface to the outer portion, and a light collecting portion that condenses the light beam reflected from the outer portion to form a near field Including; 상기 곡면부분의 곡율에 따라, 반사되어 상기 집광부분에 집속되는 광의 집속각도가 커지는 집속광학계.And a focusing angle of light reflected and focused on the condensing portion according to the curvature of the curved portion. 제 1항에 있어서, 상기 제 2면의 곡면부분은 볼록렌즈의 형상인, 집속광학계.The focusing optical system of claim 1, wherein the curved portion of the second surface is in the shape of a convex lens.
KR1019990014192A 1999-04-21 1999-04-21 An optical focusing system generating near field KR100554071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990014192A KR100554071B1 (en) 1999-04-21 1999-04-21 An optical focusing system generating near field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990014192A KR100554071B1 (en) 1999-04-21 1999-04-21 An optical focusing system generating near field

Publications (2)

Publication Number Publication Date
KR20000066820A KR20000066820A (en) 2000-11-15
KR100554071B1 true KR100554071B1 (en) 2006-02-22

Family

ID=19581310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990014192A KR100554071B1 (en) 1999-04-21 1999-04-21 An optical focusing system generating near field

Country Status (1)

Country Link
KR (1) KR100554071B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400544B1 (en) * 2001-03-17 2003-10-08 엘지전자 주식회사 Lens for optical recording and reproducing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373700A1 (en) * 1988-12-13 1990-06-20 Koninklijke Philips Electronics N.V. Optical scanning device, and mirror objective suitable for use in said device.
US5031976A (en) * 1990-09-24 1991-07-16 Kla Instruments, Corporation Catadioptric imaging system
JPH10177139A (en) * 1996-07-22 1998-06-30 Kla Tencor Corp Wide band uv-ray image system using cata-dioptric principle
US5986995A (en) * 1998-07-06 1999-11-16 Read-Rite Corporation High NA catadioptric focusing device having flat diffractive surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373700A1 (en) * 1988-12-13 1990-06-20 Koninklijke Philips Electronics N.V. Optical scanning device, and mirror objective suitable for use in said device.
US5031976A (en) * 1990-09-24 1991-07-16 Kla Instruments, Corporation Catadioptric imaging system
JPH10177139A (en) * 1996-07-22 1998-06-30 Kla Tencor Corp Wide band uv-ray image system using cata-dioptric principle
US5986995A (en) * 1998-07-06 1999-11-16 Read-Rite Corporation High NA catadioptric focusing device having flat diffractive surfaces

Also Published As

Publication number Publication date
KR20000066820A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
JP3370612B2 (en) Light intensity conversion element, collimating lens, objective lens, and optical device
US6236514B1 (en) Optical head device and near-field light emitting device
US6612719B2 (en) Diode-laser line-illuminating system
KR19990076486A (en) Light intensity converter, optical device and optical disc device
CS401088A2 (en) Scanning device for information level scanning on record's optical carrier by means of optical radiation
JPH11339310A (en) Optical pickup device
JPH1064103A (en) Optical pickup device
JP2001236673A (en) Optical head and optical recording and reproducing device
KR100554071B1 (en) An optical focusing system generating near field
JP3918331B2 (en) Reflective micro-optical system
KR100350990B1 (en) Solid immersion mirror type objective lens and optical pickup apparatus employing it
JP2001034998A (en) Optical head and its manufacture
JP2004511875A (en) Optical scanning device
KR960038792A (en) Recording and reproducing method of optical disc
JPH04114117A (en) Light collimation light source
JP2004265490A (en) Optical pickup device
TW511078B (en) Objective lens of optical read-write head
KR100297765B1 (en) Optical pickup for high density recording/playback
JPH019927Y2 (en)
JPH11203708A (en) Optical recording and reproducing device and method thereof
JPS61166513A (en) Optical reader
JPH09161311A (en) Optical pickup device
JP2653009B2 (en) Optical head device
JP2001325744A (en) Method for manufacturing optical head
JP2735137B2 (en) Optical system of optical information recording / reproducing device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee