KR100553387B1 - The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead - Google Patents

The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead Download PDF

Info

Publication number
KR100553387B1
KR100553387B1 KR1020040096099A KR20040096099A KR100553387B1 KR 100553387 B1 KR100553387 B1 KR 100553387B1 KR 1020040096099 A KR1020040096099 A KR 1020040096099A KR 20040096099 A KR20040096099 A KR 20040096099A KR 100553387 B1 KR100553387 B1 KR 100553387B1
Authority
KR
South Korea
Prior art keywords
pba
glycoprotein
magnetic beads
beads
sugar chain
Prior art date
Application number
KR1020040096099A
Other languages
Korean (ko)
Inventor
김양선
Original Assignee
(주)프로테오니크
김양선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)프로테오니크, 김양선 filed Critical (주)프로테오니크
Priority to KR1020040096099A priority Critical patent/KR100553387B1/en
Application granted granted Critical
Publication of KR100553387B1 publication Critical patent/KR100553387B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2806Means for preparing replicas of specimens, e.g. for microscopal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates

Abstract

본 발명은 PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 PBA의 자성비드 결합을 확인하는 방법에 관한 것으로서, 더욱 상세하게는 산화철(iron oxide) 등을 내부에 포함하여 외부 자기장에 의해 자화되는 비드와 페닐보론산(Phenylboronic acid, PBA)을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 MALDI 스펙트럼을 이용하여 PBA의 자성비드 결합을 확인하는 방법에 관한 것이다.The present invention relates to a method for detecting a sugar chain substance using PBA-magnetic beads and a method for confirming magnetic bead binding of PBA, and more specifically, including beads and iron magnetized by an external magnetic field including iron oxide and the like. The present invention relates to a method for detecting sugar chains using PBA-magnetic beads and a method for identifying magnetic bead binding of PBA using MALDI spectra, comprising phenylboronic acid (PBA).

본 발명은 혼합물 중의 당쇄 물질을 검출하는 방법에 있어서, 페닐보론산(Phenylboronic acid, PBA)을, 산화철(iron oxide) 등을 내부에 포함하여 외부 자기장에 의해 자화되는 비드에 고정시켜 PBA-자성비드를 제조하는 단계; 혼합물 중의 당쇄 물질을 상기 페닐보론산의 보론산 기에 결합시켜 당쇄 물질-비드 복합체를 제조하는 단계; 상기 당쇄 물질-비드 복합체를 외부 자장을 걸어 혼합물에서 분리하는 단계; 및 상기 분리된 당쇄 물질-비드 복합체를 MALDI-TOF MS에 적용하여 상기 당쇄 물질을 검출하는 것을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당쇄 물질 검출방법을 제공한다. 본 발명에 따른 PBA-자성비드는 당단백질 등의 당쇄 물질을 용이하고 고순도로 분리할 수 있다. 또한, 본 발명은 MALDI 스펙트럼을 이용하여 PBA의 자성비드 결합을 확인하는 방법을 제공한다.The present invention provides a method for detecting a sugar chain substance in a mixture, wherein PBA-magnetic beads are fixed by fixing phenylboronic acid (PBA) to beads magnetized by an external magnetic field including iron oxide and the like. Preparing a; Coupling a sugar chain material in the mixture to the boronic acid group of the phenylboronic acid to prepare a sugar chain material-bead complex; Separating the sugar chain material-bead complex from the mixture under an external magnetic field; And detecting the sugar chain substance by applying the separated sugar chain substance-bead complex to a MALDI-TOF MS to provide a sugar chain substance detection method using PBA-magnetic beads. The PBA-magnetic beads according to the present invention can easily and highly separate sugar chain materials such as glycoproteins. In addition, the present invention provides a method for identifying magnetic bead binding of PBA using the MALDI spectrum.

PBA, 자성비드, MALDI, 당단백질PBA, magnetic beads, MALDI, glycoprotein

Description

PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 PBA의 자성비드 결합을 확인하는 방법{The method for determining glycosylated substances using the PBA-magnetic bead and for detecting PBA bound to a magnetic bead}The method for determining glycosylated substances using the PBA-magnetic bead and for detecting PBA bound to a magnetic bead}

도 1은 APBA-폴리스티렌 자성비드에 의해 검출된 당단백질의 MALDI 스펙트럼을 나타낸 그래프.1 is a graph showing the MALDI spectrum of glycoproteins detected by APBA-polystyrene magnetic beads.

도 2는 APBA-폴리스티렌 자성비드로부터 분리된 HbA1c, 피브리노젠(fibrinogen), 및 RNase B로부터 얻은 펩타이드 시퀀스의 MALDI 스펙트럼을 나타낸 그래프.FIG. 2 is a graph showing MALDI spectra of peptide sequences obtained from HbA1c, fibrinogen, and RNase B isolated from APBA-polystyrene magnetic beads. FIG.

도 3은 APBA 액(a), APBA-폴리스티렌 자성비드(b) 및 폴리스티렌 자성비드 단독(c)의 MALDI 스펙트럼을 나타낸 그래프.Figure 3 is a graph showing the MALDI spectrum of APBA liquid (a), APBA-polystyrene magnetic beads (b) and polystyrene magnetic beads alone (c).

도 4는 APBA-폴리스티렌 자성비드에 단백질을 결합시킨 경우의 공초점 주사현미경 이미지를 나타낸 사진.Figure 4 is a photograph showing a confocal scanning microscope image when the protein is bound to APBA-polystyrene magnetic beads.

본 발명은 PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 PBA의 자성비드 결합을 확인하는 방법에 관한 것으로서, 더욱 상세하게는 산화철(iron oxide)을 내 부에 포함하여 자화(磁化)되는 비드에 페닐보론산(Phenylboronic acid, PBA)이 고정된 것을 특징으로 하는 PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 MALDI 스펙트럼을 이용하여 PBA의 자성비드 결합을 확인하는 방법에 관한 것이고, 더욱더 상세하게는 페닐보론산에 의해 탐지된 당단백질 등을 외부 자장에 의해 용이하게 분리할 수 있는 PBA-자성비드를 이용한 당쇄 물질 검출 방법 및 MALDI 스펙트럼을 이용하므로서 용이하게 미분자인 PBA의 자성비드 결합을 확인하는 방법에 관한 것이다.The present invention relates to a method for detecting a sugar chain substance using PBA-magnetic beads and a method for confirming magnetic bead binding of PBA, and more particularly, to phenyl on a magnetized bead containing iron oxide. The present invention relates to a method for detecting sugar chains using PBA-magnetic beads and a method for confirming magnetic bead binding of PBA using MALDI spectrum, and more specifically, phenylboron A method for detecting sugar chains using PBA-magnetic beads that can easily separate an acid-detected glycoprotein by an external magnetic field, and a method for identifying magnetic bead binding of PBA, which is a fine molecule, easily by using MALDI spectrum will be.

