KR100552426B1 - Laminate of polyolefin film and metallic thin layer - Google Patents

Laminate of polyolefin film and metallic thin layer Download PDF

Info

Publication number
KR100552426B1
KR100552426B1 KR1020030004832A KR20030004832A KR100552426B1 KR 100552426 B1 KR100552426 B1 KR 100552426B1 KR 1020030004832 A KR1020030004832 A KR 1020030004832A KR 20030004832 A KR20030004832 A KR 20030004832A KR 100552426 B1 KR100552426 B1 KR 100552426B1
Authority
KR
South Korea
Prior art keywords
polyolefin
fluorine
film
mixed gas
oxygen
Prior art date
Application number
KR1020030004832A
Other languages
Korean (ko)
Other versions
KR20040067620A (en
Inventor
박수진
이재락
신준식
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020030004832A priority Critical patent/KR100552426B1/en
Publication of KR20040067620A publication Critical patent/KR20040067620A/en
Application granted granted Critical
Publication of KR100552426B1 publication Critical patent/KR100552426B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/126Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 금속과의 접착력이 우수한 폴리올레핀계 필름의 제조방법에 관한 것으로서, 구체적으로는 불소/산소 혼합가스로 표면처리를 행하여 폴리올레핀계 고분자의 좋은 기계적 성질 및 우수한 가공성등의 성질은 그대로 유지시키면서 폴리올레핀계 고분자의 표면만을 단시간에 효과적으로 개질시켜 표면자유에너지를 높이고 표면에 산소 관능기를 도입하여 동박과의 접착력이 향상된 폴리올레핀 필름을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a polyolefin-based film having excellent adhesion to metal. Specifically, the polyolefin-based film is surface treated with a fluorine / oxygen mixed gas to maintain polyolefin-based polymers while maintaining the properties such as good mechanical properties and excellent processability. The present invention relates to a method for producing a polyolefin film having improved adhesion to copper foil by effectively modifying only the surface of a polymer in a short time to increase surface free energy and introducing an oxygen functional group to the surface.

Description

폴리올레핀계 필름과 금속 박막의 접합체{LAMINATE OF POLYOLEFIN FILM AND METALLIC THIN LAYER}Joint of polyolefin-based film and metal thin film {LAMINATE OF POLYOLEFIN FILM AND METALLIC THIN LAYER}

도 1은 본 발명의 실시예에서 사용된 불소 혼합가스 표면처리 장치를 나타낸 도면이고,1 is a view showing a fluorine mixed gas surface treatment apparatus used in an embodiment of the present invention,

도 2는 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 FTIR-ATR 결과를 나타낸 그래프이고,Figure 2 is a graph showing the FTIR-ATR results of the fluorine mixed gas surface treated LDPE film and the untreated film according to an embodiment of the present invention,

도 3은 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 전체 XPS 스펙트럼이고,3 is an entire XPS spectrum of a fluorine mixed gas surface treated LDPE film and an untreated film according to an embodiment of the present invention,

도 4는 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 XPS C1S 스펙트럼(파형분리전 (a)와 분리후 (b))이고,4 is an XPS C 1S spectrum of the fluorine mixed gas surface-treated LDPE film and the untreated film according to the embodiment of the present invention (before and after the waveform separation (a) and separation (b)),

도 5는 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 XPS O1S 스펙트럼(파형분리전 (a)와 분리후 (b))이고,5 is an XPS O 1S spectrum of the fluorine mixed gas surface-treated LDPE film and the untreated film according to an embodiment of the present invention (before and after the waveform separation (a) and separation (b)),

도 6은 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 XPS F1S 스펙트럼이고,6 is an XPS F 1S spectrum of a fluorine mixed gas surface treated LDPE film and an untreated film according to an embodiment of the present invention,

도 7은 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 표면자유에너지 및 γS SP, γS L 를 비교하여 나타낸 그래프이고,FIG. 7 is a graph illustrating surface free energy, γ S SP , and γ S L of the fluorine mixed gas surface treated LDPE film and the untreated film according to the embodiment of the present invention.

도 8은 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 표면처리되지 않은 필름의 접착력을 비교하여 나타낸 그래프이다.Figure 8 is a graph showing the adhesion between the fluorine mixed gas surface treated LDPE film according to an embodiment of the present invention and the untreated film.

<도면의 주요 부분의 부호에 대한 설명><Description of Signs of Major Parts of Drawings>

a: 불소 가스 실린더 b: 압력 게이지 a: fluorine gas cylinder b: pressure gauge

c: 버퍼 탱크 d: 질소 가스 실린더c: buffer tank d: nitrogen gas cylinder

e: 산소 가스 실린더 f: 반응기e: oxygen gas cylinder f: reactor

g: 액체 질소 h: 로터리 진공펌프g: liquid nitrogen h: rotary vacuum pump

i: 밸브i: valve

본 발명은 금속과의 접착력이 우수한 폴리올레핀계 필름의 제조방법에 관한 것으로서, 구체적으로는 불소/산소 혼합가스로 표면처리를 행하여 폴리올레핀계 고분자의 좋은 기계적 성질 및 우수한 가공성등의 성질은 그대로 유지시키면서 폴리올레핀계 고분자의 표면만을 단시간에 효과적으로 개질시켜 표면자유에너지를 높이 고 표면에 산소 관능기를 도입하여 동박과의 접착력이 향상된 폴리올레핀 필름을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a polyolefin-based film having excellent adhesion to metal. Specifically, the polyolefin-based film is surface treated with a fluorine / oxygen mixed gas to maintain polyolefin-based polymers while maintaining the properties such as good mechanical properties and excellent processability. The present invention relates to a method for producing a polyolefin film having improved adhesion to copper foil by effectively modifying only the surface of a polymer in a short time to increase surface free energy and introducing an oxygen functional group to the surface.

고분자의 표면개질 방법으로는 연마나 샌드 블라스트(sand blast)와 같은 기계적 방법, 강산을 이용한 화학적 표면처리법, 저온 플라즈마, 코로나 방전, 감마선 조사, 자외선 조사 등의 물리화학적 방법 및 오존 처리와 같은 화학적 방법 등 여러 방법이 있다. 이 중 오존처리, 플라즈마 처리, 코로나 방전, 감마선 조사, 자외선 조사 등의 방법은 케톤 등의 산화물 외에 과산화물(peroxide)을 생성시키기 때문에 이를 개시제로 하여 그래프트 공중합체를 도입할 수 있다는 것이 알려져 있다. 그래프트 중합을 이용한 표면개질 방법은 비교적 잘 알려진 기술이며, 일부 연구자들은 일련의 고분자 표면에 아크릴아미드 등의 친수성 단량체를 그래프트 중합시켜 젖음성을 증가시키고 이를 의학적인 용도에 응용하려는 연구가 진행중이며, 또한 폴리에틸렌 표면에 글리시딜 메타크릴레이트(GMA)를 그래프트 중합시켜 에폭시 수지와의 계면 접착력을 향상시키려는 시도도 보고되었다.Surface modification methods of polymer include mechanical methods such as polishing and sand blast, chemical surface treatment using strong acid, low temperature plasma, corona discharge, physicochemical methods such as gamma irradiation, ultraviolet irradiation, and chemical methods such as ozone treatment. There are many ways. Among them, ozone treatment, plasma treatment, corona discharge, gamma irradiation, ultraviolet irradiation, and the like generate peroxides in addition to oxides such as ketones, so that it is known that graft copolymers can be introduced as an initiator. Surface modification using graft polymerization is a relatively well known technique, and some researchers are trying to graft polymerize hydrophilic monomers such as acrylamide on a series of polymer surfaces to increase wettability and apply them to medical applications. Attempts have also been made to graft polymerize glycidyl methacrylate (GMA) on surfaces to improve interfacial adhesion with epoxy resins.

한편, 폴리올레핀계 고분자는 여러 고분자 물질중 가격이 저렴하고 좋은 기계적 성질 및 우수한 내화학성 그리고 뛰어난 가공성 등으로 인하여 알루미늄 호일이나 종이에 직접 접착되어 산업 및 일상용품에 이르기까지 다양하게 이용되고 있다. 이러한 소수성인 폴리올레핀계를 친수성화하여 고분자의 표면특성을 개량하거나 고분자 재료 표면에 새로운 기능을 부여하고자 하는 연구가 1970년대부터 계속되고 있다. On the other hand, polyolefin-based polymers have been used in a variety of industrial and everyday products by being directly bonded to aluminum foil or paper due to the low cost, good mechanical properties, excellent chemical resistance and excellent processability among various polymer materials. Since the 1970s, researches to improve the surface properties of polymers or to impart new functions to the surface of polymer materials by making the hydrophobic polyolefins hydrophilic have continued.

이러한 고분자의 표면 특성개질에 대한 연구는 보통 고분자의 도장성, 인쇄 성, 접착성, 젖음성 등을 개선하기 위한 것으로 강산을 이용한 화학적 표면처리법, 자외선이나 광조사법, 저온 플라즈마 처리법 등이 대표적이다. 하지만, 처리장비가 고가이거나 2차 오염물의 생성 그리고 처리조건등이 용이하지 않는 등 비교적 많은 제약과 복잡한 과정을 거치기 때문에 거의 적용이 없는 실정이었다. The study on the surface property modification of such polymers is to improve the paintability, printability, adhesion, wettability, etc. of the polymers. Chemical surface treatment using strong acid, UV or light irradiation, and low temperature plasma treatment are typical. However, the treatment equipment is expensive, or the generation of secondary contaminants and treatment conditions are not easy because they go through relatively many constraints and complex processes.

따라서, 본 발명에서는 폴리올레핀계 고분자의 좋은 기계적 성질 및 우수한 가공성등의 성질은 그대로 유지시키면서 폴리올레핀계 고분자의 표면만을 단시간에 효과적으로 개질시키고자 연구한 결과, 폴리올레핀계 필름에 불소/산소 혼합가스로 표면처리를 행하면 필름 표면의 자유에너지를 높이고 표면에 산소 관능기를 도입하여 동박과 같은 금속과의 접착력이 향상된 폴리올레핀 필름을 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.
Therefore, in the present invention, as a result of studying to effectively modify only the surface of the polyolefin-based polymer in a short time while maintaining the properties such as good mechanical properties and excellent processability of the polyolefin-based polymer, surface treatment with a fluorine / oxygen mixed gas on the polyolefin-based film The present invention was completed by increasing the free energy of the film surface and introducing an oxygen functional group to the surface to prepare a polyolefin film having improved adhesion to a metal such as copper foil.

따라서, 본 발명은 폴리올레핀계 필름을 불소/산소 혼합가스로 표면처리하는 것을 포함하는, 접착력이 개선된 폴리올레핀계 필름의 제조방법을 제공한다.Accordingly, the present invention provides a method for producing a polyolefin-based film having improved adhesion, including surface treatment of a polyolefin-based film with a fluorine / oxygen mixed gas.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 방법에 적용될 수 있는 폴리올레핀계 필름은 폴리에틸렌, 폴리프로필렌 등이 있다.Polyolefin-based film that can be applied to the method of the present invention is polyethylene, polypropylene and the like.

본 발명에 따른 불소/산소 표면 처리에 있어서, 불소와 산소의 혼합비율은 1 : 1 내지 7 부피비(압력비) 범위가 바람직하며, 처리시간은 1~30 분인 것이 바람직하다. 처리시간이 짧더라도 크게 향상된 접착성을 기대할 수 있지만, 그 이상의 충분한 접착성을 발휘할 수 없는 경우 처리시간이 증가할수록 접착성 또한 서서히 증가하므로 30분 정도가 바람직하다. 그러나 너무 긴 시간동안 처리가 바람직하지 않은 이유는 필름 표면에 산소관능기의 생성이 미비하여 더 이상 접착성 향상의 효과를 기대할 수 없기 때문이다.In the fluorine / oxygen surface treatment according to the present invention, the mixing ratio of fluorine and oxygen is preferably in the range of 1: 1 to 7 by volume (pressure ratio), and the treatment time is preferably 1 to 30 minutes. Even if the treatment time is short, greatly improved adhesiveness can be expected, but when more than enough adhesiveness can be exhibited, the adhesiveness also gradually increases as the treatment time increases, so about 30 minutes is preferable. However, the reason why the treatment is not preferable for a long time is that the generation of oxygen functional groups on the surface of the film is insufficient and the effect of improving the adhesion can no longer be expected.

처리가스(불소 및 산소가 혼합된 가스)의 압력은 불소가스가 고가이고 적은 량으로도 원하는 접착성을 얻을 수 있기 때문에 10~100 kPa인 것이 적합하다.The pressure of the process gas (a mixture of fluorine and oxygen) is suitably 10 to 100 kPa because fluorine gas is expensive and the desired adhesion can be obtained even in a small amount.

본 발명에 따라 불소/산소 혼합가스로 표면처리를 행하면, 폴리올레핀계 고분자의 좋은 기계적 성질 및 우수한 가공성등의 성질은 그대로 유지시키면서 그의 표면만을 단시간에 효과적으로 개질시켜 표면자유에너지를 높이고 표면에 산소 관능기를 도입할 수 있게 되어, 본 발명에 따라 표면개질된 폴리올레핀계 필름은 동박과 같은 금속 뿐만 아니라 기타 다른 수지 등의 기재와의 접착력이 크게 향상될 수 있다.When surface treatment is performed with a fluorine / oxygen mixed gas according to the present invention, the surface free energy is increased by effectively modifying only the surface in a short time while maintaining the properties such as good mechanical properties and excellent processability of the polyolefin-based polymer, and oxygen functional groups on the surface. It is possible to introduce, the surface-modified polyolefin-based film according to the present invention can be significantly improved adhesion to not only metals such as copper foil but also substrates such as other resins.

본 발명은 다음 실시예에서 더욱 상세히 설명되어지지만, 본 발명의 범위가 그 실시예에 한정되는 것은 아니다.The invention is described in more detail in the following examples, but the scope of the invention is not limited to the examples.

실시예에 있어서 각각의 특성 값들은 다음 방법에 의하여 측정하였다.Each characteristic value in the Example was measured by the following method.

1. 표면특성 분석1. Surface Characteristics Analysis

필름 표면의 화학적 조성을, FTIR-ATR (HATR; MIDAC Co.)과 XPS (ESCA LAB MKII; VG Scientific Co.)를 이용하여 분석하였다. XPS 측정에 사용된 X선 광원은 MgKα를 45°각도로 사용하였으며, 챔버 내의 압력은 1×10-9 torr로 조절하였다. 접촉각은 레임-하트(Rame-Hart) 고니오미터(goniometer)를 이용하여 측정하였으며, 사용된 젖음액으로는 증류수와 디요오도메탄을 사용하였다. 표준상태에서 각 시편이 제작된 직후 각 시편에 대하여 10회 이상 접촉각을 측정하여 그 평균값을 취하였고, 이를 이용하여 불소/산소 혼합가스로 표면처리된 필름의 표면 자유에너지를 구하였다.The chemical composition of the film surface was analyzed using FTIR-ATR (HATR; MIDAC Co.) and XPS (ESCA LAB MKII; VG Scientific Co.). The X-ray light source used for the XPS measurement was using MgK α at a 45 ° angle, the pressure in the chamber was adjusted to 1 × 10 -9 torr. The contact angle was measured using a Rame-Hart goniometer, and distilled water and diiodomethane were used as the wet liquid. Immediately after each specimen was produced in the standard state, the contact angle of the specimen was measured 10 times or more, and the average value was taken. Using this, the surface free energy of the film treated with the fluorine / oxygen mixed gas was obtained.

2. 접착력 측정 (J/m2)2. Adhesion Measurement (J / m 2 )

금속인 동박의 접착성을 측정하기 위해, 동박은 일본 후쿠다(Fukuda) 사에서 제조한 두께가 50㎛ 동박을 사용하였으며, 접착제로 사용된 에폭시 수지는 이관능성 에폭시 올리고머인 비스페놀 A의 디글리시딜에테르(DGEBA, 국도화학(주), YD-128, E.E.W=185~190 g/mol, 밀도 1.16g/㎤)를 사용하였고, 경화제는 4,4-디아미노디페닐메탄(DDM)을 사용하였다. 폴리올레핀계 필름/동박의 접착력은, 만능재료 시험기 (Universal Testing Machine, Lloyd LR5K)를 사용하여 ASTM 1876-72에 준하여 박리 접착강도를 측정하였다. 접착시편은 접착제인 에폭시를 폴리에틸렌 필름과 동박 사이에 도입하여 120℃에서 2시간 경화시킨 후 측정하였으며, 접착시편의 크기와 크로스헤드 속도는 각각 30×100 mm2, 200 mm/min으로 설정하였다. In order to measure the adhesion of the copper foil, which is a metal, the copper foil was a 50 µm thick copper foil manufactured by Fukuda, Japan, and the epoxy resin used as the adhesive was diglycidyl of bisphenol A, a bifunctional epoxy oligomer. Ether (DGEBA, Kukdo Chemical Co., Ltd., YD-128, EEW = 185-190 g / mol, density 1.16 g / cm 3) was used, and the curing agent 4,4-diaminodiphenylmethane (DDM) was used. . The adhesive force of the polyolefin-based film / copper foil was measured for peel adhesion strength in accordance with ASTM 1876-72 using a universal testing machine (Universal Testing Machine, Lloyd LR5K). The adhesive specimens were measured after introducing epoxy as an adhesive between the polyethylene film and the copper foil and curing at 120 ° C. for 2 hours. The size and crosshead speed of the adhesive specimens were set to 30 × 100 mm 2 and 200 mm / min, respectively.

실시예 1 내지 4Examples 1-4

본 실시예에서는 현대석유화학㈜의 첨가제가 전혀 함유되지 않은 펠렛 상의 저밀도 폴리에틸렌(LDPE; 상품명 XJ-700)을 열압착기를 이용하여 약 200 ㎛의 두께로 형성하여 사용하였다.In this embodiment, a low density polyethylene (LDPE; trade name XJ-700) on pellets containing no additives of Hyundai Petrochemical Co., Ltd. was formed to a thickness of about 200 μm using a thermocompressor.

제조한 LDPE 필름을 8 × 8 cm2의 크기로 잘라 에탄올 속에서 30분 동안 초음파를 사용하여 2회 세척하고 다시 에탄올로 여러 번 헹구어낸 다음 불소/산소 혼합가스 표면처리 전까지 실온에서 진공 건조하여 보관하였다. Cut the prepared LDPE film into 8 × 8 cm 2 , wash twice with ultrasonic waves in ethanol for 30 minutes, rinse several times with ethanol, and store in vacuum dry at room temperature until surface treatment of fluorine / oxygen mixed gas. It was.

상기 LDPE 필름을 도 1에 개략적으로 나타낸 바와 같은 불소/산소 혼합가스 처리장치의 반응기에 위치시켜 그의 표면을 처리하였다. 불소가스는 일반적으로 금속재료와 반응성이 높기 때문에 반응장치의 재질은 스테인레스 스틸(sus)판을 사용하였고, 반응기는 니켈을 사용하였다. 불소 및 산소의 압력은 30 kPa로 동일하게 조절한 후(불소와 산소 혼합비 1:1), 처리시간을 각각 1분, 2분, 5분 및 30분으로 처리하였다.The LDPE film was placed in a reactor of a fluorine / oxygen mixed gas treatment apparatus as schematically shown in FIG. 1 to treat its surface. Since fluorine gas is generally highly reactive with metallic materials, the reactor is made of stainless steel (sus) and nickel is used for the reactor. The pressure of fluorine and oxygen was adjusted equally to 30 kPa (fluorine and oxygen mixing ratio 1: 1), and the treatment time was treated for 1 minute, 2 minutes, 5 minutes, and 30 minutes, respectively.

상기와 같이 제조된 LDPE 필름의 표면특성 결과를 기존의 표면처리하지 않은 LDPE 필름에 대한 결과와 비교하여 도 2, 3, 4, 5, 6, 7 및 표 1, 2에 나타내었고 금속과의 접착력 측정 결과는 도 8에 나타내었다. 도 2 내지 7은 각각, 본 발명의 실시예에 따른 불소 혼합가스 표면처리된 LDPE 필름과 기존의 LDPE 필름에 대한, FTIR-ATR 결과, 전체 XPS 스펙트럼, XPS C1S 스펙트럼 (파형분리전 (a)와 분리후 (b)), XPS O1S 스펙트럼 (파형분리전 (a)와 분리후 (b)), XPS F1S 스펙트럼 및 표면자유에너지 및 γS SP, γS L 를 비교하여 나타낸 그래프이다. The surface characteristics of the LDPE film prepared as described above are shown in FIGS. 2, 3, 4, 5, 6, 7 and Tables 1 and 2, compared with those of the conventional LDPE film without surface treatment. The measurement results are shown in FIG. 8. 2 to 7 are FTIR-ATR results, total XPS spectra and XPS C 1S spectra for the fluorine mixed gas surface treated LDPE film and the conventional LDPE film according to the embodiment of the present invention, respectively (before waveform separation (a) And (b)) after separation, XPS O 1S spectrum (before separation (a) and after separation (b)), XPS F 1S spectrum and surface free energy and γ S SP , γ S L is a graph showing the comparison.

Figure 112003002655667-pat00001
Figure 112003002655667-pat00001

(단위: °)(Unit: °) 젖음액Milk 미처리Untreated 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 water 78.178.1 59.859.8 56.156.1 53.753.7 52.052.0 디요오도메탄Diiodomethane 51.651.6 36.136.1 40.040.0 40.940.9 42.142.1

상기에서 알 수 있듯이, 불소/산소 혼합가스 표면처리 시편의 표면 자유에너지의 증가 및 감소는 극성 요소에 의해 크게 영향을 받음을 알 수 있었는데, 이는 FTIR-ATR과 XPS 분석에서 살펴본 바와 같이, 불소/산소 혼합가스 표면처리된 LDPE 필름 표면에 C-F결합 뿐만 아니라 불소 라디칼에 의해 활성화된 탄소 라디칼과 O2의 반응이 처리시간이 증가함에 따라 LDPE 필름 표면에 C-O, C=O, O-C-O등의 산소함유관능기가 도입되는 정도에 따른 결과인 것으로 관찰되어진다. As can be seen from the above, it can be seen that the increase and decrease of the surface free energy of the fluorine / oxygen mixed gas surface treatment specimens are greatly influenced by the polarity factor, as shown in the FTIR-ATR and XPS analysis. Oxygen-containing functional groups, such as CO, C = O, OCO, on the surface of LDPE film as the reaction time increases with O 2 reactions of carbon radicals activated by fluorine radicals and O 2 as well as CF bonds on the surface of oxygen-treated LDPE film It is observed that the result depends on the degree of introduction.

결국, 불소/산소 혼합가스 처리시간에 따라 필름의 박리 접착강도는 증가하였으며, 특히 처리시작후 1분 이내에 급격히 증가한 후 그 증가율은 감소하였다. 이러한 결과는 접촉각 측정의 결과에서 살펴본 바와 같이 불소/산소 혼합가스 표면처리에 따라 필름 표면에 극성 관능기가 반응시작 후 급격히 발달한 다음 점차 서서히 증가됨에 따라 고분자의 표면자유에너지를 증가시킴으로써 다른 물질에 대한 젖음성이 향상되어 결국, 접착력이 증가한 것으로 관찰되어지며, 이는 본 발명에 따른 불소/산소 혼합가스 표면처리는 단시간에 효율적으로 소수성물질을 친수화시킬 수 있는 기법임을 시사한다.As a result, the peel adhesion strength of the film increased according to the treatment time of the fluorine / oxygen mixed gas, and in particular, the increase rate decreased rapidly within one minute after the start of the treatment. These results are as shown in the results of the contact angle measurement. According to the surface treatment of fluorine / oxygen mixed gas, the polar functional groups on the film surface developed rapidly after the reaction started, and then gradually increased and gradually increased the surface free energy of the polymer. It is observed that the wettability is improved and eventually the adhesion is increased, which suggests that the fluorine / oxygen mixed gas surface treatment according to the present invention is a technique capable of efficiently hydrophilizing hydrophobic materials in a short time.

본 발명에 따른 불소/산소 혼합가스 표면처리는 폴리올레핀계 필름을 단시간에 효율적으로 표면 친수화시킬 수 있으며, 본 발명에 따라 표면 개질된 폴리올레핀계 필름은 금속과의 접착력이 매우 우수하다.The fluorine / oxygen mixed gas surface treatment according to the present invention can efficiently surface hydrophilize a polyolefin-based film in a short time, and the surface-modified polyolefin-based film according to the present invention has excellent adhesion with a metal.

Claims (5)

불소와 산소의 혼합가스로 처리된 폴리올레핀계 필름을 금속 박막과 접착시킨, 폴리올레핀계 필름과 금속박막의 접합체.A conjugate of a polyolefin-based film and a metal thin film, wherein a polyolefin-based film treated with a mixed gas of fluorine and oxygen is bonded to a metal thin film. 제 1항에 있어서,The method of claim 1, 폴리올레핀이 폴리에틸렌 및 폴리프로필렌 중에서 선택된 것임을 특징으로 하는 접합체.And wherein the polyolefin is selected from polyethylene and polypropylene. 제 1항에 있어서,The method of claim 1, 혼합 가스 중의 불소와 산소의 혼합 비율이 1 : 1 내지 7 부피비임을 특징으로 하는 접합체.A conjugate according to claim 1, wherein the mixing ratio of fluorine and oxygen in the mixed gas is from 1: 1 to 7 by volume. 제 1항에 있어서,The method of claim 1, 불소와 산소의 혼합가스의 처리 압력이 10 내지 100 kPa 범위임을 특징으로 하는 접합체.And a processing pressure of the mixed gas of fluorine and oxygen in the range of 10 to 100 kPa. 제 1항에 있어서,The method of claim 1, 불소와 산소의 혼합가스의 처리시간이 1 내지 30 분 범위임을 특징으로 하는 접합체.The conjugate, characterized in that the treatment time of the mixed gas of fluorine and oxygen ranges from 1 to 30 minutes.
KR1020030004832A 2003-01-24 2003-01-24 Laminate of polyolefin film and metallic thin layer KR100552426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030004832A KR100552426B1 (en) 2003-01-24 2003-01-24 Laminate of polyolefin film and metallic thin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030004832A KR100552426B1 (en) 2003-01-24 2003-01-24 Laminate of polyolefin film and metallic thin layer

Publications (2)

Publication Number Publication Date
KR20040067620A KR20040067620A (en) 2004-07-30
KR100552426B1 true KR100552426B1 (en) 2006-02-20

Family

ID=37357122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030004832A KR100552426B1 (en) 2003-01-24 2003-01-24 Laminate of polyolefin film and metallic thin layer

Country Status (1)

Country Link
KR (1) KR100552426B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704625B2 (en) * 2016-05-30 2020-06-03 エルジー・ケム・リミテッド Separation membrane for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
KR20040067620A (en) 2004-07-30

Similar Documents

Publication Publication Date Title
Dilsiz et al. Surface energy and mechanical properties of plasma-modified carbon fibers
RU2163246C2 (en) Method of modifying at least part of polymer surface
Tu et al. Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment
Petasch et al. Improvement of the adhesion of low-energy polymers by a short-time plasma treatment
Inagaki et al. Adhesion of glow discharge polymers to metals and polymers
CA2207893A1 (en) Hydrophilic coating of surfaces of polymeric substrates
Schlögl et al. Fluorination of elastomer materials
KR102461520B1 (en) Hydrophilic, multifunctional ultra-thin coating with excellent stability and durability
Inagaki et al. Surface modification of poly (tetrafluoroethylene) film by plasma graft polymerization of sodium vinylsulfonate
Mori et al. Surface modification of aramid fibre by graft polymerization
Pawde et al. Surface characterization of air plasma treated poly vinylidene fluoride and poly methyl methacrylate films
Samipour et al. Plasma treatment and chitosan coating: a combination for improving PET surface properties
KR100552426B1 (en) Laminate of polyolefin film and metallic thin layer
Chen et al. Preliminary experiment of surface hardening of polymers by glow discharge polymerization
Cho et al. Improvement of paint adhesion to a polypropylene bumper by plasma treatment
KR100600497B1 (en) Method for modifying surface of silicon rubber sheet
Yim et al. Influence of oxyfluorination on geometrical pull-out behavior of carbon-fiber-reinforced epoxy matrix composites
JP5645163B2 (en) Surface modification method of fluororesin material and laminate of fluororesin material and metal material
Bhat et al. Adhesion aspects of plasma polymerized acetonitrile and acrylonitrile on polypropylene surface
Yu et al. Surface passivation of epoxy resin with a covalently adhered poly (tetrafluoroethylene) layer
Gatenholm et al. Wetting and adhesion of water-borne printing inks on surface-modified polyolefins
EP0535750A1 (en) Method for grafting hydrophilic monomers containing double bonds onto formed bodies with polymer surfaces
Zhang et al. Adhesion improvement of a poly (tetrafluoroethylene)-copper laminate by thermal graft copolymerization
Morra et al. Adhesion improvement by UV grafting onto polyolefin surfaces
Zheng et al. Chemical modification combined with corona treatment of UHMWPE fibers and their adhesion to vinylester resin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111214

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee