KR100553578B1 - Puerarin derivatives with high solubility and preparation method for the same - Google Patents

Puerarin derivatives with high solubility and preparation method for the same Download PDF

Info

Publication number
KR100553578B1
KR100553578B1 KR1020040004437A KR20040004437A KR100553578B1 KR 100553578 B1 KR100553578 B1 KR 100553578B1 KR 1020040004437 A KR1020040004437 A KR 1020040004437A KR 20040004437 A KR20040004437 A KR 20040004437A KR 100553578 B1 KR100553578 B1 KR 100553578B1
Authority
KR
South Korea
Prior art keywords
maltogenic amylase
maltosyl
furanine
present
glucosyl
Prior art date
Application number
KR1020040004437A
Other languages
Korean (ko)
Other versions
KR20050076450A (en
Inventor
박관화
리단
박진희
박천석
문태화
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020040004437A priority Critical patent/KR100553578B1/en
Publication of KR20050076450A publication Critical patent/KR20050076450A/en
Application granted granted Critical
Publication of KR100553578B1 publication Critical patent/KR100553578B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 퓨라린 유도체 및 이의 제조방법에 관한 것이다. 특히 본 발명은 말토제닉 아밀라아제의 당전이 반응으로 글루코오스 또는 말토스를 배당체 퓨라린에 전이시켜 제조함으로써, 수용성 및 안정성이 우수한 퓨라린 유도체를 제공한다.The present invention relates to furan derivatives and methods for their preparation. In particular, the present invention provides a furin derivative having excellent water solubility and stability by preparing glucose and maltose by transferring glycosylated glycosides to glycosides in a sugar transfer reaction of maltogenic amylase.

퓨라린 유도체, 당전이, 퓨라린, 말토제닉 아밀라아제Furarin derivatives, sugar transition, furarin, maltogenic amylase

Description

높은 수용성을 갖는 퓨라린 유도체 및 이의 제조방법{PUERARIN DERIVATIVES WITH HIGH SOLUBILITY AND PREPARATION METHOD FOR THE SAME}Purinine derivatives having a high water solubility and a method for preparing the same {PUERARIN DERIVATIVES WITH HIGH SOLUBILITY AND PREPARATION METHOD FOR THE SAME}

도 1은 말토제닉 아밀라아제를 이용하여 퓨라린에 당전이시켜 제조한 반응생성물의 박막크로마토그래피 분석결과를 나타낸 것이다.Figure 1 shows the results of thin layer chromatography analysis of the reaction product prepared by the transfer to the purine by maltogenic amylase.

도 2는 말토제닉 아밀라아제를 이용하여 퓨라린에 당전이시켜 제조한 반응생성물의 고성능 액체크로마토그램을 나타낸 것이다. Figure 2 shows the high performance liquid chromatogram of the reaction product prepared by transferring sugar to furin using maltogenic amylase.

도 3은 본 발명에서 제조 및 정제한 α-1,6-글루코오실 퓨라린의 LC/MASS 스펙트럼이다. FIG. 3 is an LC / MASS spectrum of α-1,6-glucosylfuranine prepared and purified according to the present invention.

도 4는 본 발명의 α-1,6-말토실 퓨라린의 LC/MASS 스펙트럼이다.4 is an LC / MASS spectrum of α-1,6-maltosyl furanine of the present invention.

도 5는 본 발명의 α-1,6-글루코오실 퓨라린의 13C-NMR 스펙트럼이다. Fig. 5 is the 13 C-NMR spectrum of α-1,6-glucosyl furarin of the present invention.

도 6은 본 발명의 α-1,6-말토실 퓨라린의 13C-NMR 스펙트럼이다.Figure 6 is a 13 C-NMR spectrum of the α-1,6-maltosyl furanine of the present invention.

[발명이 속하는 기술분야][TECHNICAL FIELD OF THE INVENTION]

본 발명은 높은 수용성을 갖는 퓨라린 유도체 및 이의 제조방법에 관한 것으 로, 보다 상세하게는 말토제닉 아밀라아제의 당전이 반응으로 글루코오스 또는 말토스를 퓨라린에 전이시켜 제조한 α-1,6-말토올리고당 퓨라린에 관한 것이다.The present invention relates to a furanine derivative having a high water solubility and a method for preparing the same, and more specifically, α-1,6-malto prepared by transferring glucose or maltose to furanin by a sugar transfer reaction of maltogenic amylase. Oligosaccharides furarin.

