KR100547347B1 - Copolyester resin and articles using the same - Google Patents

Copolyester resin and articles using the same Download PDF

Info

Publication number
KR100547347B1
KR100547347B1 KR1020040013629A KR20040013629A KR100547347B1 KR 100547347 B1 KR100547347 B1 KR 100547347B1 KR 1020040013629 A KR1020040013629 A KR 1020040013629A KR 20040013629 A KR20040013629 A KR 20040013629A KR 100547347 B1 KR100547347 B1 KR 100547347B1
Authority
KR
South Korea
Prior art keywords
acid
cyclohexanedimethanol
copolyester resin
mol
bisphenol
Prior art date
Application number
KR1020040013629A
Other languages
Korean (ko)
Other versions
KR20050000304A (en
Inventor
이명렬
전재영
박성호
김종량
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to US10/871,159 priority Critical patent/US6924349B2/en
Priority to AT04014523T priority patent/ATE382649T1/en
Priority to DE602004010959T priority patent/DE602004010959T2/en
Priority to EP04014523A priority patent/EP1491571B1/en
Priority to JP2004184905A priority patent/JP4600807B2/en
Publication of KR20050000304A publication Critical patent/KR20050000304A/en
Application granted granted Critical
Publication of KR100547347B1 publication Critical patent/KR100547347B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 공중합 폴리에스테르 수지 및 이를 이용한 성형제품에 관한 것으로, 좀 더 상세하게는 테레프탈산, 에틸렌글리콜, 1,4-사이클로헥산디메탄올, 폴리에틸렌글리콜 비스페놀-A 및 다관능성 모노머를 주성분으로 하는 공중합 폴리에스테르 수지 및 이를 이용한 성형제품에 관한 것이다. 본 발명에 따르면, 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지의 제조시 다관능성 모노머 및 폴리에틸렌글리콜 비스페놀-A를 추가하여 공중합함으로써 우수한 투명성과 높은 용융점도 및 용융강도를 가지며, 그에 반해 낮은 용융압력으로 인한 우수한 성형성을 갖는 공중합 폴리에스테르 수지를 제조할 수 있다. 또한, 상기 우수한 물성을 갖는 공중합 폴리에스테르 수지를 이용하여 튜브, 보틀 등의 압출 중공 성형제품 및 이형 압출 성형제품 등을 얻을 수 있다.The present invention relates to a copolyester resin and a molded article using the same, and more particularly, to a copolyester based on terephthalic acid, ethylene glycol, 1,4-cyclohexanedimethanol, polyethylene glycol bisphenol-A, and a polyfunctional monomer. It relates to an ester resin and a molded article using the same. According to the present invention, in the preparation of a polyester resin copolymerized with 1,4-cyclohexanedimethanol, copolymerization is performed by adding a polyfunctional monomer and polyethylene glycol bisphenol-A to have excellent transparency, high melt viscosity and melt strength, whereas Copolymerized polyester resins having excellent moldability due to low melting pressure can be prepared. In addition, extruded blow molded products such as tubes and bottles, release extruded molded products, and the like can be obtained using the copolyester resin having excellent physical properties.

폴리에틸렌글리콜 비스페놀-A, 1,4-사이클로헥산디메탄올, 에틸렌글리콜, 테레프탈산, 다관능성 모노머Polyethyleneglycol bisphenol-A, 1,4-cyclohexanedimethanol, ethylene glycol, terephthalic acid, polyfunctional monomer

Description

공중합 폴리에스테르 수지 및 이를 이용한 성형제품 {Copolyester resin and articles using the same}Copolyester resin and molded products using same {Copolyester resin and articles using the same}

도 1은 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지(A), 상기 A에 다관능성 모노머를 첨가한 공중합 폴리에스테르 수지(B) 및, 상기 B에 폴리에틸렌글리콜 비스페놀-A를 첨가한 공중합 폴리에스테르 수지(C)의 전단율에 따른 점도값의 변화를 나타낸 그래프이다.1 is a polyester resin (A) copolymerized with 1,4-cyclohexanedimethanol, a copolyester resin (B) in which a multifunctional monomer is added to A, and polyethylene glycol bisphenol-A is added to B. It is a graph which shows the change of the viscosity value according to the shear rate of co-polyester resin (C).

본 발명은 공중합 폴리에스테르 수지 및 이를 이용한 성형제품에 관한 것으로, 좀 더 상세하게는, 테레프탈산, 에틸렌글리콜, 1,4-사이클로헥산디메탄올, 폴리에틸렌글리콜 비스페놀-A 및 다관능성 모노머를 주성분으로 하는 공중합 폴리에스테르 수지 및 이를 이용한 성형제품에 관한 것이다.The present invention relates to a copolymerized polyester resin and a molded article using the same, and more particularly, to copolymerization based on terephthalic acid, ethylene glycol, 1,4-cyclohexanedimethanol, polyethylene glycol bisphenol-A and polyfunctional monomers. It relates to a polyester resin and a molded article using the same.

최근 1,4-사이클로헥산디메탄올이 공중합된 공중합 폴리에스테르 수지는 포장재, 성형품, 필름 등의 분야에서 중요한 재료로 사용되는 상업적 폴리에스테르로 자리잡고 있다.Recently, co-polyester resins copolymerized with 1,4-cyclohexanedimethanol have become commercial polyesters used as important materials in the fields of packaging materials, molded articles, films, and the like.

이러한 일례로서, 미국 특허 제5,340,907호 및 미국 특허 제5,681,918호에는 1,4-사이클로헥산디메탄올이 공중합된 공중합 폴리에스테르 수지의 용도와 이의 제조방법이 개시되어 있다.As one such example, US Pat. No. 5,340,907 and US Pat. No. 5,681,918 disclose the use of copolyester resins copolymerized with 1,4-cyclohexanedimethanol and methods for their preparation.

일반적으로, 공중합 폴리에스테르 수지의 제조방법은 테레프탈산, 에틸렌글리콜, 1,4-사이클로헥산디메탄올을 원료로 하여 안정제와 촉매를 첨가해서 에스테르화 반응 및 중축합 반응을 수행하는 단계로 이루어진다.In general, a method of preparing a copolyester resin comprises terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol as raw materials to add a stabilizer and a catalyst to perform an esterification reaction and a polycondensation reaction.

그러나, 이러한 일반적인 폴리에스테르 수지의 용융점도는 사출 및 카렌다 롤(Calender Roll)을 이용한 시트(Sheet) 성형에는 적정한 수준이나, 일정한 단면적을 가지며 카렌다 롤을 사용하지 않는 이형 압출 성형(profile extrusion) 및 대용량 보틀의 압출 중공 성형(extrusion blow molding)에 이용하기에는 상대적으로 낮은 수준이다.However, the melt viscosity of such a general polyester resin is suitable for injection molding and sheet forming using calender rolls, but profile extrusion and large capacity having a constant cross-sectional area and no calender rolls are used. It is relatively low for use in extrusion blow molding of bottles.

이와 관련하여, 미국 특허 제4,217,440호 및 제4,983,711호에는 압출 중공 성형(Extrusion Blow Molding)에서 3관능기 등의 다관능기를 갖는 첨가제를 첨가하여 용융점도를 높이는 방법이 소개되어 있다. 좀 더 자세하게는, 테레프탈산, 에텔렌글리콜 및 1,4-사이클로헥산디메탄올 등의 공중합 폴리에스테르 수지의 제조시 트리멜리틱산, 펜타에리스리톨 등의 다관능성 모노머를 0.05∼0.5몰% 첨가하여 용융점도를 향상시키는 방법이다. 이 경우, 분자량이 브랜칭(Branching)에 의해서 상승되어 용융점도가 올라가지만, 이로 인하여 성형시 용융압력이 상승하게 된다. In this regard, US Pat. Nos. 4,217,440 and 4,983,711 disclose methods for increasing melt viscosity by adding additives having multifunctional groups, such as trifunctional groups, in extrusion blow molding. More specifically, when preparing copolyester resins such as terephthalic acid, ethylene glycol and 1,4-cyclohexanedimethanol, 0.05 to 0.5 mol% of polyfunctional monomers such as trimellitic acid and pentaerythritol are added to melt viscosity. How to improve. In this case, the molecular weight is raised by branching (melting) to increase the melt viscosity, but this causes the melt pressure to increase during molding.

도 1을 참조하면, 다관능성 모노머를 첨가한 공중합 폴리에스테르 수지(B)의 경우, 앞에서 말한 브랜칭 효과로 인해 분자량이 상승되어 전단율(shear rate)이 낮은 영역에서의 점도 값, 즉 용융 점도값이 일반 공중합 폴리에스테르수지(A)보다 높은 값을 나타낸다. 그러나, 이것으로 인하여 압출 중공 성형기기의 내부조건과 비슷한 전단율 영역에서도 일반 공중합 폴리에스테르 수지보다 점도값이 높게 나타나고, 이는 성형시 일반 공중합 폴리에스테르 수지보다도 높은 용융압력을 갖게 된다. 용융압력이 높으면, 생산성 향상 및 작업시간 단축을 위해 RPM을 상승시켜 사이클타임을 단축시키는 효율성을 기대할 수 없고, 또한 성형 온도범위의 여유가 작기 때문에, 성형 온도를 낮춤으로써 용융점도 및 강도를 더욱 향상시킬 수 있는 우수한 결과를 얻어낼 수 없다는 단점이 있다. Referring to FIG. 1, in the case of the copolyester resin (B) to which the polyfunctional monomer is added, the viscosity value in the region where the molecular weight is increased and the shear rate is low due to the aforementioned branching effect, that is, the melt viscosity value The value higher than this general copolyester resin (A) is shown. However, due to this, even in the shear rate range similar to the internal conditions of the extrusion blow molding machine, the viscosity value is higher than that of the general copolymer polyester resin, which has a higher melt pressure than the general copolymer polyester resin during molding. If the melt pressure is high, the efficiency of shortening the cycle time by increasing the RPM for productivity improvement and shortening the working time cannot be expected, and since the margin of the molding temperature range is small, the melt temperature and strength are further improved by lowering the molding temperature. The disadvantage is that it does not yield good results.

이에, 본 발명에서는 상술한 문제점들을 해결하고 종래기술에 따른 공중합 폴리에스테르 수지보다 우수한 특성을 갖는 폴리에스테르 수지를 제조하기 위해 연구 검토한 결과, 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지의 제조시, 다관능성 모노머 및 폴리에틸렌글리콜 비스페놀-A를 추가하여 공중합함으로써 용융점도의 상승, 용융강도의 상승 및 낮은 용융압력으로 인해 우수한 성형성을 갖는 공중합 폴리에스테르 수지를 얻을 수 있었고, 본 발명은 이에 기초하여 완성되었다.Therefore, the present invention solves the problems described above and studied to prepare a polyester resin having properties superior to the copolymerized polyester resin according to the prior art, as a result, 1,4-cyclohexane dimethanol copolymerized polyester resin In the preparation of the copolymer, copolymerization of a polyfunctional monomer and polyethylene glycol bisphenol-A was performed to obtain a copolymerized polyester resin having excellent moldability due to an increase in melt viscosity, an increase in melt strength, and a low melt pressure. Completed on this basis.

따라서, 본 발명의 목적은, 종래의 공중합 폴리에스테르 수지보다 성형성이 향상된 공중합 폴리에스테르 수지를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a copolyester resin having improved moldability than conventional copolyester resins.

본 발명의 다른 목적은, 상기 공중합 폴리에스테르 수지를 이용한 압출 중공 성형제품을 제공하는데 있다.Another object of the present invention is to provide an extrusion blow molded product using the copolymerized polyester resin.

본 발명의 또 다른 목적은, 상기 공중합 폴리에스테르 수지를 이용한 이형 압출 성형제품을 제공하는데 있다.Still another object of the present invention is to provide a release extrusion molded product using the copolymerized polyester resin.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기 목적을 달성하기 위한 본 발명에 따른 공중합 폴리에스테르 수지는, 테레프탈산을 포함하는 디카르복실산 성분; 1,4-사이클로헥산디메탄올 10∼80몰%, 하기 화학식 1로 표시되는 폴리에틸렌글리콜 비스페놀-A 모노머 0.1∼20몰%, 및 전체 디올성분의 합이 100몰%가 되도록 나머지는 에틸렌글리콜을 포함하는 디올 성분; 및 다관능성 모노머 0.05∼0.5몰%;를 포함한다.

Figure 112004016206407-pat00005

상기 식에서, m+n은 2∼12의 정수이다.
상기 다른 목적을 달성하기 위한 본 발명에 따른 압출 중공 성형제품은 상기 공중합 폴리에스테르 수지를 압출 중공 성형하여 제조된다.
상기 또 다른 목적을 달성하기 위한 본 발명에 따른 이형 압출 성형제품은 상기 공중합 폴리에스테르 수지를 이형 압출 성형하여 제조된다.
이하, 본 발명을 좀 더 구체적으로 설명하면 다음과 같다.Co-polyester resin according to the present invention for achieving the above object is a dicarboxylic acid component containing terephthalic acid; 10 to 80 mol% of 1,4-cyclohexanedimethanol, 0.1 to 20 mol% of polyethylene glycol bisphenol-A monomer represented by the following formula (1), and the rest of which includes ethylene glycol so that the sum of all diol components is 100 mol% A diol component; And 0.05 to 0.5 mol% of multifunctional monomers.
Figure 112004016206407-pat00005

Wherein m + n is an integer of 2-12.
Extruded blow molded article according to the present invention for achieving the above another object is manufactured by extrusion blow molding the copolymer polyester resin.
Release extrusion molded product according to the present invention for achieving the above another object is manufactured by release extrusion molding the copolymer polyester resin.
Hereinafter, the present invention will be described in more detail.

전술한 바와 같이, 본 발명에서는 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지의 제조시, 다관능성 모노머 및 폴리에틸렌글리콜 비스페놀-A를 추가하여 공중합함으로써 압출 중공을 통해 보틀 및 이형 압출 성형품을 생산할 수 있는 높은 용융점도 및 용융강도를 얻어내며, 또한 성형시 낮은 용융 압력을 갖는, 성형성 측면에서 우수한 공중합 폴리에스테르 수지 및 이를 이용한 성형제품이 제공된다.As described above, in the present invention, in the preparation of the polyester resin copolymerized with 1,4-cyclohexanedimethanol, the bottle and the mold release molded product are extruded through the extrusion hollow by adding and copolymerizing a polyfunctional monomer and polyethylene glycol bisphenol-A. Provided are co-polyester resins excellent in moldability, and molded articles using the same, which obtain high melt viscosity and melt strength which can be produced, and which also have low melt pressure during molding.

본 발명에 따른 공중합 폴리에스테르 수지는 에스테르화 반응의 제1단계 및 중축합 반응의 제2단계를 통해서 제조된다.Copolyester resin according to the present invention is prepared through the first step of the esterification reaction and the second step of the polycondensation reaction.

제1단계인 에스테르화 반응은 뱃치(Batch)식 또는 연속식으로 수행할 수 있고, 각각의 원료는 별도로 투입할 수도 있으나 글리콜에 테레프탈산을 슬러리 형태로 만들어 투입하는 것이 가장 바람직하다.The first step, the esterification reaction may be carried out in a batch or continuous manner, and each raw material may be separately added, but it is most preferable to add terephthalic acid in the form of a slurry to glycol.

좀 더 상세하게는, 테레프탈산을 포함하는 디카르복실산 성분과, 1,4-사이클로헥산디메탄올, 폴리에틸렌글리콜 비스페놀-A 및 에틸렌글리콜을 포함하는 디올 성분, 다관능성 모노머를 반응기에 넣고 승온 하에서 혼합하면서 반응시킨다.More specifically, a dicarboxylic acid component containing terephthalic acid, a diol component containing 1,4-cyclohexanedimethanol, polyethylene glycol bisphenol-A and ethylene glycol, and a polyfunctional monomer are placed in a reactor and mixed under elevated temperature. And react.

이때, 상기 디카르복실산 성분에 대한 디올 성분의 함량이 몰비로 1.2 내지 3.0이 되도록 투입하여 230∼260℃ 및 1.0∼3.0 kg/㎠의 조건하에서 에스테르화 반응을 실시하는 것이 바람직하지만, 이에 한정되는 것은 아니다. 바람직하게는, 상기 에스테르화 반응온도는 240∼260℃이고, 더욱 바람직하게는 245∼255℃이다. 또한, 상기 에스테르화 반응시간은 통상적으로 100∼300분 정도가 소요되는데, 이는 반응온도, 압력 및 사용되는 디카르복실산 성분 대비 디올 성분의 몰비에 따라 적절히 변화될 수 있다.At this time, the content of the diol component relative to the dicarboxylic acid component is added in a molar ratio of 1.2 to 3.0, it is preferable to perform the esterification under the conditions of 230 to 260 ℃ and 1.0 to 3.0 kg / ㎠, but is not limited thereto. It doesn't happen. Preferably, the said esterification temperature is 240-260 degreeC, More preferably, it is 245-255 degreeC. In addition, the esterification time is usually about 100 to 300 minutes, which may be appropriately changed depending on the reaction temperature, pressure and the molar ratio of the diol component to the dicarboxylic acid component used.

상기 테레프탈산 이외에, 본 발명에서 물성개선 등의 목적으로 사용되는 디카르복실산 성분에는 이소프탈산, 1,4-사이클로헥산디카르복실산, 1,3-사이클로헥 산디카르복실산, 숙신산, 글루타릭산, 아디픽산, 세바식산 및 2,6-나프탈렌디카르복실산 등이 포함되며, 특별히 이에 한정되는 것은 아니다.In addition to the terephthalic acid, the dicarboxylic acid component used for the purpose of improving the physical properties in the present invention includes isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanoic acid dicarboxylic acid, succinic acid and gluta. Lactic acid, adipic acid, sebacic acid, 2,6-naphthalenedicarboxylic acid, and the like, but are not particularly limited thereto.

상기 테레프탈산과 에틸렌글리콜만을 원료로 하는 호모폴리머의 성형성 또는 기타 물성을 개선하기 위하여 사용되는 디올 화합물로는 1,4-사이클로헥산디메탄올, 1,2-프로판디올, 1,3-프로판디올, 1,4-부탄디올, 2,2-디메틸-1,3-프로판디올, 1,6-헥산디올, 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 1,2-사이클로헥산디메탄올 및 1,3-사이클로헥산디메탄올 등이 있으며, 특히 호모폴리머의 물성개선을 위하여 사용되는 디올 화합물로는 1,4-사이클로헥산디메탄올이 바람직하다.Examples of the diol compounds used to improve moldability or other physical properties of the homopolymers based only on terephthalic acid and ethylene glycol are 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol And 1,3-cyclohexanedimethanol. In particular, 1,4-cyclohexanedimethanol is preferable as the diol compound used for improving physical properties of the homopolymer.