당쇄화는 진핵 생물의 단백질에서 전사후 변형의 가장 흔한 형태임에도 불구하고, 당쇄화된 단백질의 분석은 매우 어렵다. 왜냐하면, 당단백질의 당쇄화 부위는 발색 부위도 가지고 있지 않고 질량 분석기(mass spectrometry)에 의해 쉽게 이온화되지도 않으며, 당단백질에 의해 신호가 통상적으로 억제되기 때문이다. 항체를 이용한 당단백질 검출방법은 비싸고 검출과정이 복잡하다는 단점이 있다. 또한, 당과 결합하는 화학물질로 알려진 PBA를 이용할 경우, 기존의 PBA가 고정된 일반적인 비드로 분리하는 경우에는 원심분리 등의 조작이 더욱 필요하고, 분리 후에도 불순물이 많이 포함되어 순수한 당단백질의 분리가 곤란한 문제점이 있다. 그러므로, 당단백질을 효과적으로 분리할 수 있다면 당단백질의 분석은 더욱 효과적일 것이다. Although glycosylation is the most common form of post-transcriptional modification in eukaryotic proteins, analysis of glycated proteins is very difficult. This is because glycosylation sites of glycoproteins do not have a color development site and are not easily ionized by mass spectrometry, and signals are usually suppressed by glycoproteins. Glycoprotein detection method using the antibody has the disadvantage of expensive and complicated detection process. In addition, when using a PBA known as a chemical substance that binds to sugar, when the conventional PBA is separated into a fixed bead, the operation such as centrifugation is further required, and after the separation, a large amount of impurities are contained to separate the pure glycoprotein. There is a difficult problem. Therefore, the analysis of glycoproteins will be more effective if the glycoproteins can be effectively separated.

따라서, 본 발명자들은 자성비드를 사용하는 경우 순수한 당단백질의 분리가 용이하다는 점을 착안하였다. PBA를 자성비드에 고정시키는 방법은 여러 가지가 가능하지만, 미분자인 PBA가 자성비드에 결합을 하고 있는지 직접 확인할 수 있는 방 법은 알려져 있지 않다. 본 발명자들은 PBA-자성비드를 MALDI에 최초에 적용함으로서 상기 PBA의 자성비드에 대한 결합을 확인하는 방법을 고안하므로써 본 발명을 완성하였다.Therefore, the inventors have found that the use of magnetic beads facilitates the separation of pure glycoproteins. There are many ways to fix PBA to magnetic beads, but it is not known how to directly determine whether PBA, a fine molecule, is binding to magnetic beads. The inventors have completed the present invention by devising a method for confirming the binding of PBA to magnetic beads by first applying PBA-magnetic beads to MALDI.

따라서, 본 발명의 목적은 외부자장에 의해 당단백질이 결합된 비드를 순수하고 용이하게 분리하도록 PBA에 자성비드를 고정시킨 PBA-자성비드를 이용한 당쇄 물질 검출 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a sugar chain substance detection method using PBA-magnetic beads in which magnetic beads are immobilized on PBA to separate and separate the beads to which glycoproteins are bound by an external magnetic field.

본 발명의 다른 목적은 당단백질 등의 당쇄 물질을 이온화 형태로 용이하게 개조할 수 있는 PBA-자성비드를 이용한 당쇄 물질 검출 방법을 제공하는 것이다.It is another object of the present invention to provide a sugar chain substance detection method using PBA-magnetic beads which can easily convert sugar chain substances such as glycoproteins into ionized form.

본 발명의 또 다른 목적은 PBA-자성비드의 MALDI 스펙트럼을 이용하여 PBA의 자성비드에 대한 결합을 확인하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method of confirming binding of PBA to magnetic beads using MALDI spectrum of PBA-magnetic beads.

상기 목적을 달성하기 위하여, 본 발명은 혼합물 중의 당쇄 물질을 검출하는 방법에 있어서, 페닐보론산(Phenylboronic acid, PBA)을, 산화철(iron oxide) 등을 내부에 포함하여 외부 자기장에 의해 자화되는 비드에 고정시켜 PBA-자성비드를 제조하는 단계; 혼합물 중의 당쇄 물질을 상기 페닐보론산의 보론산 기에 결합시켜 당쇄 물질-비드 복합체를 제조하는 단계; 상기 당쇄 물질-비드 복합체를 외부 자장을 걸어 혼합물에서 분리하는 단계; 및 상기 분리된 당쇄 물질-비드 복합체을 MALDI-TOF MS에 적용하여 상기 당쇄 물질을 검출하는 것을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당쇄 물질 검출방법을 제공한다.In order to achieve the above object, the present invention is a method for detecting a sugar chain material in the mixture, bead magnetized by an external magnetic field containing phenylboronic acid (PBA), iron oxide (iron oxide), etc. inside Fixing to to prepare PBA-magnetic beads; Coupling a sugar chain material in the mixture to the boronic acid group of the phenylboronic acid to prepare a sugar chain material-bead complex; Separating the sugar chain material-bead complex from the mixture under an external magnetic field; And applying the separated sugar chain material-bead complex to MALDI-TOF MS to detect the sugar chain material, thereby providing a sugar chain material detection method using PBA-magnetic beads.

상기 비드는 화학중합체(polymer)인 것이 바람직하고, 폴리스티렌인 것이 더욱 바람직하다. 또한, 상기 페닐보론산은 3-아미노페닐보론산 (3-aminophenylboronic acid)이고 상기 비드는 카르복실기(-COOH)로 표면이 개조된 것이 바람직하다.The beads are preferably chemical polymers, more preferably polystyrene. In addition, the phenylboronic acid is 3-aminophenylboronic acid (3-aminophenylboronic acid) and the bead is preferably a surface modified with a carboxyl group (-COOH).

상기 PBA-자성비드와 결합하여 검출되는 당쇄 물질은 헤모글로빈 A1c(HbA1c), 피브리노젠(fibrinogen) 및 RNase B 과 같은 당단백질이 바람직하다.Glycoproteins such as hemoglobin A1c (HbA1c), fibrinogen, and RNase B are preferable as the sugar chain material detected by binding to the PBA-magnetic beads.

또한, 본 발명은 혼합물 중의 당단백질을 검출하는 방법에 있어서, 페닐보론산(Phenylboronic acid, PBA)을, 산화철(iron oxide) 등을 내부에 포함하여 외부 자기장에 의해 자화되는 비드에 고정시켜 PBA-자성비드를 제조하는 단계; 혼합물 중의 당단백질을 상기 페닐보론산의 보론산 기에 결합시켜 당단백질-비드 복합체를 제조하는 단계; 상기 당단백질-비드 복합체를 외부 자장을 걸어 혼합물에서 분리하는 단계; 상기 복합체의 단백질 부분을 펩타이드로 분해(digestion)하여 분리하는 단계; 및 상기 분해된 복합체를 펩타이드 매스 핑거 프린팅(peptide mass finger printing)에 적용하여 상기 당단백질을 검출하는 것을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법을 제공한다. 상기 비드는 화학중합체(polymer)인 것이 바람직하고, 폴리스티렌인 것이 더욱 바람직하다. 또한, 상기 페닐보론산은 3-아미노페닐보론산 (3-aminophenylboronic acid)이고 상기 비드는 카르복실기(-COOH)로 표면이 개조된 것이 바람직하다.In addition, the present invention provides a method for detecting a glycoprotein in a mixture, in which phenylboronic acid (PBA) is immobilized on a bead magnetized by an external magnetic field, including iron oxide, etc., inside the PBA- Preparing magnetic beads; Binding a glycoprotein in a mixture to the boronic acid group of the phenylboronic acid to prepare a glycoprotein-bead complex; Separating the glycoprotein-bead complex from the mixture by applying an external magnetic field; Separating and digesting the protein portion of the complex with a peptide; And it provides a method for detecting glycoproteins using PBA-magnetic beads, characterized in that for detecting the glycoproteins by applying the decomposed complex to peptide mass finger printing (peptide mass finger printing). The beads are preferably chemical polymers, more preferably polystyrene. In addition, the phenylboronic acid is 3-aminophenylboronic acid (3-aminophenylboronic acid) and the bead is preferably a surface modified with a carboxyl group (-COOH).

또한, 본 발명은 MALDI 스펙트럼을 이용하여 PBA의 자성비드 결합을 확인하는 방법을 제공한다.In addition, the present invention provides a method for identifying magnetic bead binding of PBA using the MALDI spectrum.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

보론산은 특이적인 기하학적 위치-특히, 뉴클레오타이드(nucleotides) 또는 당단백질과 같은 디올(diol)을 포함하는 물질의 cis-1,2-diols의 수산기(hydroxyl groups)와 가역적으로 반응한다. 본 발명에서는, 페닐보론산(Phenylboronic acid, PBA)을 자성비드에 고정시키고 당쇄 물질에 특이적으로 결합하도록 한 후, MALDI (Matrix Assisted Laser Desorption Ionization)로 상기 당쇄 물질을 검출할 수 있는 PBA-자성비드를 이용한 당쇄 물질 검출 방법을 제공한다. Boronic acid reversibly reacts with specific geometric positions—particularly the hydroxyl groups of cis-1,2-diols of substances containing diols such as nucleotides or glycoproteins. In the present invention, PBA-magnetic which can detect the sugar chain material by fixing the phenylboronic acid (PBA) to the magnetic beads and specifically binding to the sugar chain material, and then by Matrix Assisted Laser Desorption Ionization (MALDI) Provided is a method for detecting sugar chain material using beads.

자성비드는 외부 자장에서 쉽게 세척되고 분리될 수 있기 때문에 물질을 순수하게 분리하는데 매우 효과적으로 이용될 수 있다. 따라서, 자성비드에 PBA를 고정시키면, 당쇄 물질을 PBA로 검출하고 상기 PBA가 고정된 자성비드에 외부자장을 걸어서 PBA에 결합된 당단백질(glycoprotein) 및 당류(carbohydrate) 등의 당쇄 물질을 순수하고 용이하게 분리할 수 있다. 또한, 자성비드는 작고 무거워서 분리가 더욱 용이하고, 비드의 크기가 작으므로 샘플의 농도 및 양을 줄일 수 있는 장점이 있다. 상기 자성비드의 크기는 2.6um-3.0um로서 통상 판매되는 비드를 사용할 수 있다.Magnetic beads can be very effectively used to purely separate materials because they can be easily washed and separated from external magnetic fields. Therefore, when the PBA is immobilized on the magnetic beads, the sugar chain substance is detected as PBA, and the external magnetic field is applied to the magnetic beads to which the PBA is immobilized to purify sugar chain substances such as glycoproteins and carbohydrates bound to the PBA. It can be easily separated. In addition, the magnetic beads are small and heavy, so that the separation is easier, and the size of the beads is small, thereby reducing the concentration and amount of the sample. The size of the magnetic beads is 2.6um-3.0um can be used commercially available beads.

PBA는 화학물질로서 비드에 비하여 매우 작은 물질이다. 따라서, 기존에는 비드에 PBA가 확실히 결합되어 있는지 확인이 곤란하였는데, 본 발명자들은 상기 PBA를 자성비드에 고정시키고 MALDI MS(Mass spectrometry)에 최초로 적용시켜 PBA와 자성비드의 결합을 확인하므로서, 본 발명에 따른 PBA-자성비드 및 이를 이용한 당쇄 물질 검출 방법을 발명하였다. 도1 내지 도4는 상기 PBA와 자성비드의 결합이 잘 이루어졌는지 확인한 시험결과를 나타낸다. 특히, FITC로 표지(tagging)된 단백질을 PBA-자성비드에 고정시킨 후 공초점 주사현미경(confocal laser microscopy)으로 본 형광이미지는 당단백질(glycoprotein, 도3의 b: HbA1c, 도3의 c: RNase B)과 당쇄화 되지 않은 단백질(nonglycoprotein, 도3의 d: BSA, 도3의 e: Myoglobin)이 상기 자성비드에 고정화되는 효율이 다르다는 것을 증명한다(도3의 a는 PBA bead).PBA is a chemical that is very small compared to beads. Therefore, in the past, it was difficult to confirm whether PBA is firmly bonded to the beads, and the present inventors fixed the PBA to magnetic beads and applied the MALDI MS (Mass spectrometry) for the first time to confirm the binding of PBA and magnetic beads. PBA-magnetic beads according to the present invention and a method for detecting sugar chains using the same. 1 to 4 show the test results confirming that the binding of the PBA and the magnetic bead well. In particular, the FITC-tagged proteins were immobilized on PBA-magnetic beads and then viewed by confocal laser microscopy. The fluorescence images of the glycoproteins (g: HbA1c in FIG. 3, c: in FIG. RNase B) and the nonglycosylated protein (nonglycoprotein (d: BSA in FIG. 3, e: Myoglobin) in FIG. 3) demonstrate that the efficiency of immobilization on the magnetic beads is different (a in FIG. 3 is PBA bead).

상기 PBA는 스스로 이온화하는 성질을 가지므로 특별히 매트릭스(matrix)가 없어도 MALDI 플레이트에서 자성비드에 결합된 당쇄 물질을 확인할 수 있다. 또한, 상기 당쇄 물질이 당단백질인 경우, 자성 비드를 직접 MALDI 플레이트에 넣거나 염석(salting out) 또는 pH 변화를 주므로서 자성비드에 결합된 단백질을 분리한 뒤 측정할 수 있다. 또한, 트립신 등의 단백질 분해효소를 사용하여 자성비드에 결합한 단백질을 펩타이드로 자른 후 상등액을 취하여 탈염(Desalting)과정을 거친 후 펩타이드 매스 핑거 프린팅(peptide mass finger printing)으로 상기 당단백질을 다시 확인할 수 있다.Since the PBA has a property of ionizing itself, it is possible to identify the sugar chain material bonded to the magnetic beads in the MALDI plate even without a matrix. In addition, when the sugar chain material is a glycoprotein, the magnetic beads may be measured by separating the proteins bound to the magnetic beads by directly putting them in a MALDI plate or giving salting out or pH changes. In addition, the protein bound to the magnetic beads using a protease such as trypsin is cut into peptides and then taken to the supernatant to go through the desalting process, and then the glycoprotein can be confirmed again by peptide mass finger printing. have.

자성비드로서, 산화철 등을 내부에 포함하여 외부 자기장에 의해 자화되는 성질이 큰 비드를 사용할 수 있다. 상기 성질을 가지는 비드는 화학 중합체 (polymer)로 구성된 비드를 사용하는 것이 바람직하고, 폴리스티렌 비드를 사용하는 것이 가장 바람직하다.As the magnetic beads, beads having a property of being magnetized by an external magnetic field by including iron oxide or the like inside can be used. Beads having the above properties are preferably used beads made of chemical polymers, and most preferably polystyrene beads.

PBA는 자성비드에 다양한 방법으로 고정될 수 있다. PBA can be fixed to the magnetic beads in various ways.

가장 많이 쓰이는 예로서, 표면이 카르복실기로 개조된 폴리스티렌 자성비드 의 카르복실기를 3-아미노페닐보론산인 APBA의 아미노기와 결합시켜 APBA-자성비드를 제조할 수 있다. APBA-자성비드 및 상기 비드에 당쇄 물질이 결합하는 과정 및 그 결합물질이 MALDI 플레이트에 적용되는 과정은 다음과 같다.As the most common example, APBA-magnetic beads can be prepared by combining the carboxyl groups of polystyrene magnetic beads whose surface has been converted to carboxyl groups with the amino groups of APBA, 3-aminophenylboronic acid. The process of binding the sugar chain material to the APBA-magnetic beads and the beads and the process of applying the binding material to the MALDI plate are as follows.

Figure 112004054595972-pat00001
Figure 112004054595972-pat00001

Figure 112004054595972-pat00002
Figure 112004054595972-pat00002

또한, 표면이 아미노기로 개조된 자성비드를 사용하는 경우는 아미노기를 가진 PBA를 사용하고, 비스설포석신이미딜수버레이트 (Bis (sulfosuccinimidyl) suberate)와 같은 링커(linker) 물질로 상기 두 물질의 아미노기를 연결하여 PBA- 자성비드를 제조할 수 있다. 다음은 상기 방법을 나타낸 식이다.(8각형 도형은 PBA를 나타낸다.)In addition, in the case of using a magnetic bead whose surface is converted to an amino group, PBA having an amino group is used, and a linker material such as bissulfosuccinimidyl suberate (Bis (sulfosuccinimidyl) suberate) may be used. PBA-magnetic beads can be prepared by linking amino groups. The following is an expression of the method. (An octagonal figure represents a PBA.)

Figure 112004054595972-pat00003
Figure 112004054595972-pat00003

또, 에폭시기를 가진 자성비드는 아민기(amine group), 하이드록실기(hydroxyl group), 치올기(thiol group)를 포함하는 PBA와 결합하여 PBA-자성비드를 제조할 수 있다. 다음은 상기 방법을 나타낸 식이다.In addition, magnetic beads having an epoxy group may be combined with PBA including an amine group, a hydroxyl group, and a thiol group to prepare PBA-magnetic beads. The following is an equation representing the method.

Figure 112004054595972-pat00004
Figure 112004054595972-pat00004

또, 알데히드로 표면이 개조된 자성비드를 사용하는 경우는, 1차 또는 2차 아미노 그룹(primary or secondary amino group)을 가진 PBA와 결합하여 PBA-자성비드를 제조할 수 있다. 다음은 상기 방법을 나타내는 식이다.In addition, in the case of using magnetic beads having modified aldehyde surfaces, PBA-magnetic beads can be prepared by combining with PBA having a primary or secondary amino group. The following is an equation representing the method.

Figure 112004054595972-pat00005
Figure 112004054595972-pat00005

그 외에도 IDA로 표면이 개조된 자성비드와 실리카로 개조된 자성비드를 이용하여 PBA-자성비드를 제조할 수 있다.In addition, PBA-magnetic beads can be prepared using magnetic beads modified with IDA and magnetic beads modified with silica.

이하 구체적인 실험예를 들어 본 발명을 설명하나 본 발명이 이들 예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to specific experimental examples, but the present invention is not limited to these examples.

[실시예 1] MALDI-TOF를 이용한 PBA-자성비드에 고정된 당단백질의 검출Example 1 Detection of Glycoproteins Immobilized on PBA-magnetic Beads Using MALDI-TOF

a. PBA-자성비드의 제조a. Preparation of PBA-Magnetic Beads

실험재료로서 3.0um 크기의 -COOH 말단 자성비드를 Dynal Biotech (Oslo, Norway)에서 구입하였고, 아미노 페닐보론산, 1-에틸-3-(디메틸아미노프로필)카보디이미드 (1-ethyl-3-(dimetylaminopropyl)carbodiimide, EDAC), N-하이드록시썩신이미드(N-hydroxysuccinimide, NHS), 2-[N-몰폴리노]에탄 설폰산 (2-[N-Morpholino] ethane sulfonic acid, MES)은 시그마(Sigma)에서 구입하였다.As a test material, 3.0um -COOH-terminated magnetic beads were purchased from Dynal Biotech (Oslo, Norway), aminophenylphenylonic acid, 1-ethyl-3- (dimethylaminopropyl) carbodiimide (1-ethyl-3- (dimetylaminopropyl) carbodiimide (EDAC), N-hydroxysuccinimide (NHS), 2- [N-morpholino] ethane sulfonic acid (2- [N-Morpholino] ethane sulfonic acid, MES) It was purchased from Sigma.

-COOH 말단 자성비드 100μl를 0.01M NaOH로 두 번, DI water로 세 번 세척하여 비특이적 결합(non-specific binding)을 최소화 시켜주었다(자석으로 비드를 모은 후 상층액을 제거하는 방식으로 세척). 그 뒤 25mM MES(pH 5)에 녹인 50 mg/ml NHS와 50 mg/ml EDC를 1:1로 섞은 뒤 세척한 비드에 넣고 30분간 실온에서 반응시켰다. 이렇게 카르복실산기(Carboxyl group)가 활성화된 비드를 25mM MES로 두 번 세척한 뒤 25mM MES 40μl에 담가두었다. 그리고 나서 같은 버퍼(Buffer)로 녹인 1mg/ml PBA 60μl를 섞은 뒤 실온에서 한 시간 반응후 4℃에서 밤샘(overnight) 반응시켰다. 그 뒤 상층액을 제거하고 0.05 M 에탄올아민(Ethanolamine, pH 8)으로 15분간 반응시켜 반응시키지 않을 기능기(non-reacted group)의 반응을 막아주었다. 마지막으로 PBS를 사용해서 4번 세척한 뒤 2~8℃에 보관했다.100 μl of -COOH-terminated magnetic beads were washed twice with 0.01 M NaOH and three times with DI water to minimize non-specific binding (collecting the beads after collecting the beads to remove supernatant). Thereafter, 50 mg / ml NHS and 50 mg / ml EDC dissolved in 25 mM MES (pH 5) were mixed 1: 1 and placed in the washed beads and allowed to react at room temperature for 30 minutes. The beads having activated carboxyl group were washed twice with 25 mM MES and soaked in 40 μl of 25 mM MES. Then, 60 μl of 1 mg / ml PBA dissolved in the same buffer was mixed, followed by an overnight reaction at 4 ° C. after one hour reaction at room temperature. Thereafter, the supernatant was removed and reacted with 0.05 M ethanolamine (Ethanolamine, pH 8) for 15 minutes to prevent the reaction of non-reacted groups. Finally, washed four times with PBS and stored at 2 ~ 8 ℃.

b. PBA-자성비드와 당단백질 복합체의 제조b. Preparation of PBA-magnetic Beads and Glycoprotein Complexes

당단백질인 HbA1c, 리보뉴클레이즈 B, 피브리노젠 각각을 DI water에 녹여 50 μM을 만들었다. 보관하고 있던 PBA-자성비드 중 20 μl를 꺼내어 상층액을 제거시키고 준비한 당단백질을 20 μl 첨가하였다. 실온에서 90분간 반응시킨 뒤 DI water로 여러번 세척하였다.Glycoproteins HbA1c, ribonuclease B, and fibrinogen were each dissolved in DI water to make 50 μM. 20 μl of the stored PBA-magnetic beads was removed, the supernatant was removed, and 20 μl of the prepared glycoprotein was added. After reacting for 90 minutes at room temperature, the mixture was washed several times with DI water.

c. PBA-자성비드에 의한 단백질의 검출c. Detection of Proteins by PBA-magnetic Beads

당단백질 HbA1c, 리보뉴클레이즈 B, 피브리노젠 각각이 결합된 PBA 비드 1 μl와 매트릭스 (matrix, sinnapinic acid) 1 μl를 섞은 뒤, 그 중 1 μl를 MALDI 플레이트에 넣고 MALDI 스펙트럼을 찍었다.After mixing 1 μl of PBA beads and 1 μl of matrix (matrix, sinnapinic acid) to which glycoproteins HbA1c, ribonuclease B, and fibrinogen were combined, 1 μl of them was placed in a MALDI plate and the MALDI spectrum was taken.

HbA1c의 경우, m/e 15130.37에서 당쇄화되지 않은 헤모글로빈 a 유닛(Hb a unit)의 스펙트럼 및, m/e 16034.6에서 당쇄화된 헤모글로빈 b 유닛(Hb b unit)의 스펙트럼을 보였다(도1의 a). 리보뉴클레이즈 B(Ribonuclease B)의 경우, 다른 질량의 만노즈 유닛(mannose unit, 162 Da)을 가진 GlcNAc2Man5 와 GlcNAc2Man9에 대응하는 리보뉴클레이즈 B의 5가지 당쇄화된 형태에 대한 스펙트럼을 보였다(도1의 b). 피브리노젠(Fibrinogen)의 경우, 분자량이 커서 이온화되는데 한계가 있으나, 본 발명에 따른 자성비드에 피브리노젠을 고정시키면 그 이온 분자가 검출된다(도1의 c)For HbA1c, the spectra of unglycosylated hemoglobin a unit (mb) at m / e 15130.37, and the spectrum of Hb b unit glycosylated at m / e 16034.6 (Fig. 1a) ). Ribonuclease B showed spectra for the five glycosylated forms of ribonuclease B corresponding to GlcNAc2Man5 and GlcNAc2Man9 with different masses of mannose units (162 Da). (B) of FIG. 1. In the case of fibrinogen, there is a limit in ionization due to its large molecular weight, but when the fibrinogen is immobilized in the magnetic beads according to the present invention, the ion molecule is detected (FIG. 1C).

[실시예2] 펩타이드 매스 핑거 프린팅에 의한 PBA-자성비드에 고정된 당단백질의 검출Example 2 Detection of Glycoproteins Immobilized on PBA-magnetic Beads by Peptide Mass Fingerprinting

당단백질과 결합한 PBA-비드를 증발관(Evaporator)으로 완전히 말린 후에 25 mM 중탄산 암모늄(Ammonium bicabonate)에 녹인 5~20 ng/μl 의 트립신을 20μl 첨가하여 밤샘(overnight) 반응을 하였다. 그 뒤 상등액을 취하여 탈염(Desalting) 과정을 거친 후 매트릭스와 섞어 MALDI 스펙트럼을 찍었다. 얻어진 펩타이드 질량값을 데이터베이스인 Mascot에 적용시켜 펩타이드 시퀀스를 찾아내었다.After PBA-beads combined with glycoproteins were completely dried in an evaporator, 20 μl of 5-20 ng / μl of trypsin dissolved in 25 mM ammonium bicabonate was added for overnight reaction. The supernatant was then taken through a desalting process and mixed with the matrix to take MALDI spectra. The peptide mass obtained was applied to Mascot as a database to find a peptide sequence.

상기 당단백질을 PBA-자성비드와 결합시킨 후 분해하여 얻은 상등액의 MALDI 스펙트럼으로부터(도2), HbA1c(도2의 a), RNase B(도2의 b) 및 피브리노젠(fibrinogen)(도2의 c)은 각각 표1과 같은 비율로 펩타이드 시퀀스를 확인할 수 있었다. From the MALDI spectrum of the supernatant obtained by combining the glycoproteins with PBA-magnetic beads and digesting them (FIG. 2), HbA1c (FIG. 2 a), RNase B (FIG. 2 b) and fibrinogen (FIG. 2) c) was able to identify the peptide sequence in the ratio shown in Table 1, respectively.

당단백질 종류Glycoprotein Types 시퀀스 확인비율Sequence confirmation rate 검출된 펩타이드 시퀀스Peptide Sequence Detected Hemoglobin beta subunit variant (Fragment)Hemoglobin beta subunit variant (Fragment) 82.6 % 82.6%                                              NVDEVGGEAL GRLLVVYPWT QRFFESFGDL STPDAVMGNP KVKAHGKKVL GAFSDGLAHL DNLKGTFATL SELHCDKLHV DPENFRLLGN VLVCVLDHHF GKEFTPPVQA AYQKVVAGVA NALAHKYH NVDEVGGEAL GRLLVVYPWT QRFFESFGDL STPDAVMGNP K VKAHGK KVL GAFSDGLAHL DNLKGTFATL SELHCDKLHV DPENFR LLGN VLVCVLDHHF GK EFTPPVQA AYQKVVAGVA NALAHKYH Pancreatic ribonuclease precursor (EC 3.1.27.5)Pancreatic ribonuclease precursor (EC 3.1.27.5) 66.7 %66.7% MALKSLVLLS LLVLVLLLVR VQPSLGKETA AAKFERQHMD SSTSAASSSN YCNQMMKSRN LTKDRCKPVN TFVHESLADV QAVCSQKNVA CKNGQTNCYQ SYSTMSITDC RETGSSKYPN CAYKTTQANK HIIVACEGNP YVPVHFDASV MALK SLVLLS LLVLVLLLVR VQPSLGK ETA AAKFERQHMD SSTSAASSSN YCNQMMKSRN LTKDRCK PVN TFVHESLADV QAVCSQKNVA CKNGQTNCYQ SYSTMSITDC R ETGSSK YPN CAYKTTQANK HIIVACEGNPAS YVPVHF Fibrinogen beta chain precursorFibrinogen beta chain precursor 33.8 %33.8% QFPTDYDEGQ DDRPKVGLGA RGHRPYDKKK EEAPSLRPVP PPISGGGYRA RPATATVGQK KVERKPPDAD GCLHADPDLG VLCPTGCKLQ DTLVRQERPI RKSIEDLRNT VDSVSRTSSS TFQYITLLKN MWKGRQNQVQ DNENVVNEYS SHLEKHQLYI DETVKNNIPT KLRVLRSILE NLRSKIQKLE SDVSTQMEYC RTPCTVTCNI PVVSGKECEK IIRNEGETSE MYLIQPEDSS KPYRVYCDMK TEKGGWTVIQ NRQDGSVDFG RKWDPYKQGF GNIATNAEGK KYCGVPGEYW LGNDRISQLT NMGPTKLLIE MEDWKGDKVT ALYEGFTVQN EANKYQLSVS KYKGTAGNAL IEGASQLVGE NRTMTIHNSM FFSTYDRDND GWKTTDPRKQ CSKEDGGGWW YNRCHAANPN GRYYWGGAYT WDMAKHGTDD GVVWMNWQGS WYSMKKMSMKIRPYFPEQ QFPTDYDEGQ DDRPKVGLGA RGHRPYDKKK EEAPSLRPVP PPISGGGYRA RPATATVGQK KVERKPPDAD GCLHADPDLG VLCPTGCKLQ DTLVRQERPI RKSIEDLRNT VDSVSR TSSS TFQYITLLK N MWK GRQNQVQ DNENVVNEYS SHLEK HQLYI DETVKNNIPT KLRVLRSILE NLRSKIQKLE SDVSTQMEYC RTPCTVTCNI PVVSGKECEK IIRNEGETSE MYLIQPEDSS KPYRVYCDMK TEK GGWTVIQ NR QDGSVDFG RKWDPYKQGF GNIATNAEGK K YCGVPGEYW LGNDRISQLT NMGPTKLLIE MEDWKGDKVT ALYEGFTVQN EANK YQLSVS KYKGTAGNAL IEGASQLVGE NR TMTIHNSM FFSTYDRDND GWK TTDPRKQ CSK EDGGGWW YNRCHAANPN GRYYWGGAYT WDMAK HGTDD GVVWMNWQGS WYSMKKMSMK IRPYFPEQ

(굵은 알파벳: 펩타이드 매스 핑거프린팅을 통해 찾아낸 시퀀스)(Bold alphabet: sequence found through peptide mass fingerprinting)

[실시예3] PBA 액, PBA-자성비드 및 자성비드 단독의 MALDI 스펙트럼을 비교하여 자성비드에 PBA가 고정된 것을 확인Example 3 It was confirmed that PBA was fixed to magnetic beads by comparing MALDI spectra of PBA liquid, PBA-magnetic beads, and magnetic beads alone.

PBA 단독, 실시예1에 따른 PBA-폴리스티렌 자성비드 및 PBA가 고정되지 않은 폴리스티렌 자성비드를 준비하였다. PBA alone, PBA-polystyrene magnetic beads according to Example 1, and polystyrene magnetic beads to which PBA was not fixed were prepared.

PBA 액을 매트릭스없이 MALDI 플레이트에 넣고 MALDI 스펙트럼을 찍었다(도3의 a). 또한 PBA-자성비드를 매트릭스없이 알루미늄 샘플 플레이트에 넣고 MALDI 스펙트럼을 찍었다(도3의 b). 그 다음, 자성비드 단독으로 매트릭스없이 MALDI 플레이트에 넣고 MALDI 스펙트럼을 찍었다(도3의 c). PBA 액의 스펙트럼은 m/e 137.1에 피크가 생겼고(도3의 a), PBA-자성비드의 스펙트럼은 PBA 액의 피크인 m/e 137.1(도3의 a)과 자성비드 단독의 스펙트럼(도3의 c)를 모두 나타내므로, 자성비드에 PBA가 고정되어 있음을 알 수 있었다.PBA solution was placed in a MALDI plate without a matrix and MALDI spectra were taken (FIG. 3A). In addition, PBA-magnetic beads were placed in an aluminum sample plate without a matrix, and MALDI spectra were taken (Fig. 3b). Then, magnetic beads alone were placed in a MALDI plate without a matrix, and MALDI spectra were taken (FIG. 3C). The spectrum of PBA liquid peaked at m / e 137.1 (Fig. 3a), and the spectrum of PBA-magnetic beads was the spectrum of m / e 137.1 (Fig. 3a), which is the peak of PBA liquid, and magnetic beads alone (Fig. Since c) of all 3 is shown, it can be seen that PBA is fixed to magnetic beads.

[시험예1] PBA-자성비드에 단백질을 고정시킨 경우의 이미지 비교[Test Example 1] Image comparison when protein is immobilized on PBA-magnetic beads

형광물질인 FITC (Fluorescein isothiocyanate)를 당단백질과 일반 단백질에 부착시킨 후 실시예 2와 같은 과정으로 PBA-자성비드와 결합시켰다. 그 뒤 공초점 주사현미경의 슬라이드 글라스에 올려놓고 200배 확대하여 이미지를 확인하였다.The fluorescent material FITC (Fluorescein isothiocyanate) was attached to glycoproteins and general proteins, and then bound to PBA-magnetic beads in the same manner as in Example 2. Then placed on a slide glass of confocal scanning microscope and magnified 200 times to confirm the image.

PBA-자성비드에 당단백질이 고정된 경우에만 공초점 주사현미경의 이미지가 나타났다(도4의 b와 c).Images of confocal scanning microscopy appeared only when glycoproteins were immobilized on PBA-magnetic beads (b and c in FIG. 4).

이상 상술한 바와 같이, 본 발명에 따른 PBA-자성비드는 당단백질 등의 당쇄 물질을 용이하고 고순도로 분리할 수 있다. 또한, 효소처리를 통해 당단백질을 이온화 형태로 용이하게 개조할 수 있어 MALDI-TOF에 적용이 가능한 장점이 있다.As described above, the PBA-magnetic beads according to the present invention can separate sugar chain materials such as glycoproteins easily and with high purity. In addition, there is an advantage that can be easily applied to the MALDI-TOF glycoproteins can be easily converted into an ionized form through the enzyme treatment.

그리고, PBA-자성비드의 MALDI 스펙트럼을 찍으므로서, PBA가 자성비드에 고정되었는지 확인할 수 있다.And, by taking the MALDI spectrum of the PBA-magnetic beads, it can be confirmed whether the PBA is fixed to the magnetic beads.

Claims (12)

혼합물 중의 당단백질을 검출하는 방법에 있어서,In the method for detecting a glycoprotein in a mixture, 페닐보론산(Phenylboronic acid, PBA)을, 산화철(iron oxide)을 내부에 포함하여 외부 자기장에 의해 자화되는 폴리스티렌 비드에 고정시켜 PBA-자성비드를 제조하는 단계;Preparing PBA-magnetic beads by immobilizing phenylboronic acid (PBA) on polystyrene beads magnetized by an external magnetic field including iron oxide therein; 혼합물 중의 당단백질을 상기 페닐보론산의 보론산 기에 결합시켜 당단백질-비드 복합체를 제조하는 단계;Binding a glycoprotein in a mixture to the boronic acid group of the phenylboronic acid to prepare a glycoprotein-bead complex; 상기 당단백질-비드 복합체를 외부 자장을 걸어 혼합물에서 분리하는 단계;및Separating the glycoprotein-bead complex from the mixture by applying an external magnetic field; and 상기 분리된 당단백질-비드 복합체를 MALDI-TOF MS에 적용하여 상기 당단백질을 검출하는 것을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.Method for detecting a glycoprotein using PBA-magnetic beads, characterized in that for detecting the glycoprotein by applying the separated glycoprotein-bead complex to MALDI-TOF MS. 삭제delete 삭제delete 제1항에 있어서, 상기 페닐보론산은 3-아미노페닐보론산 (3-aminophenylboronic acid)이고 상기 비드는 카르복실기(-COOH)로 표면이 개조된 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.The method of claim 1, wherein the phenylboronic acid is 3-aminophenylboronic acid (3-aminophenylboronic acid) and the bead glycoprotein detection method using PBA-magnetic beads, characterized in that the surface is modified with a carboxyl group (-COOH) . 삭제delete 제1항에 있어서, 상기 당단백질은 헤모글로빈 A1c, 피브리노젠(fibrinogen) 및 RNase B로 이루어진 군에서 선택된 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.According to claim 1, wherein the glycoprotein is glycoprotein detection method using PBA-magnetic beads, characterized in that selected from the group consisting of hemoglobin A1c, fibrinogen and RNase B. 혼합물 중의 당단백질을 검출하는 방법에 있어서,In the method for detecting a glycoprotein in a mixture, 페닐보론산(Phenylboronic acid, PBA)을, 산화철(iron oxide)을 내부에 포함하여 외부 자기장에 의해 자화되는 폴리스티렌 비드에 고정시켜 PBA-자성비드를 제조하는 단계;Preparing PBA-magnetic beads by immobilizing phenylboronic acid (PBA) on polystyrene beads magnetized by an external magnetic field including iron oxide therein; 혼합물 중의 당단백질을 상기 페닐보론산의 보론산 기에 결합시켜 당단백질-비드 복합체를 제조하는 단계;Binding a glycoprotein in a mixture to the boronic acid group of the phenylboronic acid to prepare a glycoprotein-bead complex; 상기 당단백질-비드 복합체를 외부 자장을 걸어 혼합물에서 분리하는 단계;Separating the glycoprotein-bead complex from the mixture by applying an external magnetic field; 상기 복합체의 당단백질 부분을 펩타이드로 분해(digestion)하여 분리하는 단계; 및Separating and digesting the glycoprotein portion of the complex with a peptide; And 상기 분해된 당단백질 부분을 MALDI 펩타이드 매스 핑거 프린팅(peptide mass finger printing)에 적용하여 상기 당단백질을 검출하는 것을 포함하는 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.The glycoprotein detection method using PBA-magnetic beads, characterized in that for detecting the glycoprotein by applying the digested glycoprotein portion to MALDI peptide mass finger printing. 삭제delete 삭제delete 제7항에 있어서, 상기 페닐보론산은 3-아미노페닐보론산 (3-aminophenylboronic acid)이고 상기 비드는 카르복실기(-COOH)로 표면이 개조된 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.The method of claim 7, wherein the phenylboronic acid is 3-aminophenylboronic acid (3-aminophenylboronic acid) and the beads are glycoprotein detection method using PBA-magnetic beads, characterized in that the surface is modified with a carboxyl group (-COOH) . 제7항에 있어서, 상기 당단백질은 헤모글로빈 A1c, 피브리노젠(fibrinogen) 및 RNase B인 것을 특징으로 하는 PBA-자성비드를 이용한 당단백질 검출방법.The method of claim 7, wherein the glycoproteins are hemoglobin A1c, fibrinogen (fibrinogen) and RNase B, characterized in that the glycoprotein detection method using PBA-magnetic beads. 삭제delete
KR1020040096099A 2004-11-23 2004-11-23 The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead KR100553387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040096099A KR100553387B1 (en) 2004-11-23 2004-11-23 The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040096099A KR100553387B1 (en) 2004-11-23 2004-11-23 The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead

Publications (1)

Publication Number Publication Date
KR100553387B1 true KR100553387B1 (en) 2006-02-21

Family

ID=37178953

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040096099A KR100553387B1 (en) 2004-11-23 2004-11-23 The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead

Country Status (1)

Country Link
KR (1) KR100553387B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374848A (en) * 2013-08-14 2015-02-25 中国科学院大连化学物理研究所 Method for enriching glycopeptide by phenylboronic acid material
WO2015199282A1 (en) * 2014-06-23 2015-12-30 충남대학교산학협력단 Selective and non-destructive method for o-glycan separation
CN111413396A (en) * 2020-04-21 2020-07-14 四川大学 Application of ferric oxide nano material and MA L DI-TOF MS in detection of small molecule metabolites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374848A (en) * 2013-08-14 2015-02-25 中国科学院大连化学物理研究所 Method for enriching glycopeptide by phenylboronic acid material
CN104374848B (en) * 2013-08-14 2017-03-15 中国科学院大连化学物理研究所 A kind of method that phenyl boric acid material is enriched with glycopeptide
WO2015199282A1 (en) * 2014-06-23 2015-12-30 충남대학교산학협력단 Selective and non-destructive method for o-glycan separation
CN111413396A (en) * 2020-04-21 2020-07-14 四川大学 Application of ferric oxide nano material and MA L DI-TOF MS in detection of small molecule metabolites

Similar Documents

Publication Publication Date Title
Nelson et al. BIA/MS of epitope-tagged peptides directly from E. coli lysate: multiplex detection and protein identification at low-femtomole to subfemtomole levels
Foreman et al. Peptidomics: A review of clinical applications and methodologies
Seebacher et al. Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing
EP2044443B1 (en) Peptide antibody depletion and its application to mass spectrometry sample preparation
Arora et al. Chemical crosslinking: Role in protein and peptide science
TWI338779B (en) Methods,compositions and systems for assaying at least one target analyte in a sample
Lee et al. Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry
Xu et al. On‐plate enrichment of glycopeptides by using boronic acid functionalized gold‐coated Si wafer
Leitner A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research
JP2007024631A (en) Isotope labeling method
EP1415137A2 (en) Methods for mass spectrometry detection and quantification of specific target proteins in complex biological samples
US20050255526A1 (en) Anti-tag antibody chip for protein interaction analysis
Drǎguşanu et al. Epitope motif of an anti‐nitrotyrosine antibody specific for tyrosine‐nitrated peptides revealed by a combination of affinity approaches and mass spectrometry
WO2007149407A9 (en) Identification and characterization of analytes from whole blood
KR100553387B1 (en) The method for determining glycosylated substances using the pba-magnetic bead and for detecting pba bound to a magnetic bead
WO2009069033A1 (en) Selective enrichment of post-translationally modified proteins and/or peptides
Cunningham et al. Investigation and reduction of sub‐microgram peptide loss using molecular weight cut‐off fractionation prior to mass spectrometric analysis
JP2010508831A (en) Method for purifying at least one target substance for identification purposes
EP2108654A1 (en) Selective enrichment of n-terminally modified peptides from complex samples
Govorun et al. Proteomics and peptidomics in fundamental and applied medical studies
US20070148721A1 (en) Compositions, methods, systems, and kits for affinity purification
EP2120050A1 (en) Identification of ligand recognition domains
Butorac et al. Benefits of selective peptide derivatization with sulfonating reagent at acidic pH for facile matrix‐assisted laser desorption/ionization de novo sequencing
Lonardi et al. Microarray technology using glycans extracted from natural sources for serum antibody fluorescent detection
Petre Affinity-Mass Spectrometry Approaches for Elucidating Structures and Interactions of Protein–Ligand Complexes

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121128

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131121

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 13