[종래기술][Private Technology]

콩과에 속하는 칡(Pueraria lobata)은 한국, 중국, 일본에서 약용으로 사용하고 있으며, 특히 칡 뿌리는 갈근 주로 약재료 이용하고 있다. 갈근은 한의학에서 발한 작용, 두드러기 치료, 지사작용 및 해열작용으로 널리 활용되고 있다. 갈근은 국내에서도 약용 또는 구황식물로 이용되었으며, 최근에는 약용 이외에 건강식품으로 사용량이 증가하고 있다. 갈근의 유효 주성분은 이소플라본계 성분인 퓨라린, 다이드진 및 제니스틴으로 알려졌고, 이들은 식물성 호르몬인 피토에스트로겐(phytoestrogen)으로 유방암, 골다공증 치료제로 각광받고 있다. Pueraria lobata , which belongs to the legumes, is used for medicinal purposes in Korea, China and Japan. Brown root is widely used for sweating, urticaria treatment, branching and antipyretic in oriental medicine. Brown root has been used as a medicinal or sulfurous plant in Korea, and in recent years, the amount of use as a health food in addition to medicinal. The active principal components of cartilage are known as isoflavone-based components, such as purine, dydazine, and genistin, and these are plant hormones, phytoestrogen, which are in the spotlight for treating breast cancer and osteoporosis.

한편, 퓨라린은 일반 이소플라본과는 다른 특이한 구조를 가지고 있다. 즉, 다이드진이나 제니스틴은 배당체가 비배당체(aglycone)과 산소를 사이에 두고 글리코시드(glycoside) 결합을 하고 있으나, 퓨라린은 배당체와 어글리톤(aglycone)이 직접 탄소-탄소 결합을 하고 있다.On the other hand, furraline has a unique structure different from that of ordinary isoflavones. In other words, Dydzin and Genistin have glycosides with glycosides between aglycone and oxygen, but furanin has direct carbon-carbon bonds with glycosides and aglycones. .

Figure 112004002627230-pat00001
Figure 112004002627230-pat00001

최근들어 퓨라린의 생리활성에 관한 연구가 많이 진행되고 있으며, 갈근 추출물이 에스트로겐 수용체β (ER β )와 친화력이 크고 강력한 항유방암 활성을 나 타내고 있음이 보고되었다. 그 외에도 퓨라린은 항산화 효과를 가지고 있어 세포 내의 신호전달 등에 관여하므로써 암세포의 성장 또는 골대사 등의 여러 생리작용에 관계한다.Recently, many studies have been conducted on the physiological activity of furin, and it has been reported that the root extract has a high affinity for estrogen receptor β (ER β) and shows strong anti-breast cancer activity. In addition, purine has an antioxidant effect and is involved in various physiological effects such as cancer cell growth or bone metabolism by being involved in signaling within cells.

상기한 퓨라린의 약리적 효과로 인하여 이를 건강 보조식품으로 활용하고자 하는 연구가 진행 중이다. 그러나, 퓨라린을 추출 및 정제하여 제품화하는 경우, 퓨라린은 수용성이 낮아 물에 거의 녹지 않는 문제점이 있다. 따라서 퓨라린의 수용성을 향상시킬 수 있는 방법에 대한 연구가 요구된다. Due to the pharmacological effects of the above-mentioned purine, research is being conducted to utilize it as a health supplement. However, in the case of extracting and purifying the furanin to be commercialized, there is a problem that the furanin is low in water solubility insoluble in water. Therefore, there is a need for a study on how to improve the water solubility of furarin.

상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 수용성이 우수한 퓨라린 유도체를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to provide a purine derivative having excellent water solubility.

또한 본 발명은 수용성이 우수한 퓨라린 유도체 제조방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for producing a purine derivative having excellent water solubility.

상기 목적을 달성하기 위하여, 본 발명은 화학식 1로 표시되는 퓨라린 유도체를 제공한다:In order to achieve the above object, the present invention provides a purine derivative represented by Formula 1:

(화학식 1)(Formula 1)

Figure 112004002627230-pat00002
Figure 112004002627230-pat00002

상기 화학식 1에서, 상기 R은 α-1,6-말토실 또는 α-1,6-글루코실이다.In Formula 1, R is α-1,6-maltosyl or α-1,6-glucosyl.

또한 본 발명은 말토제닉 아밀라아제의 당전이 반응에 의해 글루코오스 및 말토스를 배당체 퓨라린 또는 이의 유도체에 전이시키는 것을 포함하는 퓨라린 유도체의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a purine derivative comprising the transfer of glucose and maltose to glycosides furarin or derivatives thereof by a sugar transfer reaction of maltogenic amylase.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 수용성이 우수한 퓨라린 유도체를 개발하고자 연구하던 중, 퓨라린 또는 이의 유도체에 당전이시키는 경우 수용성이 현저히 증가함을 확인하여 본 발명을 완성하였다.The inventors of the present invention have completed the present invention by recognizing that the water solubility is remarkably increased when the sugar transition to the furanine or a derivative thereof is conducted while researching to develop a high water solubility derivative.

본 발명은 글루코오스 및 말토스로 당전이 된 퓨라린 또는 이의 유도체에 관한 것으로, 바람직하기로는 화학식 1로 표시되는 퓨라린 유도체에 관한 것이다.FIELD OF THE INVENTION The present invention relates to furarine or derivatives thereof, which have been sugars with glucose and maltose.

본 발명의 퓨라린 유도체는, 퓨라린에 비하여 현저한 수용성, 예컨대 약 100배 정도의 높은 수용성을 가진다. 따라서, 퓨라린은 당전이된 상태로 사용하여 다양한 형태로 제품화할 수 있다.The purine derivatives of the present invention have remarkable water solubility, such as about 100 times higher water solubility than purine. Therefore, the furanine can be used in the state of sugar transition can be commercialized in various forms.

또한 본 발명은 당전이 효소를 이용한 퓨라린 유도체 제조방법에 관한 것으 로, 퓨라린 유도체 제조방법은 말토제닉 아밀라아제의 당전이 반응에 의해 글루코오스 및 말토스를 배당체 퓨라린 또는 이의 유도체에 전이시키는 것을 포함하는 제조방법을 제공한다.In another aspect, the present invention relates to a method for producing a purine derivative using a sugar transfer enzyme, wherein the method for preparing a purine derivative comprises transferring glucose and maltose to glycosides furarin or derivatives thereof by a sugar transfer reaction of maltogenic amylase. It provides a manufacturing method.

보나 구체적으로는, 당전이 효소에 퓨라린 및 말토트리오스를 1: 1 내지 10 중량비율로 가하여 pH 5.5 내지 6.5의 완충액상에서 혼합 및 반응시킨다. 상기 완충액은 소듐 사이트레이트 일 수 있으며, 상기 반응은 45 내지 65 ℃에서 5시간 내지 30시간정도 실시할 수 있다. 상기 반응 후 반응액은 여과한 후, 크로마토그래피를 이용하여 퓨라린 유도체를 분리한다. More specifically, furanine and maltotriose are added to the sugar transfer enzyme in a ratio of 1 to 1 by 10, and mixed and reacted in a buffer of pH 5.5 to 6.5. The buffer may be sodium citrate, and the reaction may be performed at 45 to 65 ° C. for 5 hours to 30 hours. After the reaction, the reaction solution is filtered, and the purine derivative is separated by chromatography.

당전이 효소는 통상의 말토제닉 아밀라아제 효소로, 천연형 원핵 또는 진핵생물로부터 분리 및 정제된 것일 수 있으며, 이의 유전자를 유전자 재조합기술로 인위적으로 발현시켜 제조한 것일 수 있다. 일례로 본 발명에서는 바실러스 스테아로써모필러스(Bacillus stearothermophilus)로부터 클로닝된 말토제닉 아밀라아제 유전자를 E. coli MC1061에 형질전환하여 발현 및 정제한 말토제닉 아밀라아제를 사용하였다.The glycotransferase is a conventional maltogenic amylase enzyme, which may be isolated and purified from a native prokaryotic or eukaryotic organism, and may be prepared by artificially expressing a gene thereof by genetic recombination technology. For example, in the present invention, a maltogenic amylase obtained by transforming and expressing and purified a maltogenic amylase gene cloned from Bacillus stearothermophilus into E. coli MC1061.

상기 방법에 따라 제조된 퓨라린 유도체는 박막크로마토그래피, 핵자기공명분석 스펙트럼, 분자량 측정 및 고성능 액체크로마토그래피로 동정할 수 있다.Purine derivatives prepared according to the method can be identified by thin layer chromatography, nuclear magnetic resonance spectra, molecular weight measurement and high performance liquid chromatography.

본 발명에서는 퓨라린 유도체 제조를 확인하기 위하여, 일예로 말토트리오스 및 퓨라린을 말토제닉 아밀라아제 하에 반응시켜 제조한 반응생성물을 시료로 하여 박막크로마토그래피를 수행하였다. 그 결과, 도 1에서 레인2의 반응생성물의 전개양상으로 확인할 수 있듯이, 퓨라린에 글루코오스 또는 말토스가 전이되었으며, 핵 자기공명분석 스펙트럼으로 α-1,6 결합으로 당전이됨을 확인하였다.In the present invention, in order to confirm the preparation of the purine derivatives, thin layer chromatography was performed using, for example, a reaction product prepared by reacting maltotriose and purine under maltogenic amylase as a sample. As a result, as can be seen in the development of the reaction product of lane 2 in Figure 1, it was confirmed that glucose or maltose was transferred to furarine, and the sugar transition to α-1,6 binding in nuclear magnetic resonance spectra.

이후 반응생성물은 고성능 액체크로마토그래피로 각각 분리 및 정제하였고, 이의 분자량을 분석하였다. 반응생성물들은 도 3에 나타낸 바와 같이, m/z 579.5(M+H]+)에 나타나는 이온피크로부터 분자량이 578로 측정되는 글루코오실 퓨라린과, 도 4에 나타낸 바와 같이, m/z 741([M+H]+), m/z 763([M+Na]+), m/z 779([M+K]+)에 나타나는 이온피크로부터 분자량이 740으로 측정되는 말토실 퓨라린이었다. Then, the reaction product was separated and purified by high performance liquid chromatography, respectively, and the molecular weight thereof was analyzed. The reaction products were shown in FIG. 3, the glucose peak was measured at 578 from the ion peak appearing at m / z 579.5 (M + H] + ), and m / z 741 (as shown in FIG. 4). It was maltosyl furanine whose molecular weight was measured at 740 from the ion peak shown by [M + H] + ), m / z 763 ([M + Na] + ), m / z 779 ([M + K] + ).

본 발명의 말토올리고당 퓨라린은 수용성에 있어 퓨라린에 비하여 약 100 배정도 우수하다.Maltooligosaccharide furanine of the present invention is about 100 times superior to furanin in water solubility.

이하 본 발명의 실시예를 기재한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 보호범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described. The following examples are only for illustrating the present invention, but the protection scope of the present invention is not limited to the following examples.

실시예 1: 퓨라린 유도체 제조Example 1: Preparation of Purine Derivatives

퓨라린은 갈근으로부터 메탄올을 이용하여 추출하였고, 말토트리오스는 시그마사(Sigma Chemical Co., St. Louis, MO. USA)로부터 구입하여 사용하였다.Purarin was extracted from methanol using methanol, and maltotriose was purchased from Sigma Chemical Co., St. Louis, Mo. USA.

말토제닉 아밀라아제는 바실러스 스테아로써모필러스(Bacillus stearothermophilus)로부터 클로닝한 말토제닉 아밀라아제 유전자를 Escherichia coli MC1061에 형질전환하여 이로부터 말토제닉 아밀라아제를 발현시킨 다음 컬럼크로마토그래피로 정제하여 준비하였다(Cha et al., 1998, Eur. J. Biochem. 253, 251-262).Maltogenic amylase was prepared by transforming the maltogenic amylase gene cloned from Bacillus stearothermophilus into Escherichia coli MC1061, expressing the maltogenic amylase therefrom, and then purifying by column chromatography (Cha et al . , 1998, Eur. J. Biochem. 253, 251-262).

말토제닉 아밀라아제 1 U/mg G3, 0.25 % 퓨라린, 1 % 말토트리오스를 소듐 사이트레이트 완충용액(pH 6, 시그마)에 혼합한 후 55 ℃에서 20시간 반응시켰다. 반응 후 5분간 반응액을 끓인 후 왓트만 여지를 이용하여 여과하고, 여과액은 C18컬럼(Sep-Pak Plus C18, 30 mm X 25 mm, 브이덱(VyDAC)) 상에서 분리한 후 고성능 순환(recycling) 액체 크로마토그래피를 이용하여 젤투과컬럼(JAIGEL-W251, 40mm x 500mm, 자이(JAI))을 통과시켜 반응생성물을 분리 정제하였다.Maltogenic amylase 1 U / mg G3, 0.25% furarine and 1% maltotriose were mixed in sodium citrate buffer (pH 6, Sigma) and reacted at 55 ° C. for 20 hours. After the reaction, the reaction solution was boiled for 5 minutes and filtered using Whatman filter paper, and the filtrate was separated on a C 18 column (Sep-Pak Plus C 18 , 30 mm X 25 mm, VyDAC), followed by high performance circulation. The reaction product was separated and purified through a gel permeation column (JAIGEL-W251, 40mm x 500mm, JAI) using liquid chromatography.