본 발명에서 사용되는 1,4-사이클로헥산디메탄올로는 시스-, 트랜스-, 또는 두 이성체의 혼합물 등이 있고, 그 사용량은 최종 폴리머 중에서 원하는 몰%와 근사한 양을 투입하는데, 바람직하게는 결정화에 따른 성형성 불량을 방지하기 위하여 전체 디올 성분 중 10∼80몰%인 것이 바람직하다. 또한, 본 발명의 디올 성분 중 하나로 사용되는 에틸렌글리콜의 사용량은 1,4-사이클로헥산디메탄올과 폴리에틸렌글리콜 비스페놀-A의 양을 고려하여 전체 디올성분의 합이 100몰%가 되도록 투입한다.The 1,4-cyclohexanedimethanol used in the present invention may be cis-, trans-, or a mixture of two isomers, and the amount of the 1,4-cyclohexanedimethanol is used in an amount close to the desired mole percent of the final polymer, preferably crystallization. In order to prevent moldability defects according to the present invention, it is preferably 10 to 80 mol% of all the diol components. In addition, the amount of ethylene glycol used as one of the diol components of the present invention is added so that the sum of all the diol components is 100 mol% in consideration of the amounts of 1,4-cyclohexanedimethanol and polyethylene glycol bisphenol-A.

상기 에스테르화 반응에는 촉매가 필요하지 않으나, 반응시간 단축을 위하여 선택적으로 촉매를 투입할 수도 있다.The esterification reaction does not require a catalyst, but may be optionally added to reduce the reaction time.

본 발명에서 사용되는 다관능성 모너머는 압출 중공 성형성 및 튜브 등의 이형 압출성을 향상시키기 위한 가교제 성분으로서, 트리멜리틱산(trimellitic acid), 트리멜리틱안하이드라이드, 헤미멜리틱산, 무수헤미멜리틱산, 트리메식산, 트리카발릭산, 트리메틸올프로판, 트리메틸올에탄, 글리세린 및 펜타에리스리톨 등이 포함되지만, 이에 한정되는 것은 아니다.The multifunctional monomer used in the present invention is a crosslinking agent component for improving extruded blow moldability and release extrudability such as a tube, and includes trimellitic acid, trimellitic anhydride, hemimeltic acid, and hemimelly anhydride. Tic acid, trimesic acid, tricavalic acid, trimethylolpropane, trimethylolethane, glycerin, pentaerythritol, and the like.

이때, 상기 다관능성 모노머의 사용량은 상기 디카르복실산 성분에 대하여 0.05∼0.5몰%인 것이 바람직하다. 상기 범위내에서 압출 중공 성형에 유용한 용융강도(melt strength)에 도달할 수 있고, 활발한 가교작용으로 인한 투명도 저하를 방지할 수 있다. At this time, it is preferable that the usage-amount of the said polyfunctional monomer is 0.05-0.5 mol% with respect to the said dicarboxylic acid component. Within this range, it is possible to reach a melt strength useful for extrusion blow molding, and to prevent a decrease in transparency due to active crosslinking.

본 발명에서 사용되는 폴리에틸렌글리콜 비스페놀-A는 공중합 수지의 성형성을 향상시키기 위한 성분으로서 하기 화학식 1로 표시된다:Polyethylene glycol bisphenol-A used in the present invention is represented by the following general formula (1) as a component for improving the moldability of the copolymer resin:

화학식 1Formula 1

Figure 112004008363109-pat00002
Figure 112004008363109-pat00002

상기 식에서, m+n은 2∼12의 정수이다.Wherein m + n is an integer of 2-12.

이때, 상기 폴리에틸렌글리콜 비스페놀-A의 사용량은 0.1∼20몰%인 것이 바람직하다. 상기 범위 내에서 폴리에틸렌글리콜 비스페놀-A의 첨가에 따른 물성향상효과를 확인하기가 쉽고, 반응성이 떨어지지 않는다.At this time, it is preferable that the usage-amount of the said polyethyleneglycol bisphenol-A is 0.1-20 mol%. Within this range, it is easy to confirm the physical property improvement effect of the addition of polyethylene glycol bisphenol-A, the reactivity is not degraded.

다관능성 모노머가 포함된 공중합 폴리에스테르 수지의 제조시 폴리에틸렌글리콜 비스페놀-A를 첨가하면, 압출 중공 성형기기의 다이로부터 100밀리미터(mm) 아래의 지름을 측정하였을 때 20% 이상 증가한 높은 용융강도 값 및 성형시 90bar 이하의 낮은 용융압력 값을 기대할 수 있다. 퍼센트 용융강도가 20 이상일 경우, 이형 압출 성형품 제작 및 압출 중공 성형을 통한 대용량 보틀 생산이 가능하다. 또한,성형시 90bar 이하의 낮은 용융압력을 가질 시에는 성형기기의 RPM 을 상승시켜 사이클타임의 단축이 가능해짐으로써 생산성 향상을 가져올 수 있다. 또한, 성형 온도범위에서 여유가 생기기 때문에 성형 온도를 낮춤으로써 용융점도 및 강도를 더욱 향상시킬 수 있는 우수한 결과를 얻어낼 수 있다.Addition of polyethyleneglycol bisphenol-A in the preparation of copolyester resins containing polyfunctional monomers resulted in high melt strength values increased by more than 20% when the diameter below 100 millimeters (mm) was measured from the die of the extrusion blow molding machine. Low molding pressure values of 90 bar or less can be expected when forming. If the percent melt strength is 20 or more, it is possible to produce a large-capacity bottle through the production of release extruded products and extrusion blow molding. In addition, when the molding has a low melting pressure of 90bar or less, the RPM of the molding machine is increased to shorten the cycle time, thereby improving productivity. In addition, since there is a margin in the molding temperature range, it is possible to obtain excellent results that can further improve the melt viscosity and strength by lowering the molding temperature.

상술한 에스테르화 반응의 제1단계가 완료된 후에는, 중축합 반응의 제2단계가 실시되는데, 폴리에스테르의 수지의 중축합 반응시 일반적으로 사용되는 성분으로서 중축합 촉매, 안정제 및 정색제 등이 선택적으로 사용될 수 있다.After the first step of the above-mentioned esterification reaction is completed, the second step of the polycondensation reaction is carried out. The polycondensation catalyst, stabilizer and colorant are generally used in the polycondensation reaction of the resin of the polyester. May optionally be used.

본 발명에서 사용가능한 중축합 촉매로는 티타늄, 게르마늄 및 안티몬화합물 등이 있지만, 특별히 이에 한정되는 것은 아니다.Polycondensation catalysts usable in the present invention include, but are not limited to, titanium, germanium and antimony compounds.

상기 티타늄계 촉매는 일반적으로 1,4-사이클로헥산디메탄올을 테레프탈산 중량 대비 15% 이상 공중합시킨 폴리에스테르 수지의 중축합 촉매로 사용되는 촉매로서, 안티몬계 촉매에 비하여 소량을 사용하여도 반응이 가능하며, 또한 게르마늄계 촉매보다 가격이 저렴한 장점을 갖는다.The titanium catalyst is generally used as a polycondensation catalyst of a polyester resin in which 1,4-cyclohexanedimethanol is copolymerized with 15% or more of terephthalic acid by weight, and can be reacted even when a small amount is used in comparison with an antimony catalyst. In addition, it has the advantage of lower cost than the germanium-based catalyst.

본 발명에서 사용가능한 티타늄계 촉매로는 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 2-에틸헥실티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄올아민티타네이트, 아세틸아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, 티타늄디옥사이드와 실리콘디옥사이드 공침물 및 티타늄디옥사이드와 지르코늄디옥사이드 공침물 등을 들 수 있다.Titanium-based catalysts usable in the present invention include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, tetrabutyl titanate, polybutyl titanate, 2-ethylhexyl titanate, octylene Glycol titanate, lactate titanate, triethanolamine titanate, acetylacetonate titanate, ethyl acetoacetic ester titanate, isostearyl titanate, titanium dioxide, titanium dioxide and silicon dioxide co-precipitates, titanium dioxide and zirconium dioxide And coprecipitates.

이때, 상기 중축합 촉매의 사용량은 최종 폴리머의 색상에 영향을 미치므로 원하는 색상과 사용되는 안정제 및 정색제에 따라 달라질 수 있지만, 바람직하게는 최종 폴리머의 중량 대비 티타늄 원소량을 기준으로 1∼100ppm, 더욱 바람직하게는 1∼50ppm, 실리콘 원소량을 기준으로 10ppm 이하가 바람직하다. 상기 범위내에서 원하는 중합도에 도달할 수 있고, 최종 폴리머의 색상이 노랗게 되는 것이 방지된다.In this case, since the amount of the polycondensation catalyst affects the color of the final polymer, the amount of polycondensation catalyst may vary depending on the desired color and the stabilizer and colorant used. Preferably, the amount of polycondensation catalyst is 1 to 100 ppm based on the amount of titanium based on the weight of the final polymer. More preferably, 1-50 ppm and 10 ppm or less are preferable based on the amount of silicon elements. The desired degree of polymerization can be reached within this range, and the color of the final polymer is prevented from becoming yellow.

또한, 기타 첨가제로서 안정제 및 정색제 등이 사용될 수 있다.In addition, stabilizers and coloring agents and the like can be used as other additives.

본 발명에서 사용가능한 안정제로는 통상적으로 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리에틸포스포노아세테이트 등이 있고, 그 첨가량은 최종 폴리머의 중량 대비 인원소량을 기준으로 10∼100ppm인 것이 바람직하다. 상기 범위 내에서 원하는 밝은 색상을 얻기 쉽고, 원하는 고 중합도에 도달할 수 있다.Stabilizers usable in the present invention typically include phosphoric acid, trimethyl phosphate, triethyl phosphate, triethyl phosphonoacetate, and the like, and the amount of the stabilizer is preferably 10 to 100 ppm based on the small amount of the human polymer relative to the weight of the final polymer. It is easy to obtain the desired bright color within the said range, and the desired high polymerization degree can be reached.

또한, 본 발명에서 색상을 향상시키기 위해 사용가능한 정색제로는 코발트 아세테이트 및 코발트 프로피오네이트 등의 통상의 정색제를 들 수 있고, 그 첨가량은 최종 폴리머 중량 대비 0∼100ppm이 바람직하다.In addition, the colorants usable in order to improve the color in the present invention include conventional colorants such as cobalt acetate and cobalt propionate, and the amount of addition is preferably 0 to 100 ppm relative to the final polymer weight.

상기 정색제 이외에도 기존에 공지된 유기화합물을 정색제로 사용할 수 있 다.In addition to the colorant, conventionally known organic compounds may be used as the colorant.

한편, 이러한 성분들이 첨가된 후 수행되는 제2단계의 중축합 반응은 260∼290℃ 및 400∼0.1mmHg의 감압조건하에서 실시되는 것이 좋지만, 이에 한정되는 것은 아니다.On the other hand, the second condensation reaction is carried out after the addition of these components is preferably carried out under reduced pressure conditions of 260 ~ 290 ℃ and 400 ~ 0.1mmHg, but is not limited thereto.

상기 중축합 단계는 원하는 고유점도에 도달할 때까지 필요한 시간동안 실시되는데, 반응온도는 일반적으로 260∼290℃이고, 바람직하게는 260∼280℃, 더욱 바람직하게는 265∼275℃ 이다.The polycondensation step is carried out for the required time until the desired intrinsic viscosity is reached. The reaction temperature is generally 260 to 290 ° C, preferably 260 to 280 ° C, more preferably 265 to 275 ° C.

또한, 중축합 반응은 부산물로 나오는 글리콜을 제거하기 위하여 400∼0.1mmHg의 감압하에서 실시한다.In addition, polycondensation reaction is performed under reduced pressure of 400-0.1 mmHg in order to remove the glycol by-product.

전술한 바와 같은, 본 발명에 따른 공중합 폴리에스테르 수지는, 향상된 용융점도 및 용융강도를 가지며 성형가공시에 낮은 용융압력으로 인한 우수한 성형성을 갖게 된다. 따라서, 이러한 공중합 폴리에스테르 수지를 압출 중공 또는 이형 압출 성형과정을 통해서 성형하여 우수한 성형성을 갖는 압출 중공 성형제품 및 이형 압출 성형제품 등을 얻을 수 있다.As described above, the copolyester resin according to the present invention has an improved melt viscosity and melt strength and has excellent moldability due to low melt pressure during molding processing. Accordingly, such a copolyester resin may be molded through an extrusion hollow or a release extrusion process to obtain an extruded blow molded product and a release extruded product having excellent moldability.

이하, 하기 실시예 및 비교예를 통해 본 발명을 좀 더 구체적으로 설명하지만 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples, but the scope of the present invention is not limited thereto.

하기 실시예 및 비교예에서 제시되는 물성은 다음과 같은 방법으로 측정되었다: The physical properties shown in the following Examples and Comparative Examples were measured in the following manner:

◎ 유리전이온도(Tg): 티에이 인스투르먼스(TA instrument) 사의 시차주사열 량계(Differential Scanning Calorimetry) 이용◎ Glass Transition Temperature (Tg): Using Differential Scanning Calorimetry from TA Instrument

◎ 투명도: 일본 덴소쿠(Nippon Denshoku) 사의 해이즈미터(Haze-meter) 을 사용하여 측정◎ Transparency: Measured using Haze-meter from Nippon Denshoku, Japan

◎ 용융점도: 미국 피지카(Physica) 사의 피지카 레오미터(Physica Rheometer)를 이용하여 전단율(shear rate)(1/s)=1 영역에서 평행 플레이트형(Parallel plate type)을 통해 측정◎ Melt Viscosity: Measured by parallel plate type at shear rate (1 / s) = 1 area using Physica Rheometer of Physica, USA

◎ 용융강도 : 독일 베쿰(Bekum) 사의 압출중공성형기기(Extrusion Blow Molding)를 이용하여 측정. 기기의 RPM을 20으로 하고, Cycle time은 17초, 다이의 지름은 30 밀리미터, 압출기의 온도와 다이의 온도는 각 구간별로 195~220℃, 190~205℃로 한 후 압출중공성형기기의 다이로부터 100 밀리미터 하단부의 지름을 측정한다.◎ Melt strength: Measured by Extrusion Blow Molding of Bekum, Germany. The RPM of the machine is set to 20, the cycle time is 17 seconds, the die diameter is 30 millimeters, the extruder temperature and the die temperature are 195 ~ 220 ℃ and 190 ~ 205 ℃ for each section. Measure the diameter of the 100 mm bottom from

다음 식을 이용하여 용융강도(%)를 계산하면 다음과 같다: The melt strength (%) is calculated using the following equation:

Figure 112004008363109-pat00003
Figure 112004008363109-pat00003

여기서, X는 다이로부터 10센티미터 압출 후의 지름이고, D는 다이의 지름이다. 따라서, X 값이 D보다 작을 경우 퍼센트 용융강도는 음의 값을 가지며, D보다 큰 경우 양의 값을 갖는다.Where X is the diameter after 10 centimeter extrusion from the die and D is the diameter of the die. Thus, if X is less than D, the percent melt strength is negative; if greater than D, it is positive.

◎ 용융압력 : 독일 베쿰(Bekum) 사의 압출 중공 성형기기(Extrusion Blow Molding)를 이용하여 측정. 측정하고자 하는 종류의 시료 약 20kg을 성형기기에 투입한 후 20여분의 안정화 시간이 흐른 후, 성형기기의 셋팅(setting) 내부 온도 와 실제 내부 온도 차이가 ±1℃ 미만이고, 용융압력의 편차가 4bar 미만일 때의 평균 값을 측정한다.◎ Melting pressure: measured by Extrusion Blow Molding of Bekum, Germany. After about 20 kg of the sample of the type to be measured is put into the molding machine, after 20 minutes of stabilization time, the difference between the setting internal temperature and the actual internal temperature of the molding machine is less than ± 1 ° C. Measure the average value below 4 bar.

실시예 1 Example 1

테레프탈산 6몰에 대하여 1,4-사이클로헥산디메탄올 277g, 에틸렌글리콜 466g, 화학식 1에서 m+n=2인 폴리에틸렌글리콜 비스페놀-A 10g, 트리멜리틱산 1.8g을 교반기와 유출 콘덴서를 구비한 3L 반응기에 투여한 후 혼합하면서 온도를 서서히 255℃까지 끌어올리면서 반응시킨다.2 L of 1,4-cyclohexanedimethanol, 466 g of ethylene glycol, 10 g of polyethyleneglycol bisphenol-A having m + n = 2 in Formula 1, and 1.8 g of trimellitic acid per 6 moles of terephthalic acid were equipped with a stirrer and an outlet condenser. After administration to the reaction while slowly raising the temperature to 255 ℃ while mixing.

이때, 발생하는 물을 계외로 유출시켜 에스테르화 반응시키고 물의 발생, 유출이 종료되면 교반기와 냉각 콘덴서 및 진공 시스템이 부착된 중축합 반응기로 내용물을 옮긴다.At this time, the generated water is discharged out of the system to esterify the reaction and when the generation of water, the outflow is finished, the contents are transferred to the polycondensation reactor equipped with a stirrer, a cooling condenser and a vacuum system.

에스테르화 반응물에 테트라부틸티타네이트 0.5g이 되도록 첨가하고, 트리에틸포스페이트를 0.4g이 되도록 첨가하며 코발트 아세테이트를 0.5g이 되도록 첨가한 후에 내부온도를 240℃에서 275℃까지 올리면서 압력을 1차로 상압에서 50mmHg까지 40분간 저진공반응을 에틸렌 글리콜을 빼내고 다시 0.1mmHg까지 서서히 감압하여 고진공하에서 원하는 고유점도가 될 때까지 반응시키고 이를 토출하고 칩상으로 절단한다.Add 0.5 g of tetrabutyl titanate to the esterification reaction, add 0.4 g of triethylphosphate, add 0.5 g of cobalt acetate, and increase the internal pressure from 240 ° C to 275 ° C. After 40 minutes of low vacuum reaction from atmospheric pressure to 50mmHg, ethylene glycol was removed, and then gradually decompressed to 0.1mmHg until the desired intrinsic viscosity under high vacuum was discharged and cut into chips.

이렇게 제조된 공중합 폴리에스테르 수지의 유리전이온도와 색상을 측정하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.The glass transition temperature and color of the copolyester resin thus prepared were measured, and the glass transition temperature, transparency, intrinsic viscosity, melt viscosity, melt pressure, and melt strength together with the reaction conditions are shown in Table 1 below.

실시예 2Example 2

폴리에틸렌글리콜 비스페놀-A를 57g 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.Except that 57g of polyethylene glycol bisphenol-A was added, the same process as in Example 1 was carried out, and the glass transition temperature, transparency, intrinsic viscosity, melt viscosity, melt pressure, and melt strength together with the reaction conditions are shown in Table 1 below. Shown in

실시예 3Example 3

폴리에틸렌글리콜 비스페놀-A를 190g 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.Except that the addition of 190g polyethylene glycol bisphenol-A was carried out in the same manner as in Example 1, and the glass transition temperature, transparency, intrinsic viscosity, melt viscosity, melt pressure and melt strength together with the reaction conditions Table 1 Shown in

실시예 4Example 4

다관능성 모노머로 사용된 트리멜리틱산 대신 트리메틸올프로판을 1.2g 첨가한 것을 제외하고는 실시예 2와 동일한 방법으로 실시하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.The procedure was carried out in the same manner as in Example 2, except that 1.2 g of trimethylolpropane was added instead of the trimellitic acid used as the polyfunctional monomer, and the glass transition temperature, transparency, intrinsic viscosity, melting viscosity, and melting were performed together with the reaction conditions. Pressure and melt strength are shown in Table 1 below.

비교예 1Comparative Example 1

폴리에틸렌글리콜 비스페놀-A를 첨가하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.Except not adding polyethylene glycol bisphenol-A was carried out in the same manner as in Example 1, and the glass transition temperature, transparency, intrinsic viscosity, melt viscosity, melt pressure and melt strength together with the reaction conditions Table 1 Shown in

비교예 2Comparative Example 2

폴리에틸렌글리콜 비스페놀-A와 삼관능성 모노머인 트리멜리틱산을 첨가하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였으며, 이 반응조건과 함께 유리전이온도, 투명도, 고유점도, 용융점도, 용융압력 및 용융강도를 하기 표 1에 나타내었다.Except not adding polyethylene glycol bisphenol-A and trimellitic acid as a trifunctional monomer was carried out in the same manner as in Example 1, with the reaction conditions, glass transition temperature, transparency, intrinsic viscosity, melt viscosity, melting Pressure and melt strength are shown in Table 1 below.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2 첨가제additive 폴리 에틸렌글리콜 비스페놀-A 10g + 트리멜리틱산 1.8gPolyethylene glycol bisphenol-A 10g + trimellitic acid 1.8g 폴리 에틸렌글리콜 비스페놀-A 57g + 트리멜리틱산 1.8gPolyethylene glycol bisphenol-A 57 g + trimellitic acid 1.8 g 폴리 에틸렌글리콜 비스페놀-A 190g + 트리멜리틱산 1.8gPolyethylene glycol bisphenol-A 190 g + trimellitic acid 1.8 g 폴리 에틸렌글리콜 비스페놀-A 57g + 트리메틸올 프로판 1.2gPolyethyleneglycol bisphenol-A 57g + trimethylol propane 1.2g 트리 멜리틱산 1.8g1.8 g of trimellitic acid -- 유리전이온도(℃)Glass transition temperature (℃) 80.280.2 81.281.2 82.282.2 80.480.4 79.479.4 79.079.0 고유점도 (Ⅳ)(dl/g)Intrinsic Viscosity (IV) (dl / g) 0.770.77 0.760.76 0.770.77 0.770.77 0.770.77 0.780.78 투명도(Haze)Haze 1.0 이하1.0 or less 1.0 이하1.0 or less 1.0 이하1.0 or less 1.0 이하1.0 or less 1.0 이하1.0 or less 1.0 이하1.0 or less 용융압력(bar)Melt pressure (bar) 89±489 ± 4 87±487 ± 4 75±475 ± 4 86±486 ± 4 105±4105 ± 4 94±494 ± 4 용융점도(Pa.s) (275℃)Melt viscosity (Pa.s) (275 ℃) 21502150 22102210 27302730 23002300 21002100 10901090 용융강도(%)Melt strength (%) 21.021.0 24.824.8 22.022.0 25.125.1 1919 10.510.5

상기 실시예 및 비교예를 통해서 알 수 있는 바와 같이, 본 발명에서는 테레프탈산, 에틸렌글리콜, 1,4-사이클로헥산디메탄올, 트리멜리틱산(또는 트리메틸올프로판)에 폴리에틸렌글리콜 비스페놀-A를 첨가함으로써, 종래의 방법에 의해 제조된 공중합 폴리에스테르 수지보다 용융점도 및 용융강도가 향상되어 대용량 보틀 생산을 위한 압출 중공 성형품 제작 및 이형 압출 성형이 가능하며, 다관능성 모노머만 첨가한 공중합 폴리에스테르 수지보다 성형시 용융압력이 감소하였기 때문에 RPM을 상승시켜 사이클타임을 단축시킴으로써 생산성 향상을 가져올 수 있고, 또한 성형 온도범위에서 여유가 생기기 때문에 성형 온도를 낮춤으로써 용융점도 및 강도를 더욱 향상시킬 수 있는 우수한 결과를 얻어낼 수 있다.As can be seen from the above examples and comparative examples, in the present invention, by adding polyethylene glycol bisphenol-A to terephthalic acid, ethylene glycol, 1,4-cyclohexanedimethanol, trimellitic acid (or trimethylolpropane), Melt viscosity and melt strength are improved compared to the copolyester resin prepared by the conventional method, so that it is possible to manufacture extruded blow molded articles and release extrusion molding for the production of large-capacity bottles, and to mold the copolyester resin containing only polyfunctional monomers. Since the melt pressure is reduced, it is possible to improve productivity by increasing the RPM to shorten the cycle time. Also, since there is a margin in the molding temperature range, it is possible to obtain excellent results by further improving the melt viscosity and strength by lowering the molding temperature. I can make it.

Claims (5)

테레프탈산을 포함하는 디카르복실산 성분; Dicarboxylic acid components including terephthalic acid; 1,4-사이클로헥산디메탄올 10∼80몰%, 하기 화학식 1로 표시되는 폴리에틸렌글리콜 비스페놀-A 모노머 0.1∼20몰%, 및 전체 디올 성분의 합이 100몰%가 되도록 나머지는 에틸렌글리콜을 포함하는 디올 성분; 및 10 to 80 mol% of 1,4-cyclohexanedimethanol, 0.1 to 20 mol% of polyethyleneglycol bisphenol-A monomer represented by the following formula (1), and the rest of which includes ethylene glycol so that the sum of all diol components is 100 mol% A diol component; And 상기 디카르복실산 성분에 대하여 다관능성 모노머 0.05∼0.5몰%;0.05 to 0.5 mol% of a multifunctional monomer with respect to the dicarboxylic acid component; 를 포함하는 것을 특징으로 하는 공중합 폴리에스테르 수지:Copolymerized polyester resin comprising: 화학식 1Formula 1
Figure 112005067955483-pat00004
Figure 112005067955483-pat00004
상기 식에서, m+n은 2∼12의 정수이다.Wherein m + n is an integer of 2-12.
제1항에 있어서, 상기 다관능성 모노머는 트리멜리틱산(trimellitic acid), 트리멜리틱안하이드라이드(trimellitic anhydride), 헤미멜리틱산, 무수헤미멜리틱산, 트리메식산, 트리카발릭산, 트리메틸올프로판, 트리메틸올에탄, 글리세린 및 펜타에리스리톨로 이루어진 군으로부터 선택된 하나인 것을 특징으로 하는 공중합 폴리에스테르 수지.The method of claim 1, wherein the multifunctional monomer is trimellitic acid (trimellitic acid), trimellitic anhydride (hemimellitic acid), hemimelic acid anhydride, trimesic acid, tricavalic acid, trimethylolpropane, Copolymer polyester resin, characterized in that one selected from the group consisting of trimethylol ethane, glycerin and pentaerythritol. 제1항에 있어서, 상기 공중합 폴리에스테르 수지는 20 이상의 용융강도(%) 및 90 bar 이하의 용융압력을 갖는 것을 특징으로 하는 공중합 폴리에스테르 수지.The copolyester resin according to claim 1, wherein the copolyester resin has a melt strength (%) of 20 or more and a melt pressure of 90 bar or less. 제1항 내지 제3항 중 어느 한 항에 따른 공중합 폴리에스테르 수지를 압출 중공 성형하여 된 압출 중공 성형제품.An extruded blow molded article formed by extrusion blow molding the copolyester resin according to any one of claims 1 to 3. 제1항 내지 제3항 중 어느 한 항에 따른 공중합 폴리에스테르 수지를 이형 압출 성형하여 된 이형 압출 성형제품.A release extrusion molded product formed by release extrusion molding the copolyester resin according to any one of claims 1 to 3.
KR1020040013629A 2003-06-23 2004-02-27 Copolyester resin and articles using the same KR100547347B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/871,159 US6924349B2 (en) 2003-06-23 2004-06-17 Copolyester resin and articles using the same
AT04014523T ATE382649T1 (en) 2003-06-23 2004-06-21 COPOLYESTER RESIN AND ARTICLE MADE THEREFROM
DE602004010959T DE602004010959T2 (en) 2003-06-23 2004-06-21 Copolyester resin and article made therefrom
EP04014523A EP1491571B1 (en) 2003-06-23 2004-06-21 Copolyester resin and article using the same
JP2004184905A JP4600807B2 (en) 2003-06-23 2004-06-23 Copolyester resin and molded product using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030040782 2003-06-23
KR1020030040782 2003-06-23

Publications (2)

Publication Number Publication Date
KR20050000304A KR20050000304A (en) 2005-01-03
KR100547347B1 true KR100547347B1 (en) 2006-01-26

Family

ID=37216440

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040013629A KR100547347B1 (en) 2003-06-23 2004-02-27 Copolyester resin and articles using the same

Country Status (1)

Country Link
KR (1) KR100547347B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334346B1 (en) * 2006-12-27 2013-11-29 에스케이케미칼주식회사 Multiwall sheet and its composition by copolyester/polycarbonate alloy, and preparing method for them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680378B1 (en) * 2001-12-03 2007-02-08 주식회사 코오롱 Highly viscous and amorphous polyester copolymer having improved impact resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334346B1 (en) * 2006-12-27 2013-11-29 에스케이케미칼주식회사 Multiwall sheet and its composition by copolyester/polycarbonate alloy, and preparing method for them

Also Published As

Publication number Publication date
KR20050000304A (en) 2005-01-03

Similar Documents

Publication Publication Date Title
EP2478031B1 (en) Polyester resin and method for preparing the same
EP2671922B1 (en) Polyester resin composition and a production method therefor
KR101558574B1 (en) Method for preparing polyester resin copolymerized with isosorbide
EP3845581B1 (en) Polyester copolymer having excellent processability, and product comprising same
KR102675032B1 (en) Polyester resin and preparation method of the same
JP4600807B2 (en) Copolyester resin and molded product using the same
KR101297963B1 (en) Copolyester resin and articles using the same
KR101204136B1 (en) Method for Preparing Profile Extruded Articles Using Copolyester Resin Composition
EP3889203B1 (en) Polyester resin having improved adhesion strength for binder and polyester fiber using same
KR100547347B1 (en) Copolyester resin and articles using the same
KR101222791B1 (en) Extruded Articles Using Copolyester Resin
KR102276227B1 (en) co-polyester resin composition, co-polyester resin comprising the same and method for preparing the same
KR101121361B1 (en) Blend of polyester copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and polycarbonate, and preparing method thereof
KR100680378B1 (en) Highly viscous and amorphous polyester copolymer having improved impact resistance
KR101139130B1 (en) Blend of PET resin and transparent copolyester resin, preparing method thereof and articles using the same
KR101159843B1 (en) Method for preparing copolyester resin using solid-phase polymerization
KR101159850B1 (en) Polyester resin copolymerized with neopentylglycol having low oligomer content and preparing method thereof
KR101159840B1 (en) Polyester resin copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and preparing method thereof
KR101159839B1 (en) Copolyester resin composition for profile extrusion molding and articles using the same
KR20210067082A (en) Polyester with improved transparency and thermal properties and manufacturing method the same
JP2004002664A (en) Copolyester and molded article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 15