실시예 2: 박막크로마토그래피를 이용한 반응생성물의 분석Example 2 Analysis of Reaction Products Using Thin Film Chromatography

실시예 1에서 얻은 반응액의 생성물을 분석하기 위해서 박막크로마토그래피를 수행하였다. 반응 종결 후, 각 시료를 왓트만 K5F TLC 플레이트(20 ㎝ x 20 ㎝)에 1 ㎕씩 로딩하여 n-부탄올 : 아세트산 : 증류수를 5:3:1로 포함하는 전개액상에서 전개시켰다. 전개 후, 플레이트는 건조하여 254 ㎚의 U.V.에서 확인하고, 메탄올에 0.3 (w/v)% N-(1-나프틸)-에틸렌디아민과 5 (v/v)% 황산을 용해시킨 발색액에 담군 다음 110 ℃ 오븐에서 10분간 발색시켰다. Thin film chromatography was performed to analyze the product of the reaction solution obtained in Example 1. After completion of the reaction, each sample was loaded in a 1 µl portion of Whatman K5F TLC plate (20 cm x 20 cm), and developed on a developing solution containing 5: 3: 1 of n-butanol: acetic acid: distilled water. After development, the plate was dried and checked at 254 nm UV, and in a coloring solution in which 0.3 (w / v)% N- (1-naphthyl) -ethylenediamine and 5 (v / v)% sulfuric acid were dissolved in methanol. After immersion, color development was performed for 10 minutes in an oven at 110 ° C.

도 1은 말토제닉 아밀라아제를 이용하여 퓨라린에 당전이시켜 제조한 반응생성물의 박막크로마토그래피 분석결과를 나타낸 것이다. 도 1에서 "Pu"는 퓨라린을 의미하며, "G1-Pu"는 글루코실 퓨라린을 의미하며, "G2-Pu"는 말토실 퓨라린을 의미한다. 레인1은 퓨라린을 전개한 것이고, 레인2는 실시예 1에서 제조한 반응생성물을 전개한 것이다.Figure 1 shows the results of thin layer chromatography analysis of the reaction product prepared by the transfer to the purine by maltogenic amylase. In Figure 1, "Pu" means furanin, "G1-Pu" means glucosyl furanin, "G2-Pu" means maltosyl furanin. Lane 1 is the development of furin, lane 2 is the development of the reaction product prepared in Example 1.

도 1에서, 말토제닉 아밀라아제에 의해 퓨라린에 글루코오스 및 말토스가 각 각 전이되어, α-1,6-말토실 퓨라린 및 α-1,6-글루코실 퓨라린이 생성되었음을 확인할 수 있었다.In Fig. 1, glucose and maltose were transferred to furarin by maltogenic amylase, respectively, to confirm that α-1,6-maltosyl furarine and α-1,6-glucosyl furaline were produced.

실시예 3: 고성능액체크로마토그래피를 이용한 α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린의 분리Example 3 Isolation of α-1,6-Glucosyl Furan and α-1,6-Maltosyl Furanine Using High Performance Liquid Chromatography

실시예 1에서 분리 및 정제한 반응생성물을 고성능액체크로마토그래피(High Performance Liquid Chromatography, HPLC)를 이용하여 분석하였다. 반응생성물을 초순수로 희석하고, 0.45 ㎛ 박막여과지로 여과한 다음 컬럼에 20 ㎕ 주입하고 1.2 ㎖/분 유속으로 용매를 흘려주었다. HPLC 분석은 워터스사(미국)의 600E 그래디언트 펌프와 자외선 검출기 및 C18 컬럼을 이용하여 시행하였으며, 용매는 A 용액(물/포름산, 100/0.1 부피비), B 용액(메탄올/물/포름산, 50/50/0.1 부피비)을 혼합하여 사용하였다. 검출파장은 265 ㎚으로 하였다.The reaction product isolated and purified in Example 1 was analyzed using High Performance Liquid Chromatography (HPLC). The reaction product was diluted with ultrapure water, filtered through a 0.45 µm thin film filter paper, and then 20 µl was injected into the column, and the solvent was flowed at a flow rate of 1.2 ml / min. HPLC analysis was performed using Waters (USA) 600E gradient pump, UV detector and C 18 column, solvents were A solution (water / formic acid, 100 / 0.1 volume ratio), B solution (methanol / water / formic acid, 50 /50/0.1 volume ratio) was used in combination. The detection wavelength was set to 265 nm.

도 2는 말토제닉 아밀라아제를 이용하여 퓨라린에 당전이시켜 제조한 반응생성물의 고성능 액체크로마토그램을 나타낸 것이다. 도 2에서, 피크 1은 퓨라린이고, 피크 2는 α-1,6-글루코오실 퓨라린, 피크 3은 α-1,6-말토실 퓨라린이다.Figure 2 shows the high performance liquid chromatogram of the reaction product prepared by transferring sugar to furin using maltogenic amylase. In FIG. 2, peak 1 is furarin, peak 2 is α-1,6-glucosyl furan, and peak 3 is α-1,6-maltosyl furanin.

도 2의 피크 2로 용출되는 분획만을 α-1,6-글루코오실 퓨라린, 피크 3로 용출되는 분획만을 α-1,6-말토실 퓨라린으로 각각 수득하였다.Only fractions eluted with peak 2 of FIG. 2 were obtained as α-1,6-glucosyl furarin, and only fractions eluted with peak 3 were α-1,6-maltosyl furanine, respectively.

실시예 4: α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린 동정Example 4 Identification of α-1,6-Glucosyl Furan and α-1,6-maltosyl Furan

4-1. 분자량4-1. Molecular Weight

실시예 3에서 정제한 α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린의 분자량을 측정하였다. The molecular weights of α-1,6-glucosyl furanine and α-1,6-maltosyl furanine purified in Example 3 were measured.

LC/MS를 이용하여 실시하였으며, 시스템은 JMS-LC mate(JEOL, 일본)를 사용하였고, 이온 모드는 APCI+를 사용하였다. 실험결과는 도 3과 4에 나타내었다.LC / MS was used, the system used JMS-LC mate (JEOL, Japan), and the ion mode used APCI + . Experimental results are shown in FIGS. 3 and 4.

도 3은 본 발명의 α-1,6-글루코오실 퓨라린의 LC/MASS 스펙트럼이다. α-1,6-글루코오실 퓨라린은 579.5([T1+H]+)에 나타나는 이온 피크로부터 시료의 분자량이 578로 측정되어, 글루코오실 퓨라린임이 확인하였다.Figure 3 is an LC / MASS spectrum of α-1,6-glucosyl furarin of the present invention. The molecular weight of the sample was determined to be 578 from the ionic peak shown at 579.5 ([T1 + H] + ) as α-1,6-glucosylfuranine, confirming that it was glucoseofuran.

도 4는 본 발명의 α-1,6-말토실 퓨라린의 LC/MASS 스펙트럼으로, α-1,6-말토실 퓨라린은 741([T2+H]+), 763([T2+Na]+) 및 779([T2+K]+)에 나타나는 이온 피크로부터 시료의 분자량이 740으로 측정되어, 말토실 퓨라린임이 검증되었다. 4 is an LC / MASS spectrum of α-1,6-maltosyl furanine of the present invention, wherein α-1,6-maltosyl furanine is 741 ([T2 + H] + ), 763 ([T2 + Na). ] + ) And the molecular weight of the sample was measured at 740 from the ion peak appearing at 779 ([T2 + K] + ) to verify that it is maltosyl furan.

4-2.4-2. 1313 C NMR을 이용한 α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린의 구조 분석Structural Analysis of α-1,6-Glucosyl Furan and α-1,6-maltosyl Furan by C NMR

실시예 3에서 정제한 α-1,6-글루코오실 및 말토실 퓨라린의 구조를 확인하기 위하여, 13C 핵자기공명분석(NMR; JNM LA-400 FT-NMR 스펙트로미터(JEOL, 일본))을 수행하였다. In order to confirm the structures of α-1,6-glucosyl and maltosyl furanine purified in Example 3, 13 C nuclear magnetic resonance analysis (NMR; JNM LA-400 FT-NMR spectrometer (JEOL, Japan)) Was performed.

시료는 실시예 3에서 순수 정제한, α-1,6-글루코오실 및 말토실 퓨라린을 DMSO-d6에 용해시킨 것을 사용하였고, 그 결과는 도 5와 도 6에 나타내었다. Samples were prepared by dissolving α-1,6-glucosyl and maltosyl furanine purified in Example 3 in DMSO-d6, and the results are shown in FIGS. 5 and 6.

실시예 5: α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린의 특성 Example 5 Properties of α-1,6-Glucosyl Furan and α-1,6-maltosyl Furan

α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린 각각을 증류수에 가하고 초음파 처리하여 최대 용해시킨 후 실온에서 1시간 동안 교반하였다. 이어서 0.45 ㎛ 여과막으로 여과한 후 고속액체크로마토그래피로 정량하였다. Each of α-1,6-glucosyl furanine and α-1,6-maltosyl furanine was added to distilled water, sonicated for maximum dissolution, and stirred at room temperature for 1 hour. Subsequently, the resultant was filtered with a 0.45 μm filtration membrane and quantified by high performance liquid chromatography.

α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린의 용해도 실험결과는 하기 표 1에 나타내었다. 표 1에서 퓨라린의 용해도는 1.77 x 10-2 mol/L물로 물에 거의 녹지 않았으나, α-1,6-글루코오실 퓨라린의 용해도는 약 2.0 mol/L물이었으며, α-1,6-말토실 퓨라린의 용해도는 2.0 mol/L물로, 퓨라린보다 각각 약 100배 이상 용해도가 증가하였다. 따라서, 퓨라린에 당전이를 시킨 경우 퓨라린의 수용성을 현저히 증가시킬 수 있다. The solubility test results of α-1,6-glucosyl furanine and α-1,6-maltosyl furanine are shown in Table 1 below. In Table 1, the solubility of furin was 1.77 x 10 -2 mol / L, which was hardly soluble in water, but the solubility of α-1,6-glucosylfuran was about 2.0. mol / L water, and the solubility of α-1,6-maltosyl furanine was 2.0 With mol / L water, the solubility of each of about 100-fold higher than that of furarin was increased. Therefore, when the sugar transfer to the furanrin can significantly increase the water solubility of the furanin.

화합물compound 용해도(mol/L 물)Solubility (mol / L water) 대조구(퓨라린)Control (Furarin) 1.77 x 10-2 1.77 x 10 -2 글루코오실 퓨라린Glucosyl Furanine > 0.2 x 10> 0.2 x 10 말토실 퓨라린Maltosyl Furan > 0.2 x 10> 0.2 x 10

이상 살펴본 바와 같이, 본 발명은 퓨라린에 비하여 수용성이 우수한 α-1,6-글루코오실 퓨라린 및 α-1,6-말토실 퓨라린을 제공하므로써, 퓨라린을 다양한 형태로 제품화 할 수 있다. As described above, the present invention can be produced in various forms by providing the α-1,6-glucosyl fururin and α-1,6-maltosyl fururin excellent in water solubility as compared to the fururin. .

Claims (5)

삭제delete 말토제닉 아밀라아제의 당전이 반응에 의해 글루코오스 또는 말토스를 배당체 퓨라린 또는 이의 유도체에 전이시키는 것을 포함하는 하기 화학식 1의 퓨라린 유도체의 제조방법.A method for preparing a purine derivative of Formula 1, comprising transferring glucose or maltose to glycosides furanine or a derivative thereof by a sugar transfer reaction of maltogenic amylase. (화학식 1)(Formula 1)
Figure 112005069419592-pat00010
Figure 112005069419592-pat00010
상기 R은 α-1,6-말토실 또는 α-1,6-글루코실이다.R is α-1,6-maltosyl or α-1,6-glucosyl.
제 2항에 있어서, 상기 말토제닉 아밀라아제는 바실러스 스테아로써모필러스(Bacillus stearothermophilus) 유래 말토제닉 아밀라아제 또는 바실러스 스테아로써모필러스 유래 말토제닉 아밀라아제 유전자를 형질전환하여 제조한 재조합 단백질인 제조방법.The method of claim 2, wherein the maltogenic amylase is a recombinant protein prepared by transforming a maltogenic amylase derived from Bacillus stearothermophilus or a maltogenic amylase gene derived from Bacillus stearothermophilus . 말토제닉 아밀라아제의 당전이 반응에 의해 글루코오스 또는 말토스를 배당체 퓨라린 또는 이의 유도체에 전이시키는 것을 포함하는 퓨라린의 수용성을 증가시키는 방법.A method of increasing the water solubility of furarine comprising transferring glucose or maltose to glycosides furarine or derivatives thereof by a sugar transfer reaction of maltogenic amylase. 제 4항에 있어서, 상기 말토제닉 아밀라아제는 바실러스 스테아로써모필러스(Bacillus stearothermophilus) 유래 말토제닉 아밀라아제 또는 바실러스 스테아로써모필러스 유래 말토제닉 아밀라아제 유전자를 형질전환하여 제조한 재조합 단백질인 방법.The method of claim 4, wherein the maltogenic amylase is a recombinant protein prepared by transforming a maltogenic amylase derived from Bacillus stearothermophilus or a maltogenic amylase gene derived from Bacillus stearothermophilus .
KR1020040004437A 2004-01-20 2004-01-20 Puerarin derivatives with high solubility and preparation method for the same KR100553578B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040004437A KR100553578B1 (en) 2004-01-20 2004-01-20 Puerarin derivatives with high solubility and preparation method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040004437A KR100553578B1 (en) 2004-01-20 2004-01-20 Puerarin derivatives with high solubility and preparation method for the same

Publications (2)

Publication Number Publication Date
KR20050076450A KR20050076450A (en) 2005-07-26
KR100553578B1 true KR100553578B1 (en) 2006-02-22

Family

ID=37264354

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040004437A KR100553578B1 (en) 2004-01-20 2004-01-20 Puerarin derivatives with high solubility and preparation method for the same

Country Status (1)

Country Link
KR (1) KR100553578B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041984B1 (en) * 2008-08-28 2011-06-16 재단법인서울대학교산학협력재단 Method of preparing puerarin-cycloamylose inclusion complex

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045755A1 (en) * 2008-10-24 2010-04-29 南京师范大学 Glycosyl-derivatives of puerarin, pharmaceutical compositon, preparation method and use thereof
CN102443027B (en) * 2010-10-13 2014-10-29 南京工业大学 Fructose glycosylation puerarin, preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Eur.J.Biochem. Vol.253;251-262(1998 *
J.Nat.Prod. Vol.66;788-792(2003 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041984B1 (en) * 2008-08-28 2011-06-16 재단법인서울대학교산학협력재단 Method of preparing puerarin-cycloamylose inclusion complex

Also Published As

Publication number Publication date
KR20050076450A (en) 2005-07-26

Similar Documents

Publication Publication Date Title
EP2033528B1 (en) Lingonberry extract, the preparing method and use thereof
CN101766678B (en) Application of total flavonoid in astragalus to preparing medicaments for preventing and controlling diabetes and nephropathy
US7282150B2 (en) Method of extracting and method of purifying an effective substance
CN113004432B (en) Dendrobium officinale oligosaccharide, dendrobium officinale oligosaccharide derivative and preparation method and application thereof
CN111302942A (en) Compound with PTP1B inhibitory activity and application thereof
KR100553578B1 (en) Puerarin derivatives with high solubility and preparation method for the same
WO2024034919A1 (en) Cosmetic composition comprising polysaccharides extracted from alfalfa seeds as active ingredient
CN110862463A (en) Preparation of alfalfa root polysaccharide with bioactivity and selenizing modified polysaccharide thereof
EP4349845A1 (en) Novel isoflavone compound
KR100554004B1 (en) Isoflavone derivatives with high solubility and stability and preparation method for the same
CN110128380A (en) Ash tree flower alkali A and preparation method thereof and the application in preparation prevention and/or treatment diabetes medicament
CN113004299B (en) Xanthone compound in mangosteen bark for reducing postprandial blood sugar, and extraction method and application thereof
KR100699432B1 (en) Isoflavone derivatives with high solubility and preparation method for the same
CN112645913B (en) P-diphenyl compound and preparation method and application thereof
CN114644608A (en) Fisetin with urate transporter 1 inhibitory activity and preparation method and application thereof
CN108864224A (en) A kind of isolation and purification method of high mallow element -3-O- Arabinoside and its application
CN110143989A (en) A kind of novel Ellagitannins class alpha-glucosidase restrainer and preparation method thereof
CN108997509B (en) Diaphragma juglandis polysaccharide, preparation method and application thereof
CN111116329A (en) Preparation method and application of isolariciresinol
JP2988656B2 (en) Production method of new lignan glycoside
CN112294785B (en) Application of anthraquinone compounds in preparation of medicines for treating diabetes and pharmaceutical composition
TWI813507B (en) Use of hydroxyglycitin thereof
KR100466375B1 (en) Kaempferol 3-0-β-D-glucopyranoside and quercetin 3-0-β-D-glucopyranoside for inhibiting protein glycation, and manufacturing method thereof and aqueous ethanolic extract of the leaf of Eucommia ulmoides for inhibiting protein glycation comprising quercetin 3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside, kaempferol 3-O-β-D-glucopyranoside and quercetin 3-O-β-D-glucopyranoside
CN110251552B (en) Preparation method of total flavonoids of sauropus spatulifolius
CN107955014B (en) Aphthofurans ketone compounds and preparation and application in preparation of anti-tumor drugs

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee