KR100546654B1 - Fluidic mass flow control valve actuated by electromagnetic force - Google Patents

Fluidic mass flow control valve actuated by electromagnetic force Download PDF

Info

Publication number
KR100546654B1
KR100546654B1 KR1020030045729A KR20030045729A KR100546654B1 KR 100546654 B1 KR100546654 B1 KR 100546654B1 KR 1020030045729 A KR1020030045729 A KR 1020030045729A KR 20030045729 A KR20030045729 A KR 20030045729A KR 100546654 B1 KR100546654 B1 KR 100546654B1
Authority
KR
South Korea
Prior art keywords
permanent magnet
orifice
needle
valve body
flow control
Prior art date
Application number
KR1020030045729A
Other languages
Korean (ko)
Other versions
KR20050005836A (en
Inventor
이영주
최정훈
김성혁
김인규
정병화
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020030045729A priority Critical patent/KR100546654B1/en
Priority to JP2003413538A priority patent/JP2005030586A/en
Priority to US10/780,837 priority patent/US7007917B2/en
Publication of KR20050005836A publication Critical patent/KR20050005836A/en
Application granted granted Critical
Publication of KR100546654B1 publication Critical patent/KR100546654B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

본 발명은 전자기력에 의해 작동하는 유체 흐름 제어 밸브를 개시한다. 본 발명에 따른 밸브에는 실린더 형의 밸브 바디가 구비되며, 상기 밸브 바디의 내부에 영구자석과 니들이 설치되고, 상기 밸브 바디의 외주면에는 코일과 제1 및 제2 요크가 설치된다. 상기 니들은 상기 영구자석을 관통하도록 설치된 로드에 연결된다. 그리고 상기 밸브 바디에는 제1 및 제2 포트가 외부 공간과 밸브 바디의 내부 공간을 연통시키도록 제공된다. 여기서 상기 제1 및 제2 포트는 일직선 상에 형성된다. 그리고 상기 제1 및 제2 포트를 연통시키도록 상기 밸브 바디의 내부에는 가는 오리피스가 형성된다. 상기 니들은 상기 오리피스의 일측과 대응하도록 배치되며, 상기 코일에 전류가 인가될 때 상기 영구자석과 함께 밸브 바디의 내측에서 상하 방향으로 이동한다. 상기 니들의 이동 방향과 이동량은 상기 코일에 인가되는 전류의 방향과 세기에 의해 결정된다. 상기 니들이 이동할 때 상기 니들의 선단부는 상기 오리피스의 개방 면적을 선형적으로 변화시키게 된다. 그러므로 상기 제1 및 제2 포트중 어느 하나를 통해서 유입된 유체가 상기 오리피스를 통과한 후 다른 하나를 통해 외부로 배출되는 양은 상기 니들의 위치에 의해서 제어된다.The present invention discloses a fluid flow control valve actuated by electromagnetic force. The valve according to the present invention is provided with a cylindrical valve body, the permanent magnet and the needle is installed inside the valve body, the coil and the first and second yoke is provided on the outer peripheral surface of the valve body. The needle is connected to a rod installed to penetrate the permanent magnet. The valve body is provided with first and second ports to communicate the external space with the internal space of the valve body. Here, the first and second ports are formed in a straight line. A thin orifice is formed inside the valve body to communicate the first and second ports. The needle is disposed to correspond to one side of the orifice, and moves with the permanent magnet in the up and down direction together with the permanent magnet when a current is applied to the coil. The direction and amount of movement of the needle are determined by the direction and intensity of the current applied to the coil. As the needle moves, the tip portion of the needle linearly changes the open area of the orifice. Therefore, the amount of fluid introduced through either one of the first and second ports through the orifice and then outward through the other is controlled by the position of the needle.

밸브 바디, 니들, 영구자석, 코일, 요크, 오리피스Valve body, needle, permanent magnet, coil, yoke, orifice

Description

전자기식 유체 흐름 제어 밸브{Fluidic mass flow control valve actuated by electromagnetic force}Fluidic mass flow control valve actuated by electromagnetic force

도 1은 본 발명에 따른 전자기식 유체 흐름 제어 밸브의 일실시예 사시도;1 is a perspective view of an embodiment of an electromagnetic fluid flow control valve according to the present invention;

도 2는 도 1의 횡단면을 보여주는 사시도;2 is a perspective view showing a cross section of FIG. 1;

도 3a 내지 도 3c는 도 2의 부분적인 분리 사시도들로서,3A-3C are partial exploded perspective views of FIG. 2;

도 3a는 밸브 바디의 내부의 대략 상측에 설치되는 부품들의 구조를 보여주는 분리 사시도;3A is an exploded perspective view showing the structure of components installed on the upper side of the inside of the valve body;

도 3b는 밸브 바디와 그 내부의 대략 하측에 설치되는 부품들의 구조를 보여주는 분리 사시도;3B is an exploded perspective view showing the structure of the valve body and the components installed on the lower side of the inside thereof;

도 3c는 내부에 부품이 장착된 밸브 바디와 그 외부에 장착되는 부품들의 구조를 보여주는 분리 사시도;3C is an exploded perspective view showing the structure of a valve body in which parts are mounted therein and parts mounted outside thereof;

도 4a 및 도 4b는 상개식(normally open type)과 상폐식(normally closed type) 밸브로 각각 제작된 경우, 제1 요크의 수직 길이와 니들(needle)의 위치를 보여주는 도면으로서,4A and 4B are views showing the vertical length of the first yoke and the position of the needle when the valves are manufactured as normally open type and normally closed type valves, respectively.

도 4a는 전류가 인가되지 않은 때 니들이 오리피스(orifice)를 항상 개방하는 상개식 밸브를 나타낸 도면;4A shows an open valve in which the needle always opens the orifice when no current is applied;

도 4b는 전류가 인가되지 않은 때 니들이 오리피스를 항상 폐쇄하는 상폐식 밸브를 나타낸 도면;4b shows a normally closed valve in which the needle always closes the orifice when no current is applied;

도 5는 영구자석이 자기력(magnetic force)에 의해 부상되는 원리를 보여주기 위한 것으로서, 비자성체(nonmagnetic substance)로 이루어진 부품들이 제거된 모습을 나타낸 개략도;FIG. 5 is a schematic view showing a principle in which permanent magnets are injured by magnetic force, in which parts made of a nonmagnetic substance are removed; FIG.

도 6은 영구자석에 가해지는 자기력(Fm)과 영구자석의 수직축 변위(Z)의 관계를 나타낸 그래프;6 is a graph showing the relationship between the magnetic force (Fm) applied to the permanent magnet and the vertical axis displacement (Z) of the permanent magnet;

도 7a 및 도 7b는 코일에 전류가 인가되는 방향에 따라서 형성되는 유도 자계(induction field Bu, Bd)와 영구자석에 가해지는 유도 기전력(Fu, F d)의 관계를 보여주기 위한 것으로,7A and 7B illustrate a relationship between an induction field B u and B d formed according to a direction in which a current is applied to a coil and an induction electromotive force F u and F d applied to a permanent magnet. ,

도 7a는 위에서 보았을 때 코일에 반시계 방향으로 전류가 인가된 때의 모습을 나타낸 도면; 그리고Figure 7a is a view showing when the current is applied to the coil in the counterclockwise direction when viewed from above; And

도 7b는 위에서 보았을 때 코일에 시계 방향으로 전류가 인가된 때의 모습을 나타낸 도면이다.FIG. 7B is a view illustrating a state in which a current is applied to the coil in a clockwise direction when viewed from above. FIG.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100 : 밸브 바디 131 : 오리피스100: valve body 131: orifice

140 : 리미터 150 : 캡140: limiter 150: cap

160, 170 : 스프링 200 : 영구자석160, 170: spring 200: permanent magnet

230 : 로드 240 : 니들230: Load 240: Needle

300 : 제1 요크 350 : 코일300: first yoke 350: coil

400 : 제2 요크400: second yoke

본 발명은 관내를 흐르는 유체의 흐름을 제어하는 밸브에 관한 것으로, 더욱 상세하게는 전자기력(electromagnetic force)에 의해 작동하는 니들(needle)을 이용하여 유체의 흐름을 단속하거나 그 유량을 조절하는 유체 흐름 제어 밸브에 관한 것이다.The present invention relates to a valve for controlling the flow of the fluid flowing in the pipe, and more particularly, a fluid flow to regulate the flow or regulate the flow of the fluid using a needle (needle) operated by an electromagnetic force (electromagnetic force) It relates to a control valve.

일반적으로 유체 흐름 제어 밸브는 유체가 통과하는 오리피스(orifice)의 개방 면적을 선형(linear)적으로 조절함으로써 상기 오리피스를 통과하는 유체의 양을 제어하도록 구성된다. 유체 흐름 제어 밸브에서 상기 오리피스의 개방 면적을 선형적으로 조절하기 위해서는 일반적으로 선단부(tip)가 테이퍼진(tapered) 니들(needle)이 많이 사용된다. 밸브 내에서, 상기 니들은 테이퍼진 선단부가 상기 오리피스의 일측에 대응하도록 배치된 상태에서 선형적으로 왕복 이동할 수 있게 설치된다. 이와 같이 설치된 상기 니들이 선형적으로 이동할 때 상기 니들의 테이퍼진 선단부가 차지하는 상기 오리피스의 개방 면적이 증가하거나 감소하게 되며, 이에 따라 상기 오리피스 내를 통과할 수 있는 유체의 양도 감소하거나 증가하게 된다.In general, the fluid flow control valve is configured to control the amount of fluid passing through the orifice by linearly adjusting the open area of the orifice through which the fluid passes. In order to linearly adjust the open area of the orifice in the fluid flow control valve, a needle tapered with a tip is generally used. Within the valve, the needle is installed to reciprocate linearly in a state where the tapered tip is arranged to correspond to one side of the orifice. When the needles installed in this manner move linearly, the open area of the orifice occupied by the tapered tip of the needle increases or decreases, thereby decreasing or increasing the amount of fluid that can pass through the orifice.

상기와 같은 원리로 유체의 흐름을 제어하는 밸브는 각각 상기 니들을 선형적으로 이동시키기 위한 구조가 매우 다르게 구현될 수 있다. 이하에서는 현재까지 사용되고 있는 몇 가지 통상적인 구조에 대해 설명한다.In the same principle as described above, the valves for controlling the flow of fluid may be implemented in very different structures for linearly moving the needles. The following describes some conventional structures used to date.

현재까지 사용되고 있는 통상적인 구조의 예로는 상기 니들을 이동시키는 액튜에이터(actuator)로써 스텝 모터(step motor)를 사용하는 방식이 있다. 이 경우, 상기 스텝 모터의 회전축에는 회전 운동을 직선 운동으로 변환하는 기어(gear)가 설치되고, 니들이 상기 기어에 맞물리게(engaged) 설치된다. 이와 같이 설치되면, 상기 스텝 모터에 인가되는 구동 전원의 펄스(pulse) 수에 비례하여 상기 니들이 이동하게 된다.An example of a conventional structure used up to now is a method using a step motor as an actuator for moving the needle. In this case, gears for converting rotational motions into linear motions are provided on the rotating shaft of the stepper motor, and needles are provided to engage the gears. In this manner, the needle moves in proportion to the number of pulses of the driving power applied to the step motor.

그러나 이러한 구조를 가지는 스텝 모터 방식은 상기 스텝 모터의 가격이 비싸므로 밸브 장치의 단가가 상승될 수 밖에 없는 단점을 가진다. 그리고 상기 스텝 모터의 회전 축과 상기 니들이 배치되는 밸브 바디(valve body)를 기밀 접합(hermetic sealing)시켜야 하므로 밸브 장치의 제조시 조립 공정이 매우 어려우며, 이에 따라 제조 비용이 상승하는 문제를 가지고 있다.However, the step motor system having such a structure has a disadvantage in that the unit price of the valve device is inevitably increased because the step motor is expensive. In addition, since the sealing shaft of the step motor and the valve body on which the needle is disposed must be hermetically sealed, the assembly process is very difficult in manufacturing the valve device, and thus the manufacturing cost increases.

현재까지 사용되고 있는 통상적인 구조의 다른 예로는 박판인 다이어프램(diaphragm) 또는 멤브레인(membrane)을 사용하는 방식이 있다. 이 경우, 니들은 상기 다이어프램 또는 멤브레인에 연결되고, 상기 니들이 연결된 다이어프램 또는 멤브레인의 이면에는 압력 조절이 가능한 별도의 가압 공간이 마련된다. 그리고 상기 가압 공간에는 소정의 유체가 충진된다. 이와 같은 구조를 가지면 상기 유체를 가열할 때 발생하는 팽창 압력을 이용하여 상기 다이어프램 또는 멤브레인을 변형시킬 수 있게 되고, 이에 따라 상기 니들을 이동시킬 수 있게 된다.Another example of a conventional structure used to date is the use of a thin plate diaphragm (membrane) or membrane (membrane). In this case, a needle is connected to the diaphragm or the membrane, and a separate pressurized space is provided on the back side of the diaphragm or the membrane to which the needle is connected to adjust the pressure. The pressurized space is filled with a predetermined fluid. Such a structure makes it possible to deform the diaphragm or the membrane by using the expansion pressure generated when the fluid is heated, thereby moving the needle.

그러나 이러한 구조 또한 별도의 가압 공간을 마련해야 하므로 밸브 장치의 소형화가 어렵고, 발열에 의한 전력 소모가 매우 크다는 단점을 가지고 있다. 또한, 상기 가압 공간의 가열에 의한 팽창 압력을 이용하여 상기 밸브를 간접적으로 이동시키게 되므로 밸브의 응답속도가 느리다는 단점을 가지고 있다.However, such a structure also has a disadvantage in that it is difficult to miniaturize the valve device because of the need to provide a separate pressurized space, and the power consumption by heat generation is very large. In addition, since the valve is indirectly moved by using the expansion pressure due to the heating of the pressurized space, the response speed of the valve is slow.

본 발명은 상기한 문제를 해결하기 위해 안출된 것으로, 그 목적은 유체의 유량을 임의로 조절할 수 있는 유체 흐름 제어 밸브를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a fluid flow control valve capable of arbitrarily adjusting the flow rate of the fluid.

본 발명의 다른 목적은 전자기력을 이용함으로써 밸브의 응답 속도가 빠르면서 성능이 우수한 유체 흐름 제어 밸브를 제공하는 것이다.Another object of the present invention is to provide a fluid flow control valve having a high response speed and excellent performance by using electromagnetic force.

본 발명의 또 다른 목적은 구조가 간단하고 조립성이 양호하여 생산성이 높은 유체 흐름 제어 밸브를 제공하는 것이다.It is still another object of the present invention to provide a fluid flow control valve having a simple structure and good assemblability and thus having high productivity.

본 발명의 또 다른 목적은 소형화된 유체 흐름 제어 밸브를 제공하는 것이다.Another object of the present invention is to provide a miniaturized fluid flow control valve.

상기한 목적을 달성하기 위한 본 발명은, 하단에 형성되는 제1 포트와, 상단에 형성되는 제2 포트와, 상기 제1 및 제2 포트를 연통시키도록 내부에 형성되는 오리피스(orifice)와, 상측 내부에 공간(space)을 가지는 밸브 바디와; 상기 공간에 상하 방향으로 이동 가능하게 설치되고, 상하 방향으로 적어도 하나 이상의 유로공(fluid passage hole)이 형성된 영구자석과; 전기 회로와 연결되고 상기 밸브 바디 외주면에 권선되는 코일과; 상기 영구자석이 자기력에 의해서 상기 공간 중에 부상된 상태를 유지할 수 있도록 상기 영구자석의 상측 일부분과 대응하는 위치의 상기 밸브 바디 외주면을 에워싸도록 설치되는 제1 요크(yoke)와; 테이퍼진 선단부(tip)가 상기 오리피스의 일측에 대응하도록 배치되고, 상기 코일에 전류가 인가될 때 발생하는 전자기력(electromagnetic force)에 의해 상기 영구자석이 상방 또는 하방으로 이동할 때 함께 이동하면서 상기 오리피스의 개방 면적을 선형적으로 변화시키는 니들(needle)을 포함하여 이루어진 전자기식 유체 흐름 제어 밸브를 제공한다.The present invention for achieving the above object, the first port formed on the lower end, the second port formed on the upper end, orifice (orifice) formed therein to communicate the first and second ports, A valve body having a space inside the upper side; A permanent magnet installed in the space to be movable in the vertical direction and having at least one fluid passage hole formed in the vertical direction; A coil connected to an electric circuit and wound around an outer circumferential surface of the valve body; A first yoke installed to surround an outer circumferential surface of the valve body at a position corresponding to an upper portion of the permanent magnet to maintain the permanent magnet in a floating state in the space by a magnetic force; A tapered tip is disposed to correspond to one side of the orifice, and moves together when the permanent magnet moves upward or downward by an electromagnetic force generated when an electric current is applied to the coil. An electromagnetic fluid flow control valve is provided that includes a needle that changes the open area linearly.

여기서, 상기 밸브 바디는 예를 들면, 상하 방향으로 긴 원통형으로 이루어진다. 그리고 상기 밸브 바디는 제작성 및 조립성을 향상시키기 위해서 분리 가능한 3개의 피스(piece)를 포함하여 이루어질 수 있다. 이 경우, 상기 밸브 바디는, 외주면에 상기 코일과 상기 제1 요크가 결합되고 내부에 상기 영구자석이 수용되며 상단에 상기 제2 포트가 형성된 제1 피스와, 상단과 하단이 개방되고 외주면 일부에 상기 코일이 권선되며 내측 공동부(cavity)에 상기 니들이 위치되도록 상기 제1 피스의 하단에 결합되는 제2 피스와, 내부에 상기 오리피스가 형성되고 하단에 상기 제1 포트가 형성되며, 상기 니들이 상기 오리피스에 대응하는 위치에 배치되도록 상기 제2 피스의 하단에 결합되는 제3 피스를 포함하여 이루어진다. 여기서, 상기 제1 피스와 제2 피스는 비자성체(nonmagnetic substance)로 이루어지는 것이 바람직하다. 그리고 상기 밸브 바디에서 상기 제1 포트와 제2 포트는 동일한 가상선 상에 형성되는 것이 바람직하다. 그리고 상기 유로공은 상기 영구자석에 다수개가 방사상으로 배치되는 것이 바람직하다.Here, the valve body, for example, is made of a long cylindrical in the vertical direction. In addition, the valve body may include three pieces that are detachable to improve manufacturability and assembly. In this case, the valve body, the first piece is coupled to the coil and the first yoke on the outer circumferential surface, the permanent magnet is received therein and the second port is formed on the upper end, and the upper and lower ends are opened on a portion of the outer circumferential surface A second piece coupled to a lower end of the first piece such that the coil is wound and the needle is positioned in an inner cavity, an orifice is formed therein, and a first port is formed at a lower end of the needle; And a third piece coupled to the bottom of the second piece so as to be disposed at a position corresponding to the orifice. Here, the first piece and the second piece are preferably made of a nonmagnetic substance. In the valve body, the first port and the second port are preferably formed on the same imaginary line. And it is preferable that the plurality of passage holes are radially disposed in the permanent magnet.

그리고 상기 니들은 상기 영구자석을 관통하도록 설치된 로드(rod)의 하단부 에 결합되거나 상기 영구자석에 직접 연결되어 상기 영구자석과 함께 이동할 수 있다. 이러한 상기 로드는 비자성체로 이루어지는 것이 바람직하다.The needle may be coupled to a lower end of a rod installed to penetrate the permanent magnet or directly connected to the permanent magnet to move together with the permanent magnet. This rod is preferably made of a nonmagnetic material.

또한, 상기 밸브 바디의 상단은 비자성체로 이루어지고 분리 가능한 캡에 의해 폐쇄된다. 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 상기 공간의 상측에 상기 공간의 수평 단면적을 축소하도록 설치되어 상기 영구자석의 상승 높이를 제한하는 리미터(limiter)를 더 포함하여 이루어질 수 있다. 상기 리미터는 캡이 설치된 경우, 상기 캡과 상기 영구자석 사이에 상기 공간의 수평 단면적을 축소하도록 설치된다. 여기서, 상기 리미터는 비자성체로 이루어지며, 상기 영구자석의 외주보다 작은 내주를 가지는 링형으로 이루어지는 것이 바람직하다.The upper end of the valve body is also made of nonmagnetic material and closed by a detachable cap. The electromagnetic fluid flow control valve according to the present invention may further include a limiter installed on the upper side of the space to reduce the horizontal cross-sectional area of the space to limit the rising height of the permanent magnet. When the cap is installed, the limiter is installed to reduce the horizontal cross-sectional area of the space between the cap and the permanent magnet. Here, the limiter is made of a nonmagnetic material, it is preferable that the limiter is made of a ring shape having an inner circumference smaller than the outer circumference of the permanent magnet.

한편, 상기 제1 요크는 상기 영구자석의 상단에 있는 자계를 집속할 수 있도록 투자율(permeability)이 높은 물질로 이루어지는 것이 바람직하다. 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 상기 밸브 바디의 외주면에 결합되고, 상기 코일을 에워싸도록 설치되는 제2 요크를 더 포함하여 이루어질 수 있다. 상기 제2 요크는 상기 밸브 바디 내의 자속 밀도를 높이기 위해서 순철(iron) 등의 투자율이 높은 물질로 이루어지는데, 이는 상기 코일의 상측 부분을 에워싸도록 설치되는 상부 피스와, 상기 상부 피스의 하측에서 결합되고, 상기 코일의 하측 부분을 에워싸는 하부 피스를 포함하여 이루어진다.On the other hand, the first yoke is preferably made of a material having a high permeability to focus the magnetic field on the upper end of the permanent magnet. The electromagnetic fluid flow control valve according to the present invention may further include a second yoke coupled to an outer circumferential surface of the valve body and installed to surround the coil. The second yoke is made of a material having a high permeability, such as iron, to increase the magnetic flux density in the valve body, which is provided at an upper piece installed to enclose an upper portion of the coil, and a lower portion of the upper piece. And a lower piece surrounding the lower portion of the coil.

전자기식 유체 흐름 제어 밸브는 일부분이 상기 밸브 바디와 상기 로드에 각각 고정되도록 설치되어, 상기 영구자석이 이동할 때, 상기 영구자석, 상기 로드 또는 상기 니들이 상기 밸브 바디의 내벽에 접촉되는 것을 방지하면서 상기 영구자 석이 원위치되도록 복원력을 부여하는 적어도 하나 이상의 스프링을 더 포함하여 이루어질 수 있다. 여기서, 상기 스프링은, 상기 영구자석을 관통한 상기 로드의 상단부를 지지하는 제1 스프링과, 상기 니들과 연결되는 상기 로드의 하단부를 지지하는 제2 스프링을 포함하여 이루어진다.An electromagnetic fluid flow control valve is installed such that a portion thereof is fixed to the valve body and the rod, respectively, to prevent the permanent magnet, the rod or the needle from contacting the inner wall of the valve body when the permanent magnet moves. It may further comprise at least one or more springs to impart a restoring force so that the permanent magnet is in place. Here, the spring comprises a first spring for supporting the upper end of the rod through the permanent magnet, and a second spring for supporting the lower end of the rod connected to the needle.

그리고 상기 각 스프링은, 상기 밸브 바디에 고정되는 제1 링과, 상기 제1 링의 내측에 배치되고 내주면에 상기 로드의 외주면이 끼워지는 제2 링과, 상기 제1 링과 제2 링을 연결하고, 상기 제1 링의 반지름 방향으로는 큰 강성(stiffness)을 가지면서 상기 제1 링의 상하 방향으로는 탄력적인 서스펜더들(suspenders)을 포함하여 이루어진다. 이러한 상기 각 스프링은 비자성체로 이루어진다.The springs may include a first ring fixed to the valve body, a second ring disposed inside the first ring and fitted with an inner circumferential surface of the rod, and connecting the first ring and the second ring. The first ring may include suspenders that have elasticity in the radial direction of the first ring and have elastic stiffness in the vertical direction of the first ring. Each of these springs is made of a nonmagnetic material.

한편, 상기 니들은 상기 코일에 전류가 인가되지 않은 상태에서, 상기 오리피스를 폐쇄하도록 배치되거나, 상기 오리피스를 완전히 개방시키도록 배치되거나, 상기 선단부가 상기 오리피스의 개방 면적 중 일부를 차지하도록 배치될 수 있다.Meanwhile, the needle may be arranged to close the orifice in a state where no current is applied to the coil, or may be arranged to completely open the orifice, or the tip may be disposed to occupy a part of the open area of the orifice. have.

상기 전기회로는, 상기 니들이 상기 오리피스의 개방 면적을 선형적으로 증감시킬 수 있도록, 상기 코일에 공급하는 전류의 세기 및 방향을 임의로 조절할 수 있는 회로로 이루어질 수 있는데, 이 경우, 상기 전기 회로는 디지털화된 인가 전류의 주기 및 펄스 폭을 임의로 조절할 수 있는 펄스 폭 변조 회로(PWM circuit: pulse width modulation circuit)를 적용하여 구성될 수도 있다.The electrical circuit may include a circuit capable of arbitrarily adjusting the strength and direction of the current supplied to the coil so that the needle linearly increases or decreases the open area of the orifice, in which case the electrical circuit is digitized. It may also be configured by applying a pulse width modulation circuit (PWM circuit) that can arbitrarily adjust the period and pulse width of the applied current.

또한, 상기 전기 회로는, 상기 니들이 상기 오리피스를 개방하거나 폐쇄하는 개폐 밸브(bistable on/off valve)로 작동할 수 있도록, 상기 코일에 기 설정된 세 기를 가지는 전류를 인가할 수 있는 회로로 이루어질 수도 있다.In addition, the electrical circuit may be made of a circuit capable of applying a current having a predetermined force to the coil so that the needle can operate as a bistable on / off valve to open or close the orifice. .

그리고 상기 제1 포트에는 압력이 높은 유체가 유입되는 유입관(inlet tube)이 연결되고, 상기 제2 포트에는 상기 오리피스를 통과한 유체가 토출되는 토출관(outlet tube)이 연결될 수 있다. 이 경우, 상기 오리피스를 통과한 후 상기 유체의 압력 및 온도가 강하되도록 상기 오리피스의 직경은 상기 제1 포트의 직경 보다 작게 형성되는 것이 바람직하다.An inlet tube through which a high pressure fluid flows may be connected to the first port, and an outlet tube through which the fluid passing through the orifice is discharged may be connected to the second port. In this case, the diameter of the orifice is preferably smaller than the diameter of the first port so that the pressure and temperature of the fluid is lowered after passing through the orifice.

상기와는 반대로, 상기 제2 포트에는 압력이 높은 유체가 유입되는 유입관(inlet tube)이 연결되고, 상기 제1 포트에는 상기 오리피스를 통과한 유체가 토출되는 토출관(outlet tube)가 연결될 수도 있다. 한편, 상기 밸브 바디 내로 유입되어 상기 오리피스를 경유한 후 외부로 토출되는 유체는 기체 상태로 이루어지거나, 액체 상태로 이루어지거나, 기체와 액체가 혼합된 상태로 이루어지거나, 초임계 유체(super critical fluid)로 이루어질 수 있다.Contrary to the above, an inlet tube through which the high pressure fluid flows is connected to the second port, and an outlet tube through which the fluid passing through the orifice is discharged may be connected to the first port. have. Meanwhile, the fluid introduced into the valve body and discharged to the outside after passing through the orifice may be in a gaseous state, in a liquid state, or in a state in which gas and liquid are mixed, or a super critical fluid. It can be made of).

이하 상기 목적이 구체적으로 실현될 수 있는 본 발명의 실시예들이 첨부된 도면을 참조하여 설명된다. 본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 부호가 사용되며, 이에 따른 부가적인 설명은 하기에서 생략된다.DETAILED DESCRIPTION Hereinafter, embodiments of the present invention in which the above object can be specifically realized are described with reference to the accompanying drawings. In describing the embodiments, the same names and symbols are used for the same components, and additional description thereof will be omitted below.

도 1은 본 발명에 따른 전자기식 유체 흐름 제어 밸브의 일실시예 사시도이고, 도 2는 도 1의 횡단면을 보여주는 사시도이다. 그리고 도 3a 내지 도 3c는 도 2의 부분적인 분리 사시도들로서, 도 3a는 밸브 바디의 내부의 대략 상측에 설치되는 부품들의 구조를 보여주는 분리 사시도이고, 도 3b는 밸브 바디와 그 내부의 대략 하측에 설치되는 부품들의 구조를 보여주는 분리 사시도이며, 도 3c는 내부에 부품이 장착된 밸브 바디와 그 외부에 장착되는 부품들의 구조를 보여주는 분리 사시도이다. 이하에서는 이들 도면을 참조하여 본 발명에 따른 전자기식 유체 흐름 제어 밸브의 일실시예의 구체적인 구조에 대해 보다 상세하게 설명한다. 참고로 설명의 편의를 위해서 도면에 도시된 밸브의 길이 방향을 상하 방향 또는 수직 방향이라 칭하고, 밸브의 지름 또는 폭 방향을 수평 방향이라 칭한다. 그리고 도면을 간략하게 하기 위해 각 부품들을 나사 결합시키기 위한 나사산들은 도시를 생략하였다.1 is a perspective view of an embodiment of an electromagnetic fluid flow control valve according to the present invention, Figure 2 is a perspective view showing a cross-sectional view of FIG. 3A to 3C are partially disassembled perspective views of FIG. 2, and FIG. 3A is an exploded perspective view illustrating a structure of components installed on the upper side of the inside of the valve body, and FIG. 3B is a lower side of the valve body and the inside thereof. FIG. 3C is an exploded perspective view illustrating a structure of a valve body in which parts are installed and parts mounted on the outside thereof. Hereinafter, the specific structure of an embodiment of an electromagnetic fluid flow control valve according to the present invention will be described in detail with reference to these drawings. For reference, for convenience of description, the longitudinal direction of the valve illustrated in the drawings is referred to as a vertical direction or a vertical direction, and the diameter or width direction of the valve is referred to as a horizontal direction. In addition, the threads for screwing the respective parts are not shown in order to simplify the drawings.

도 1 및 도 2를 참조하면, 전자기식 유체 흐름 제어 밸브에는 실린더 형의 밸브 바디(100)가 구비되며, 상기 밸브 바디(100)의 내부에 영구자석(200)과 니들(240)이 설치되고, 상기 밸브 바디(100)의 외주면에는 코일(350)과 제1 요크(300), 그리고 제2 요크(400)가 설치된다. 상기 니들(240)은 상기 영구자석(200)을 관통하도록 설치된 로드(230)에 연결된다. 그리고 상기 밸브 바디(100)에는 두 개의 포트들, 즉 제1 포트(135)와 제2 포트(155)가 외부 공간과 밸브 바디(100)의 내부 공간을 연통시키도록 제공된다. 여기서 상기 제1 포트(135)와 제2 포트(155)는 가상의 일직선 상에 위치하도록 배치된다.1 and 2, the electromagnetic fluid flow control valve is provided with a cylindrical valve body 100, the permanent magnet 200 and the needle 240 is installed inside the valve body 100 On the outer circumferential surface of the valve body 100, a coil 350, a first yoke 300, and a second yoke 400 are installed. The needle 240 is connected to a rod 230 installed to penetrate the permanent magnet 200. In addition, two ports, that is, the first port 135 and the second port 155, are provided in the valve body 100 so as to communicate the external space with the internal space of the valve body 100. Here, the first port 135 and the second port 155 are disposed to be located in a virtual straight line.

그리고 상기 제1 포트(135)와 제2 포트(155)를 연통시키도록 상기 밸브 바디(100)의 내부에는 가는 오리피스(131)가 형성된다. 상기 니들(240)은 상기 오리피스(131)의 일측과 대응하도록 배치되며, 상기 코일(350)에 전류가 인가될 때 상기 영구자석(200)과 함께 밸브 바디(100)의 내측에서 상하 방향으로 이동한다. 상기 니들(240)의 이동 방향과 이동량은 상기 코일(350)에 인가되는 전류의 방향과 세기에 의해 결정된다.A thin orifice 131 is formed inside the valve body 100 to communicate the first port 135 and the second port 155. The needle 240 is disposed to correspond to one side of the orifice 131, and moves upward and downward from the inside of the valve body 100 together with the permanent magnet 200 when a current is applied to the coil 350. do. The moving direction and the moving amount of the needle 240 are determined by the direction and intensity of the current applied to the coil 350.

한편, 상기 니들(240)이 이동할 때 상하 방향 움직임을 원활히 안내하도록 상기 로드(230)를 지지하는 적어도 하나 이상의 스프링(160, 170)이 밸브 바디(100)에 제공된다. 상기 니들(240)이 이동할 때 상기 니들(240)의 선단부(243)는 상기 오리피스(131)의 개방 면적을 선형적으로 변화시키게 된다. 그러므로 상기 제1 포트(135)와 제2 포트(155)중 어느 하나를 통해서 유입된 유체가 상기 오리피스(131)를 통과한 후 다른 하나를 통해서 외부로 배출되는 양은 상기 니들(240)의 위치에 의해서 제어된다.Meanwhile, at least one or more springs 160 and 170 supporting the rod 230 are provided to the valve body 100 to smoothly guide the vertical movement when the needle 240 moves. When the needle 240 moves, the tip portion 243 of the needle 240 linearly changes the open area of the orifice 131. Therefore, the amount of fluid introduced through one of the first port 135 and the second port 155 after passing through the orifice 131 is discharged to the outside through the other is located at the position of the needle 240. Controlled by

여기서, 실린더 형상의 상기 밸브 바디(100)는 도 1 및 도 2에 도시된 바와 같이 상하 방향으로 길게 형성된다. 그러나 상기 밸브 바디(100)는 실린더 형상에 국한되는 것은 아니며 외부에 상기 코일(350)이 용이하게 권선(wound)될 수 있고 내부에 상기 영구자석(200) 비롯한 여러가지 부품들이 설치될 수 있는 공간을 가진 형상으로 제작되면 충분하다.Here, the valve body 100 of the cylindrical shape is formed long in the vertical direction as shown in Figs. However, the valve body 100 is not limited to a cylinder shape, and the coil 350 may be easily wound on the outside and a space in which various components such as the permanent magnet 200 may be installed therein. It is enough to produce a shape with an excitation.

상기 밸브 바디(100)의 내부에는 다수의 부품들이 설치된다. 그러므로, 상기 밸브 바디(100)는 용이하게 제조할 수 있으면서 각 부품들을 상기 밸브 바디(100)의 내부에 쉽게 장착한 후 조립할 수 있는 구조를 가지는 것이 바람직하다. 이를 위해서 상기 밸브 바디(100)는 도 3a 내지 도 3c에 도시된 바와 같이 다수개, 예를 들면 3개의 피스(piece)로 이루어지는 것이 바람직하다. 상기 3개의 피스들은 각각 별체로 제작된 후, 상호 나사 결합되거나 용접(welding), 땜질(brazing), 압입 등의 방법으로 접합되어 하나의 밸브 바디(100)를 형성한다. 이하에서는 상하 방향, 즉 밸브의 길이 방향의 상측에 위치한 피스를 제1 피스(110), 중간에 위치한 피스를 제2 피스(120), 그리고 하측에 위치한 피스를 제3 피스(130)라 칭한다.A plurality of parts are installed in the valve body 100. Therefore, it is preferable that the valve body 100 has a structure that can be easily manufactured and assembled after mounting the respective components inside the valve body 100. To this end, the valve body 100 is preferably composed of a plurality of pieces (for example, three pieces) as shown in Figures 3a to 3c. The three pieces are each manufactured separately and then screwed together or joined by welding, brazing, pressing, or the like to form a valve body 100. Hereinafter, the first piece 110, the middle piece, and the lower piece are referred to as a third piece 130.

상기 제1 피스(110)는 도 3a에 도시된 바와 같이 상부와 하부가 개방된 원통형으로 형성된다. 제1 피스(110)의 하부에는 상기 제2 피스(120)와 결합되기 위한 나사산(미도시)이 형성된다. 그리고 상기 제1 피스(110)의 개방된 상부에는 분리 가능한 캡(150)이 결합된다. 상기 캡(150)의 중앙에는 도 3a에 도시된 바와 같이 상하 방향으로 커다란 상기 제2 포트(155)가 형성된다. 상기 캡(150)은 상기 제1 피스(110)에 압입되어 결합될 수도 있고 나사 결합될 수도 있다. 상기 제1 피스(110)의 내부에는 도 3a에 도시된 바와 같이 상기 영구자석(200)을 수용할 수 있는 공간(111)(space)이 형성된다. 그러므로 상기 제2 포트(155)은 상기 제1 피스(110)의 상측 외부 공간과 상기 공간(111)을 연통시키게 된다.The first piece 110 is formed in a cylindrical shape with the top and bottom open as shown in FIG. 3A. The lower portion of the first piece 110 is formed with a thread (not shown) for coupling with the second piece 120. A detachable cap 150 is coupled to the open upper portion of the first piece 110. The second port 155 is formed in the center of the cap 150 in the vertical direction as shown in Figure 3a. The cap 150 may be press-fitted into the first piece 110 or may be screwed. As shown in FIG. 3A, a space 111 is formed in the first piece 110 to accommodate the permanent magnet 200. Therefore, the second port 155 communicates the upper outer space of the first piece 110 with the space 111.

상기 제1 피스(110)의 내부 중에서 상기 공간(111)의 하측에는 상기 영구자석(200)의 하단이 지지될 수 있도록 턱(112)(step)이 상기 제1 피스(110)의 내벽으로부터 상기 제1 피스(110)의 반지름 방향으로 돌출된다. 여기서 상기 제1 피스(110)의 하측은 완전히 개방되는 것이 바람직하다. 이는 상기 제2 포트(155)와 제1 포트(135)를 통해 밸브 바디(100)의 내측을 유동하는 유체의 유동 유로를 충분히 확보하기 위함이다. 그러므로 상기 턱(112)은 상기 영구자석(200)의 하단 원주 부분을 약간 지지할 수 있을 정도로만 돌출되는 것이 바람직하다. 상기와 같은 구조를 가지는 제1 피스(110)의 외주면에는 상기 코일(350)과 상기 제1 요크(300)가 결합되는데, 이들에 대해서는 후술할 것이다.The lower side of the space 111 of the inside of the first piece 110 so that the lower end of the permanent magnet 200 is supported by the step (step) (step) from the inner wall of the first piece (110) It protrudes in the radial direction of the first piece 110. Here, the lower side of the first piece 110 is preferably fully opened. This is to ensure a sufficient flow path of the fluid flowing inside the valve body 100 through the second port 155 and the first port 135. Therefore, the jaw 112 is preferably protruded only enough to support the lower circumferential portion of the permanent magnet 200. The coil 350 and the first yoke 300 are coupled to an outer circumferential surface of the first piece 110 having the above structure, which will be described later.

상기 제2 피스(120)는 도 2 및 도 3b에 도시된 바와 같이 상기 제1 피스(110)의 하단에 용접(welding 또는 brazing) 또는 압입되어 결합되거나 나사 결합된다. 이를 위해 상기 제2 피스(120)의 상단에는 상기 제1 피스(110)의 나사산과 대응하는 다른 나사산이 형성되거나 용접 및 압입 과정에서 요구되는 체결부가 형성된다. 본 발명에서는 상기 제1 피스(110)와 제2 피스(120)가 보다 높은 기밀성을 가진 상태로 결합될 수 있는 구조를 제시하는데, 이하에서는 이에 대해 간단히 설명한다.The second piece 120 is welded or brazed or press-fitted to the bottom of the first piece 110, as shown in FIGS. 2 and 3B, or is screwed. To this end, other threads corresponding to the threads of the first piece 110 are formed on the upper end of the second piece 120, or a fastening portion required in the welding and indentation process is formed. The present invention proposes a structure in which the first piece 110 and the second piece 120 can be coupled in a state of higher airtightness, which will be briefly described below.

도 3a 및 도 3b에 도시된 바와 같이 상기 제1 피스(110)의 하단에 환상의(annular) 돌기(114)가 형성된다. 그리고 상기 돌기(114)의 내주면과 외주면 중 적어도 어느 한 면 이상에 나사산을 더 포함하여 형성할 수 있다. 또한 상기 제2 피스(120)의 상단에는 도 3b에 도시된 바와 같이 상기 돌기(114)를 수용할 수 있는 환상의 홈(123)(groove)이 형성된다. 그리고 상기 홈(123)에는 상기 돌기(114)의 나사산에 대응하는 다른 나사산을 더 포함하여 형성할 수 있다. 상기와 같은 구조를 가지면, 제1 피스(110)와 제2 피스(120)가 높은 기밀성을 유지한 상태로 결합될 수 있다. 그리고 필요한 경우, 상기 환상의 홈(123) 내에 실런트(sealant) 또는 오링(O-ring)을 삽입하면 기밀성을 더욱 높일 수 있다.As shown in FIGS. 3A and 3B, an annular protrusion 114 is formed at the lower end of the first piece 110. The screw thread may be further formed on at least one of an inner circumferential surface and an outer circumferential surface of the protrusion 114. In addition, an upper end of the second piece 120 is formed with an annular groove 123 (groove) that can accommodate the protrusion 114, as shown in Figure 3b. The groove 123 may further include another thread corresponding to the thread of the protrusion 114. With the above structure, the first piece 110 and the second piece 120 can be combined while maintaining a high airtightness. If necessary, a sealant or an O-ring may be inserted into the annular groove 123 to further increase airtightness.

상기 제2 피스(120) 역시 상단과 하단이 개방된 실린더 형상을 가진다. 상기 제2 피스(120)의 내부에는 상기 니들(240)이 설치되고 상하 방향으로 이동할 수 있는 공간부(125)(cavity)가 형성된다. 상기 제2 피스(120)의 하단에는, 예를 들면 하단 외주면에는, 상기 제3 피스(130)와 나사 결합하기 위한 나사산이 형성되거나, 용접 또는 압입 시 요구되는 체결부가 형성된다. 그리고 도 2에 도시된 바와 같이 상기 제2 피스(120)의 외주면 상측 일부에는 상기 코일(350)이 권선된다. 그리고 본 발명에 따른 유체 흐름 제어 밸브에 상기 제2 요크(400)가 제공된 경우, 외주면 상측에는 상기 제2 요크(400)도 또한 설치된다. 그러므로 본 발명에 따른 유체 흐름 제어 밸브에서 상기 코일(350)과 상기 제2 요크(400)는 도 2에 도시된 바와 같이 상기 제1 피스(110)와 제2 피스(120)의 외주면에 장착된다.The second piece 120 also has a cylindrical shape with the top and bottom open. The needle 240 is installed inside the second piece 120 and a cavity 125 is formed to move upward and downward. At the lower end of the second piece 120, for example, a screw thread for screwing the third piece 130 is formed at the lower outer circumferential surface, or a fastening part required for welding or pressing is formed. As shown in FIG. 2, the coil 350 is wound around a part of the upper circumferential surface of the second piece 120. And when the second yoke 400 is provided to the fluid flow control valve according to the present invention, the second yoke 400 is also provided above the outer circumferential surface. Therefore, in the fluid flow control valve according to the present invention, the coil 350 and the second yoke 400 are mounted on the outer peripheral surfaces of the first piece 110 and the second piece 120 as shown in FIG. 2. .

상기 제3 피스(130)는 상기 제2 피스(120)의 하단에 나사 결합되거나 용접 또는 압입 등의 방법으로 결합된다. 이를 위해 상기 제3 피스(130)의 상단에는 상기 제2 피스(120)의 나사산에 대응하는 다른 나사산이 형성되거나 용접 또는 압입 방법에 대응하는 체결부가 형성된다. 상기 제3 피스(130)의 하단에는 상기 제3 피스(130)의 내부 공간과 외부공간을 연통시키는 제1 포트(135)가 형성된다. 상기 제1 포트(135)는 도 3b에 도시된 바와 같이 상기 제3 피스(130)의 하단이 완전히 개방된 형태로 형성된다. 그러나 상기 제1 포트(135)는 이에 국한되지 않고 상기 제3 피스(130)의 하단이 폐쇄되게 형성된 경우, 폐쇄된 하단에 소정 크기로 형성되어도 무방하다.The third piece 130 is screwed or coupled to the lower end of the second piece 120 by welding or pressing. To this end, other threads corresponding to the threads of the second piece 120 are formed on the upper end of the third piece 130 or fastening portions corresponding to the welding or indentation methods are formed. A first port 135 is formed at a lower end of the third piece 130 to communicate an internal space and an external space of the third piece 130. As shown in FIG. 3B, the first port 135 is formed in a shape in which the lower end of the third piece 130 is completely opened. However, the first port 135 is not limited thereto, and when the lower end of the third piece 130 is formed to be closed, the first port 135 may be formed to have a predetermined size at the closed lower end.

상기 제3 피스(130)의 내부에는 오리피스(131)가 형성된다. 상기 오리피스(131)는 상하 방향을 따라서 형성되는데, 상기 제1 포트(135)에 비해서 단면적이 매우 작게 형성되는 것이 바람직하다. 단면적이 매우 작은 오리피스(131)가 상기 제3 피스(130) 내에 형성될 수 있도록 상기 제3 피스(130)의 내부에는 상부와 하부를 분리시키는 디바이더(133)(divider)가 형성된다. 그러므로 상기 오리피스(131)는 상기 디바이더(133)의 중심에 상하 방향으로 형성된다.An orifice 131 is formed in the third piece 130. The orifice 131 is formed along the vertical direction. The orifice 131 is preferably formed to have a smaller cross-sectional area than the first port 135. In order to form an orifice 131 having a very small cross-sectional area, a divider 133 is formed inside the third piece 130 to separate the upper and lower parts. Therefore, the orifice 131 is formed in the vertical direction at the center of the divider 133.

상기와 같이 구성된 밸브 바디(100)에서 상기 제1 피스(110)와 제2 피스(120)는 상기 영구자석(200)에 의해 형성되는 자계에 영향을 주지 않기 위해서 비자성체(nonmagnetic substance)로 이루어진다. 물론, 제3 피스(130) 또한 비자성체로 이루어지는 것이 바람직하다. 그리고 상기 제1 포트(135)와 제2 포트(155)는 상기한 바와 같이 일직선 상에 배치되는 것이 바람직하다. 이와 같이 형성되면, 상기 제1 포트(135)에 연결되는 관(미도시)(tube)과 상기 제2 포트(155)에 연결되는 관(미도시)이 일직선 상에 배치되므로, 유체가 유동하는 유로를 변경하지 않고도 본 발명에 따른 유체 흐름 제어 밸브를 설치할 수 있게 된다.In the valve body 100 configured as described above, the first piece 110 and the second piece 120 are made of a nonmagnetic substance so as not to affect the magnetic field formed by the permanent magnet 200. . Of course, the third piece 130 is also preferably made of a nonmagnetic material. The first port 135 and the second port 155 are preferably arranged in a straight line as described above. When formed in this way, a tube (not shown) connected to the first port 135 and a tube (not shown) connected to the second port 155 are disposed in a straight line, so that fluid flows. It is possible to install the fluid flow control valve according to the present invention without changing the flow path.

상기 밸브 바디(100) 내부의 공간(111)에는 도 2에 도시된 바와 같이 상기 영구자석(200)이 수용된다. 상기 영구자석(200)은 상하 방향으로 분극화되게(polarized) 자화되어(magnetized) 있으며, 상기 공간(111)내에 자기력(magnetic force)에 의해서 부상된(levitated) 상태로 상하 방향으로 이동 가능하게 수용된다. 여기서, 상기 영구자석(200)이 부상되는 원리는 후술할 것이다. 그리고 도 3a에 도시된 바와 같이 상기 영구자석(200)에는 적어도 하나 이상의 유로공(220)이 상하 방향으로 관통된다. 상기 유로공(220)에는 도 3a에 도시된 바와 같이 상기 유로공(220)이 다수개 형성되되 방사상으로 배치되는 것이 바람직하다. 이는 밸브 바디(100)내를 유동하는 유체의 유로를 넓게 확보하여 유동 저항을 최소화하기 위함이다.The permanent magnet 200 is accommodated in the space 111 inside the valve body 100 as shown in FIG. 2. The permanent magnet 200 is polarized and magnetized in the vertical direction, and is accommodated in the space 111 so as to be movable in the vertical direction in a levitated state by a magnetic force. . Here, the principle that the permanent magnet 200 is floated will be described later. As shown in FIG. 3A, at least one passage hole 220 penetrates the permanent magnet 200 in the vertical direction. As shown in FIG. 3A, a plurality of flow path holes 220 are formed in the flow path 220, but are disposed radially. This is to minimize the flow resistance by ensuring a wide flow path of the fluid flowing in the valve body 100.

상기와 같이 상기 영구자석(200)이 상기 공간(111) 내에서 상하 이동하기 위 해서 상기 영구자석(200)의 수평 단면적은 상기 공간(111)의 수평 단면적보다 작게 형성되고, 상기 영구자석(200)의 상하 방향 길이는 상기 공간(111)의 상하 방향 길이보다 짧게 형성된다. 한편, 상기 영구자석(200)에는 상기 로드(230)가 관통하여 결합될 수 있도록 관통홀(210)이 상하 방향으로 형성된다. 상기 영구자석(200)은 상기 밸브 바디(100)가 실린더 형상으로 형성된 경우, 원주 형상으로 형성되며, 상기 관통홀(210)은 도 3a에 도시된 바와 같이 상기 영구자석(200)의 중심 축을 따라 형성된다.As described above, the horizontal cross-sectional area of the permanent magnet 200 is smaller than the horizontal cross-sectional area of the space 111 so that the permanent magnet 200 moves up and down within the space 111. ) Is formed shorter than the vertical length of the space (111). On the other hand, the through-hole 210 is formed in the vertical direction so that the rod 230 is coupled to the permanent magnet 200 through. When the valve body 100 is formed in a cylindrical shape, the permanent magnet 200 is formed in a circumferential shape, and the through hole 210 is formed along a central axis of the permanent magnet 200 as shown in FIG. 3A. Is formed.

상기 니들(240)은 도 2 및 도 3b에 도시된 바와 같이 테이퍼진(tapered) 선단부(243)(tip)를 가진다. 상기 선단부(243)는 도 2에 도시된 바와 같이 상기 오리피스(131)의 일측에 대응하도록 배치된다. 이러한 니들(240)은 상기 영구자석(200)이 전자기력에 의해서 상하 방향으로 이동할 때 함께 이동하면서 상기 오리피스(131)의 개방 면적을 선형적으로 변화시키게 된다. 상기 니들(240)의 선단부(243)가 상기 오리피스(131)의 개방 면적의 크기를 선형적으로 변화시키기 위해서, 상기 오리피스(131)와 상기 선단부(243)는 각각 원형의 수평 단면을 가지는 것이 바람직하다. 이와 같은 구조를 가지면, 원형인 오리피스(131)의 개방 면적 내에서 원형인 상기 선단부(243)의 단면 크기가 변화되므로 상기 오리피스(131)의 개방 면적의 크기는 선형적으로 변화된다.The needle 240 has a tapered tip 243 tip as shown in FIGS. 2 and 3B. The tip portion 243 is disposed to correspond to one side of the orifice 131 as shown in FIG. 2. The needle 240 linearly changes the open area of the orifice 131 while moving together when the permanent magnet 200 moves vertically by the electromagnetic force. In order for the tip portion 243 of the needle 240 to linearly change the size of the open area of the orifice 131, the orifice 131 and the tip portion 243 may each have a circular horizontal cross section. Do. With such a structure, the size of the open area of the orifice 131 is linearly changed since the cross-sectional size of the circular tip portion 243 is changed within the open area of the circular orifice 131.

상기와 같은 구조를 가지는 상기 니들(240)의 선단부(243)가 상기 오리피스(131) 내에 일정 정도 삽입되면, 상기 선단부(243)는 상기 오리피스(131)의 개방 영역을 일정 정도 차지하게 된다. 이러한 초기 상태에서 상기 니들(240)이 하강하여 상기 선단부(243)가 상기 오리피스(131)에 좀더 삽입되면, 상기 오리피스(131)의 개방 영역은 최초보다 감소하게 된다. 그리고 최초 상태에서 상기 니들(240)이 상승하면 상기 오리피스(131)의 개방 면적은 최초보다 증가된다.When the tip portion 243 of the needle 240 having the structure as described above is inserted into the orifice 131 to a certain degree, the tip portion 243 occupies the open area of the orifice 131 to a certain degree. In this initial state, when the needle 240 is lowered and the tip portion 243 is further inserted into the orifice 131, the open area of the orifice 131 is reduced than before. In addition, when the needle 240 rises in the initial state, the open area of the orifice 131 is increased than the initial state.

도 3b를 참조하면, 상기 니들(240)은 상기 로드(230)의 하단부에 결합된다. 이를 위해 상기 니들(240)에는 상단부에서부터 그 내부까지 삽입홀(241)이 형성되고, 상기 로드(230)의 하단부에는 상기 니들(240)의 삽입홀(241)에 삽입되어 고정되는 핀(233)이 형성된다. 상기 핀(233)은 상기 삽입홀(241)에 압입되어 고정되거나, 나사 결합될 수 있다.Referring to FIG. 3B, the needle 240 is coupled to the lower end of the rod 230. To this end, an insertion hole 241 is formed in the needle 240 from an upper end portion thereof to an inside thereof, and a pin 233 inserted into and fixed to an insertion hole 241 of the needle 240 in the lower end portion of the rod 230. Is formed. The pin 233 may be press-fitted into the insertion hole 241 or may be screwed together.

상기 로드(230)는 도 2에 도시된 바와 같이 그 상단부가 상기 영구자석(200)을 관통하도록 설치되고, 그 하단부는 상기 니들(240)에 고정된다. 그리고 상기 로드(230)의 외측면에는 상기 영구자석(200)의 하단부를 지지할 수 있도록 확장부(231)(extention)가 반지름 방향을 따라 외측으로 연장될 수 있다.As shown in FIG. 2, the rod 230 has an upper end portion penetrated through the permanent magnet 200, and a lower end portion thereof is fixed to the needle 240. In addition, an extension 231 (extension) may extend outwardly along the radial direction on the outer surface of the rod 230 to support the lower end of the permanent magnet 200.

상기와 같이 로드(230)에 형성되는 확장부(231)는 상기 영구자석(200)의 하단을 지지하는 역할 뿐만 아니라, 상기 영구자석(200)이 로드(230)에 결합되어야할 정확한 위치를 결정해주는 중요한 역할도 함께 수행하게 된다. 그러므로 상기 확장부(231)가 형성되면 조립성이 한층 향상된다.The extension 231 formed in the rod 230 not only supports the lower end of the permanent magnet 200, but also determines the exact position at which the permanent magnet 200 should be coupled to the rod 230. It also plays an important role. Therefore, when the expansion portion 231 is formed, the assemblability is further improved.

한편, 본 발명에 따른 전자기식 유체 흐름 제어 밸브에서 상기 니들(240)은 비록 도시하지는 않았지만, 상기 로드(230)에 의해 상기 영구자석(200)과 연결되지 않고, 상기 영구자석(200)에 직접 연결될 수도 있을 것이다. 이 경우, 상기 니들(240)의 상측부는 길게 형성되어 상기 로드(230)의 역할을 대신하게 된다. 이 러한 간단한 구조적 변경은 상기한 간단한 설명 만으로도 쉽게 이해될 수 있으므로 도면에 도시하지 않았다.On the other hand, in the electromagnetic fluid flow control valve according to the present invention, although not shown, the needle 240 is not connected to the permanent magnet 200 by the rod 230, but directly to the permanent magnet 200 It may be connected. In this case, the upper portion of the needle 240 is formed long to replace the role of the rod 230. Such a simple structural change is not shown in the drawings because it can be easily understood by the above simple description.

니들(240)이 상기 로드(230)에 의해 상기 영구자석(200)과 연결되거나, 직접 상기 영구자석(200)에 연결되면, 상기 영구자석(200)이 전자기력에 의해 상하 방향으로 이동할 때 상기 영구자석(200)의 이동 변위와 동일한 변위 만큼 상하 방향으로 이동할 수 있게 된다. 한편, 상기와 같은 구조를 가지는 로드(230)와 니들(240)은 상기 영구자석(200)에 의해 형성되는 자계에 영향을 끼치는 것을 방지하기 위해서 각각 비자성체로 이루어지는 것이 바람직하다.When the needle 240 is connected to the permanent magnet 200 by the rod 230, or directly connected to the permanent magnet 200, when the permanent magnet 200 moves in the vertical direction by the electromagnetic force the permanent It is possible to move in the vertical direction by the same displacement as the displacement of the magnet 200. On the other hand, it is preferable that the rod 230 and the needle 240 having the structure as described above are each made of a nonmagnetic material in order to prevent affecting the magnetic field formed by the permanent magnet 200.

상기 코일(350)은 도 2에 도시된 바와 같이 상기 밸브 바디(100)의 외주면, 예를 들면, 제1 피스(110)과 제2 피스(120)의 외주면에 권선(wound)된다. 물론, 상기 코일(350)은 도 2에 도시된 바와 같이 상기 제1 피스(110)와 제2 피스(120)의 외주면에 모두 권선되어야만 하는 것은 아니며, 제1 피스(110)의 외주면에만 권선될 수도 있을 것이다. 상기 코일(350)의 하측을 지지하기 위해서 상기 밸브 바디(100)의 외주면 일지점, 예를 들면 제2 피스(120)의 외주면 일지점에는 도 2 내지 도 3c에 도시된 바와 같이 상기 밸브 바디(100)의 반지름 방향을 따라 외측을 향해서 돌출된 플랜지(127)가 형성된다.As shown in FIG. 2, the coil 350 is wound around the outer circumferential surface of the valve body 100, for example, the outer circumferential surfaces of the first piece 110 and the second piece 120. Of course, the coil 350 does not have to be wound around the outer circumferential surfaces of the first piece 110 and the second piece 120 as shown in FIG. 2, and may be wound only on the outer circumferential surface of the first piece 110. Could be In order to support the lower side of the coil 350, one point of the outer circumferential surface of the valve body 100, for example, one point of the outer circumferential surface of the second piece 120, is illustrated in FIGS. 2 to 3C. A flange 127 is formed which protrudes outward along the radial direction of 100.

상기 플랜지(127)는 상기 코일(350)의 하단을 지지할 수도 있지만, 본 발명에 따른 전자기식 유체 흐름 제어 밸브에 상기 제2 요크(400)가 구비된 경우에는 도 2 내지 도 3c에 도시된 바와 같이 상기 제2 요크(400)의 하단을 지지하게 된다. 한편, 상기 플랜지(127)는 상기 코일(350) 또는 상기 제2 요크(400)의 하단을 지지 하는 역할 뿐만 아니라, 이들이 결합되어야할 정확한 위치를 결정해주는 중요한 역할도 함께 수행하게 된다. 그러므로 상기 플랜지(127)가 형성되면 조립성이 한층 향상된다.The flange 127 may support the lower end of the coil 350, but the second yoke 400 is provided in the electromagnetic fluid flow control valve according to the present invention as shown in FIGS. As described above, the lower end of the second yoke 400 is supported. On the other hand, the flange 127 not only serves to support the lower end of the coil 350 or the second yoke 400, but also plays an important role in determining the exact position to which they are to be coupled. Therefore, when the flange 127 is formed, the assemblability is further improved.

한편, 상기 코일(350)에는 전기 회로(미도시)가 연결된다. 상기 전기회로는 상기 코일(350)에 전류를 인가하기 위해 제공되는 것이며, 당해 기술 분야에서 통상의 지식을 가진 자라면 누구나 상기 코일에 전기 회로가 연결된다는 것을 알고 있으므로, 도면에 특별하게 도시하지는 않았다.On the other hand, an electrical circuit (not shown) is connected to the coil 350. The electric circuit is provided to apply a current to the coil 350, and anyone skilled in the art knows that the electric circuit is connected to the coil, which is not particularly shown in the drawings. .

상기 전기 회로는 상기 코일(350)에 공급하는 전류의 세기 및 방향을 임의로 조절할 수 있는 회로로 이루어질 수 있다. 그러면, 상기 코일(350)에 인가되는 전류의 방향을 결정함으로써 상기 영구자석(200)이 이동하는 방향, 즉 상측 방향 또는 하측 방향을 결정할 수 있다. 또한, 전류의 세기를 조절함으로써 상기 영구자석(200)이 이동하는 거리를 조정할 수 있게 된다. 상기 영구자석(200)이 이동하는 거리를 용이하게 조정할 수 있다는 것은 곧 상기 오리피스(131)를 통과하는 유체의 양을 용이하게 조정할 수 있다는 것을 의미한다.The electrical circuit may include a circuit capable of arbitrarily adjusting the strength and direction of the current supplied to the coil 350. Then, the direction in which the permanent magnet 200 moves, that is, the upper direction or the lower direction, may be determined by determining the direction of the current applied to the coil 350. In addition, it is possible to adjust the distance that the permanent magnet 200 moves by adjusting the strength of the current. Being able to easily adjust the distance to move the permanent magnet 200 means that the amount of fluid passing through the orifice 131 can be easily adjusted.

상기와 같이 전류의 세기 및 방향을 임의로 조절할 수 있는 회로의 일례로는 전류의 방향과 세기를 조절하는 아날로그 전류 제어 회로, 펄스 폭 변조 회로(PWM circuit: pulse width modulation circuit) 등을 들 수 있다. 상기 아날로그 전류 제어 회로 및 펄스 폭 변조 회로는 현재 널리 사용되고 있는 공지의 기술이므로 자세한 설명은 생략한다. 다만 이해를 돕기위해 간단히 설명하자면, 상기 아날로그 전류 제어 회로는 상기 영구 자석의 필요 이동 변위에 대응하는 전류의 방향 및 크 기(amplitude)를 제어 전압(control voltage) 입력에 대응하여 상기 권선 코일에 인가하는 회로이며, 상기 펄스 폭 변조 회로는 디지털화된 인가 전류의 주기 및 펄스 폭을 임의로 조절함으로써 전류의 세기를 조절하는 회로이다. 그러므로 상기 코일(350)에 연결되는 전기 회로는 상기 아날로그 전류 제어 회로 또는 펄스 폭 변조 회로를 포함하여 이루어지는 것이 바람직하다. 그러나 본 발명에서 사용되는 전기회로는 이에만 국한되지는 않으며, 전류의 세기 및 방향을 임의로 조절할 수 있다면 사용 가능하다.An example of a circuit that can arbitrarily adjust the strength and direction of the current as described above includes an analog current control circuit and a pulse width modulation circuit (PWM circuit) for adjusting the direction and intensity of the current. Since the analog current control circuit and the pulse width modulation circuit are well known technologies that are widely used at present, detailed descriptions thereof will be omitted. For simplicity, the analog current control circuit applies the direction and magnitude of the current corresponding to the required moving displacement of the permanent magnet to the winding coil in response to a control voltage input. The pulse width modulation circuit is a circuit for adjusting the intensity of the current by arbitrarily adjusting the period and pulse width of the digitized applied current. Therefore, the electrical circuit connected to the coil 350 preferably includes the analog current control circuit or the pulse width modulation circuit. However, the electric circuit used in the present invention is not limited thereto, and may be used as long as the strength and direction of the current can be arbitrarily adjusted.

한편, 상기 전기 회로는 상기 코일(350)에 기 설정된 세기의 전류를 인가할 수 있는 회로를 포함하여 이루어질 수도 있을 것이다. 이 경우, 상기 코일(350)에는 일정 세기의 전류가 인가되므로 상기 영구자석(200) 및 니들(240)의 이동 변위는 항상 동일하다. 상기 전기 회로가 이와 같이 구성되면, 니들(240)이 상기 오리피스(131)를 단순하게 개폐만 하는 개폐 밸브(bistable on/off valve)로 작동할 수 있게 된다. 물론, 이 경우, 전류의 세기는 결정되어 있다 하더라도 전류의 방향은 변경할 수 있는 회로로 구성되면 더욱 좋다. 상기한 코일(350)에 인가되는 전류의 방향을 변경하는 기술 또한 오래전부터 사용되고 있는 일반적인 기술이기 때문에 설명을 생략한다.On the other hand, the electric circuit may include a circuit that can apply a current of a predetermined strength to the coil 350. In this case, since a current of a certain intensity is applied to the coil 350, the displacement of the permanent magnet 200 and the needle 240 is always the same. If the electrical circuit is configured in this way, the needle 240 can operate as a bistable on / off valve that merely opens and closes the orifice 131. Of course, in this case, even if the strength of the current is determined, it is better to comprise a circuit which can change the direction of the current. Since the technique of changing the direction of the current applied to the coil 350 is also a general technique that has been used for a long time, description thereof will be omitted.

본 발명에서는 상기 영구자석(200)이 자기력에 의해서 밸브 바디(100) 내의 상기 공간(111)에 부상된 상태를 유지하게 된다. 이를 위해서 상기 밸브 바디(100)의 외주면, 좀더 상세하게는 제1 피스(110)의 외주면에는 도 1 내지 도 3c에 도시된 바와 같이 제1 요크(300)(yoke)가 설치된다. 상기 제1 요크(300)는 상기 영구자 석(200)의 상단에 있는 자계를 집속할 수 있도록 순철(pure iron) 등의 투자율(permeability)이 높은 물질(substance)로 이루어지며, 도 2에 도시된 바와 같이 상기 영구자석(200)의 상측 일부분과 대응하는 위치의 상기 제1 피스(110) 외주면을 에워싸도록 설치된다. 이러한 제1 요크(300)는 예를 들면 실린더 형으로 형성된다.In the present invention, the permanent magnet 200 is maintained in a state in which the floating in the space 111 in the valve body 100 by the magnetic force. To this end, a first yoke 300 (yoke) is installed on the outer circumferential surface of the valve body 100, more specifically, on the outer circumferential surface of the first piece 110 as illustrated in FIGS. 1 to 3C. The first yoke 300 is made of a material having a high permeability such as pure iron so as to focus the magnetic field on the upper end of the permanent magnet 200, and is illustrated in FIG. 2. As described above, it is installed to surround the outer circumferential surface of the first piece 110 at a position corresponding to the upper portion of the permanent magnet 200. The first yoke 300 is formed in a cylindrical shape, for example.

상기와 같이 높은 투자율을 갖는 제1 요크(300)가 제공되면, 상기 영구자석(200) 상단 부분에 있는 자계는 상기 제1 요크(300)의 상단 부분으로 집속된다. 그러므로 집속된 자계에 의해서 상기 영구자석(200)의 상단은 상기 제1 요크(300)의 상단 부분과 최단 거리를 유지한 상태에 머무르게 된다. 이에 따라 상기 영구자석(200)의 상단은 도 5에 도시된 바와 같이 상기 제1 요크(300)의 상단 부분과 동일한 고도(altitude)에서 자기력에 의해 부양된 상태를 유지하게 된다. 이에 따라 상기 코일(350)에 전류가 인가되지 않은 상태에서도, 상기 영구자석(200)과 연결된 니들(240)은 상기 오리피스(131)와 소정의 거리를 유지한 채로 공중에 부양된 상태를 유지할 수 있게 된다. 뿐만 아니라 상기 제1 요크(300)는 상기 코일(350)에 전류가 인가될 때에는 상기 영구자석(200)을 원위치롤 복원시키는 힘을 제공한다. 이러한 원리에 대해서는 도 5 내지 도 7b를 참조하여 보다 상세하게 설명될 것이다.When the first yoke 300 having a high magnetic permeability is provided as described above, the magnetic field in the upper portion of the permanent magnet 200 is concentrated to the upper portion of the first yoke 300. Therefore, the upper end of the permanent magnet 200 by the focused magnetic field is to stay in the state maintaining the shortest distance with the upper end of the first yoke (300). Accordingly, the upper end of the permanent magnet 200 is maintained by the magnetic force at the same altitude as the upper end of the first yoke 300, as shown in FIG. Accordingly, even when a current is not applied to the coil 350, the needle 240 connected to the permanent magnet 200 may maintain the suspended state in the air while maintaining a predetermined distance from the orifice 131. Will be. In addition, the first yoke 300 provides a force to restore the permanent magnet 200 to its original position when a current is applied to the coil 350. This principle will be described in more detail with reference to FIGS. 5-7B.

한편, 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 도 2 및 도 3c에 도시된 바와 같이 제2 요크(400)를 더 포함하여 이루어질 수도 있다. 상기 제2 요크(400)는 상기 영구자석(200) 주변의 자계를 더욱 집속함으로써 상기 밸브 바디(100) 내의 자속 밀도(magnetic flux density)를 높이기 위해 제공된다. 이와 같이 밸브 바디(100) 내의 자속 밀도가 높아지면, 상기 영구자석(200)에 가해지는 자기력이 강해지므로 상기 영구자석(200)은 자중에 의해 하측으로 떨어지지 않고 상기 공간(111) 내에서 부양된 상태를 유지할 수 있게 된다. 또한 상기 제2 요크(400)가 구비되면 상기 제1 요크(300)의 크기를 작게하거나 하는 등의 설계 변경이 가능해 진다.Meanwhile, the electromagnetic fluid flow control valve according to the present invention may further include a second yoke 400 as illustrated in FIGS. 2 and 3C. The second yoke 400 is provided to increase the magnetic flux density in the valve body 100 by further focusing the magnetic field around the permanent magnet 200. As such, when the magnetic flux density in the valve body 100 is increased, the magnetic force applied to the permanent magnet 200 becomes stronger, so that the permanent magnet 200 is suspended in the space 111 without falling downward due to its own weight. State can be maintained. In addition, when the second yoke 400 is provided, a design change such as reducing the size of the first yoke 300 becomes possible.

상기 제2 요크(400)는 상기 제1 요크(300)와 마찬가지로 투자율이 높은 물질로 이루어지는 것이 바람직하다. 이러한 제2 요크(400)는 상기 밸브 바디(100)의 외주면에 결합되는데, 상기 코일(350)을 에워싸도록 설치된다. 이와 같이 설치되는 제2 요크(400)는 하단부가 상기 밸브 바디(100)의 플랜지(127)에 밀착되도록 설치되며, 상단부는 상기 제1 요크(300)와 밀착되도록 설치되는 것이 바람직하다.The second yoke 400 is preferably made of a material having a high permeability similar to the first yoke 300. The second yoke 400 is coupled to the outer circumferential surface of the valve body 100 and is installed to surround the coil 350. The second yoke 400 installed as described above may be installed to be in close contact with the flange 127 of the valve body 100, and the upper end may be installed to be in close contact with the first yoke 300.

상기 제2 요크(400) 내에는 코일(350)이 수용되므로 본 발명에 따른 전자기식 유체 흐름 제어 밸브의 조립성을 보다 양호하게 하게 하기 위한 구조가 요구된다. 이에 따라 본 발명에서는 도 2 및 도 3에 도시된 바와 같이 상기 제2 요크(400)가 두 개의 피스로 이루어진 구조를 제시한다. 상기 제2 요크(400)가 두 개의 피스, 즉 상부 피스(410)와 하부 피스(430)로 이루어지면, 상기 밸브 바디(100)의 외주면에 권선된 상기 코일(350)을 그 내측에 쉽게 수용할 수 있게 되므로 조립성이 한층 향상된다. 여기서 상기 상부 피스(410)는 상기 코일(350)의 상측 부분을 에워싸도록 설치되고, 상기 하부 피스(430)는 상기 코일(350)의 하측 부분을 에워싸도록 설치된다.Since the coil 350 is accommodated in the second yoke 400, a structure for better assembling of the electromagnetic fluid flow control valve according to the present invention is required. Accordingly, in the present invention, as shown in FIGS. 2 and 3, the second yoke 400 has a two-piece structure. When the second yoke 400 is composed of two pieces, that is, the upper piece 410 and the lower piece 430, the coil 350 wound around the outer circumferential surface of the valve body 100 can be easily received therein. Since it becomes possible, assembling property is improved further. Here, the upper piece 410 is installed to surround the upper portion of the coil 350, the lower piece 430 is installed to surround the lower portion of the coil 350.

한편, 본 발명에 따른 전자기식 유체 흐름 제어 밸브가 상기한 구조를 가지면 상기 영구자석(200)과 로드(230) 및 니들(240)은 전자기력에 의해 부양된 상태에서 상하 방향으로 이동하게 된다. 그러나, 부품을 제작하거나 조립할 때 발생될 수 있는 형상 가공 오차 및 조립 오차 등이 크면, 상기 영구자석(200)과 로드(230) 및 니들(240)이 수직축을 따라 정확히 상하 방향으로 이동하지 못하고 일측으로 치우쳐 상승하는 편심 현상이 발생할 수 있다. 이러한 편심 현상이 발생하면, 상기 영구자석(200)과 로드(230) 및 니들(240)이 상기 밸브 바디(100)의 내벽면에 닿을 수 있으므로 정확한 작동이 어렵고 마모에 의한 수명 단축이 예상된다. 그러므로 본 발명에서는 이러한 문제를 해결하기 위한 개선책을 제시해 준다.On the other hand, when the electromagnetic fluid flow control valve according to the present invention has the above structure, the permanent magnet 200, the rod 230 and the needle 240 is moved in the vertical direction in the state supported by the electromagnetic force. However, if the shape machining error and assembly error that can occur when manufacturing or assembling parts is large, the permanent magnet 200 and the rod 230 and the needle 240 does not move exactly in the vertical direction along the vertical axis, one side Eccentricity may occur that is biased upward. When such an eccentric phenomenon occurs, since the permanent magnet 200, the rod 230 and the needle 240 may contact the inner wall surface of the valve body 100, accurate operation is difficult and life expectancy is expected to be shortened by wear. Therefore, the present invention suggests an improvement for solving such a problem.

상기한 문제를 해결하기 위해 본 발명에 따른 전자기식 유체 흐름 제어 밸브에는 전자기력에 의해 상하 방향으로 이동하는 부품들, 즉 상기 영구자석(200), 상기 로드(230), 그리고 상기 니들(240)이 수직축을 따라서 정확하게 상하 방향으로 이동할 수 있도록 안내하는 스프링(160, 170)이 더 구비될 수 있다. 상기 스프링(160, 170)은 상기 부품들의 이동을 안내할 뿐만 아니라, 상기 부품들이 상방 또는 하방으로 이동할 때 본래 위치로 복귀하기 위한 복원력을 부여하는 역할도 함께 수행한다. 이러한 스프링(160, 170)은 상기 영구자석(200)에 의해 형성되는 자계에 영향을 끼지지 않도록 비자성체로 이루어지는 것이 바람직하다. 이하에서는 이러한 역할을 수행하는 스프링(160, 170)의 구조에 대해 도면을 참조하여 보다 상세하게 설명한다.In order to solve the above problems, the electromagnetic fluid flow control valve according to the present invention includes components moving upward and downward by electromagnetic force, that is, the permanent magnet 200, the rod 230, and the needle 240. Springs (160, 170) for guiding to move in the vertical direction accurately along the vertical axis may be further provided. The springs 160 and 170 not only guide the movement of the parts, but also provide a restoring force for returning to the original position when the parts move upward or downward. The springs 160 and 170 are preferably made of a nonmagnetic material so as not to affect the magnetic field formed by the permanent magnet 200. Hereinafter, the structure of the springs 160 and 170 performing this role will be described in more detail with reference to the drawings.

본 발명에서 상기 스프링(160, 170)은 적어도 하나 이상 구비되며, 상기 로 드(230)를 지지하도록 설치된다. 도 2 및 도 3b에는 두 개의 스프링(160, 170)이 상기 로드(230)를 지지하는 실시예가 도시되어 있다. 설명의 편의를 위해 이하에서는 로드(230)의 상측 부분을 지지하는 것을 제1 스프링(160), 하측을 지지하는 것을 제2 스프링(170)이라 칭한다. 상기 제1 스프링(160)과 제2 스프링(170)은 동일한 구조를 가지며, 각각 그 일부분이 로드(230)의 외주면과 상기 밸브 바디(100)의 내주면에 고정된다. 이를 위해 상기 제1 및 제2 스프링(160, 170)은 상기 밸브 바디(100)에 고정되는 제1 링(161, 171)과, 상기 로드(230)에 고정되는 제2 링(163, 173), 그리고 상기 제1 링(161, 171)과 제2 링(163, 173)을 연결하는 다수의 서스펜더(165, 175)를 포함하여 이루어진다.In the present invention, at least one spring (160, 170) is provided, it is installed to support the load (230). 2 and 3b illustrate an embodiment in which two springs 160, 170 support the rod 230. For convenience of explanation, hereinafter supporting the upper portion of the rod 230 is referred to as the first spring 160 and supporting the lower side is referred to as the second spring 170. The first spring 160 and the second spring 170 has the same structure, a portion of which is fixed to the outer circumferential surface of the rod 230 and the inner circumferential surface of the valve body 100, respectively. To this end, the first and second springs 160 and 170 may include first rings 161 and 171 fixed to the valve body 100 and second rings 163 and 173 fixed to the rod 230. And a plurality of suspenders 165 and 175 connecting the first rings 161 and 171 to the second rings 163 and 173.

상기 제1 링(161, 171)의 내주면 지름은 상기 제2 링(163, 173)의 외주면 지름보다 크게 형성된다. 상기 제2 링(163, 173)의 내주면 지름은 상기 로드(230)의 외주면이 압입되어 고정될 수 있는 크기를 가지면 족하다. 여기서, 상기 제1 스프링(160)과 상기 제2 스프링(170)은 그 설치 위치가 서로 다르다. 그러므로 상기 로드(230)의 외주면 지름이 각 부위 마다 다르게 형성될 경우, 상기 제1 스프링(160)의 제2 링과 상기 제2 스프링(170)의 제2 링의 내주면 지름은 서로 다르게 형성될 수도 있다. 한편, 상기 서스펜더(165, 175)는 도 3b에 도시된 바와 같이 다수 개가 상기 제1 링(161, 171)과 제2 링(163, 173) 사이에 방사상으로 배치되어 상기 제1 링(161, 171)의 내주면과 상기 제2 링(163, 173)의 외주면을 연결한다. The inner circumferential surface diameters of the first rings 161 and 171 are larger than the outer circumferential surface diameters of the second rings 163 and 173. The inner circumferential surface diameters of the second rings 163 and 173 may be sized such that the outer circumferential surface of the rod 230 is press-fitted and fixed. Here, the installation position of the first spring 160 and the second spring 170 is different from each other. Therefore, when the outer circumferential surface diameter of the rod 230 is formed differently for each part, the inner circumferential diameter of the second ring of the first spring 160 and the second ring of the second spring 170 may be formed differently. have. Meanwhile, as illustrated in FIG. 3B, a plurality of suspenders 165 and 175 are radially disposed between the first rings 161 and 171 and the second rings 163 and 173 so that the first rings 161, The inner circumferential surface of 171 and the outer circumferential surface of the second rings 163 and 173 are connected.

상기한 구성을 가지는 스프링(160, 170)에서 상기 서스펜더(165, 175)는 상기 제2 링(163, 173)이 반지름 방향으로 이동하는 것을 방지하기 위해 상기 제1 링(161, 171) 및 제2 링(163, 173)의 반지름 방향으로 큰 강성(stiffness)을 가진다. 그러면, 상기 제2 링(163, 173)에 수용된 로드(230)도 상기 제1 링(161, 171) 및 제2 링(163, 173)의 반지름 방향으로 이동할 수 없게 되어 상기 로드(230)와 니들(240) 및 영구자석(200)이 상기 밸브 바디(100)의 내주면에 접촉되는 것을 방지할 수 있다.In the springs 160 and 170 having the above-described configuration, the suspenders 165 and 175 may include the first rings 161 and 171 and the first rings to prevent the second rings 163 and 173 from moving in the radial direction. It has a large stiffness in the radial direction of the two rings 163 and 173. Then, the rods 230 accommodated in the second rings 163 and 173 may also not move in the radial direction of the first rings 161 and 171 and the second rings 163 and 173, and thus the rods 230 may not be moved. The needle 240 and the permanent magnet 200 may be prevented from contacting the inner circumferential surface of the valve body 100.

한편, 상기 서스펜더(165, 175)는 또한 상기 제1 링(161, 171) 및 제2 링(163, 173)의 상하 방향으로는 탄력을 가진다. 그러면, 상기 제1 링(161, 171)이 고정된 상태에서 상기 제2 링(163, 173)이 상하 방향으로 이동할 수 있으므로, 상기 로드(230)의 상하 방향 이동을 효과적으로 안내할 수 있다. 그리고 상기 로드(230)가 상하 방향으로 이동할 때 상기 서스펜더(165, 175)는 변형되면서 탄성에너지를 축적하게 되므로, 전자기력이 제거되었을 때 상기 로드(230)가 원위치로 복귀할 수 있는 복원력을 부여할 수 있게 된다.Meanwhile, the suspenders 165 and 175 also have elasticity in the vertical direction of the first rings 161 and 171 and the second rings 163 and 173. Then, since the second rings 163 and 173 may move in the vertical direction while the first rings 161 and 171 are fixed, the rod 230 may be effectively guided in the vertical movement. In addition, since the suspenders 165 and 175 deform and accumulate elastic energy when the rod 230 moves in the up and down direction, the rod 230 may give a restoring force to return to its original position when the electromagnetic force is removed. It becomes possible.

상기한 구조를 가지는 스프링(160, 170)들 중에서, 상기 제1 스프링(160)은 도 3b에 도시된 바와 같이 상기 영구자석(200)을 관통한 상기 로드(230)의 상단부를 지지하도록 설치된다. 이를 위해 상기 제1 스프링(160)의 제2 링(163)에는 상기 로드(230)의 상단부가 삽입되어 고정되고, 상기 제1 스프링(160)의 제1 링(161)은 도 3a에 도시된 바와 같이 상기 캡(150)과 후술할 리미터(140)(a limiter)의 결합 부위에 삽입되어 고정된다. 그리고 상기 제2 스프링(170)은 상기 니들(240)과 연결되는 상기 로드(230)의 하단부를 지지하도록 설치된다. 이를 위해 상기 제2 스프링(170)의 제2 링(173)은 도 3b에 도시된 바와 같이 상기 로드(230)와 상기 니 들(240)의 결합부위에 삽입되어 고정되고, 상기 제2 스프링(170)의 제1 링(171)은 상기 제1 피스(110)와 상기 제2 피스(120)의 결합 부위에 삽입되어 고정된다. 상기한 구조를 가지면, 상기 제1 및 제2 스프링(160, 170)의 제1 및 제2 링(161과171, 163과173)을 상기 밸브 바디(100) 및 로드(230)에 설치하기 위한 별도의 부품이나 구조가 부가적으로 요구되지 않으므로 구조가 매우 간단해지고 조립성이 매우 향상된다.Among the springs 160 and 170 having the above structure, the first spring 160 is installed to support the upper end of the rod 230 passing through the permanent magnet 200 as shown in FIG. 3B. . To this end, an upper end of the rod 230 is inserted into and fixed to the second ring 163 of the first spring 160, and the first ring 161 of the first spring 160 is illustrated in FIG. 3A. As described above, the cap 150 is inserted into and fixed to the coupling portion of the limiter 140 (a limiter) to be described later. The second spring 170 is installed to support a lower end of the rod 230 connected to the needle 240. To this end, the second ring 173 of the second spring 170 is inserted into and fixed to the coupling portion of the rod 230 and the needle 240, as shown in FIG. The first ring 171 of 170 is inserted into and fixed to the coupling portion of the first piece 110 and the second piece 120. With the above structure, the first and second rings 161 and 171, 163 and 173 of the first and second springs 160 and 170 may be installed to the valve body 100 and the rod 230. Since no additional parts or structure are required, the structure is very simple and the assembly is greatly improved.

한편, 상기 코일(350)에 전류가 인가되어 상기 영구자석(200)이 상방 또는 하방으로 이동할 때 예기치 못한 외부적인 요인 등에 의해서 상기 영구자석(200)이 과도하게 이동하는 경우가 발생할 수 있다. 이와 같이 상기 영구자석(200)의 이동량이 과도해지면, 상기 스프링(160, 170)의 서스펜더(165, 175)가 영구 변형되어 작동 불량이 야기될 수 있다. 그러므로 보다 안정적인 성능을 확보하기 위해서는 상기 영구자석(200)의 상방 이동량을 제한할 필요가 있다.On the other hand, when the current is applied to the coil 350, the permanent magnet 200 may be excessively moved due to unexpected external factors when the permanent magnet 200 moves upward or downward. As such, when the amount of movement of the permanent magnets 200 is excessive, the suspenders 165 and 175 of the springs 160 and 170 may be permanently deformed to cause malfunction. Therefore, in order to secure more stable performance, it is necessary to limit the amount of upward movement of the permanent magnet 200.

이를 위해, 본 발명에 따른 밸브에는 도 2 및 도 3a에 도시된 바와 같이 리미터(140)(limiter)가 더 설치될 수 있다. 상기 리미터(140)는 상기 영구자석(200)이 설치된 상기 공간(111)의 상단 부분의 수평 단면적을 축소시켜 상기 영구자석(200)이 더 이상 상승하는 것을 방지한다. 이러한 상기 리미터(140)는, 상기 캡(150)이 설치된 경우, 상기 밸브 바디(100)의 공간(111)과 상기 캡(150) 사이에 배치되며, 상기 밸브 바디(100)의 내측을 향해 돌출된다. 그리고 상기 리미터(140)는 상기 영구자석(200)이 상승할 때 상기 영구자석(200)의 상면과 접촉될 수 있는 정도의 돌출 길이를 가진다.To this end, a limiter 140 may be further installed in the valve according to the present invention as shown in FIGS. 2 and 3A. The limiter 140 reduces the horizontal cross-sectional area of the upper portion of the space 111 in which the permanent magnet 200 is installed to prevent the permanent magnet 200 from rising further. When the cap 150 is installed, the limiter 140 is disposed between the space 111 of the valve body 100 and the cap 150 and protrudes toward the inside of the valve body 100. do. And the limiter 140 has a protruding length that can be in contact with the upper surface of the permanent magnet 200 when the permanent magnet 200 is raised.

이러한 상기 리미터(140)는 링형으로 이루어지는데, 이 경우, 그 내주는 상기 영구자석(200)의 외주보다 작게 형성되어야 한다. 한편, 링형으로 이루어진 상기 리미터(140)의 하단을 지지하면서 그 설치 위치를 정확하게 결정해 주도록 상기 밸브 바디(100)의 상부 내벽면에는 도 2 내지 도 3c에 도시된 바와 같이 턱(116)이 형성될 수 있다. 그러나 상기 리미터(140)의 형상은 링형으로만 국한되지는 않으며 상기 밸브 바디(100)의 내벽에서 안쪽을 향해 돌출된 단순한 돌기로 구성될 수도 있을 것이다. 상기와 같은 구조를 가지는 상기 리미터(140) 역시, 상기 영구자석(200)에 의해 형성되는 자계에 영향을 끼치지 않기 위해 비자성체로 이루어지는 것이 바람직하다.The limiter 140 has a ring shape. In this case, the inner circumference of the limiter 140 should be smaller than the outer circumference of the permanent magnet 200. Meanwhile, the jaw 116 is formed on the upper inner wall surface of the valve body 100 to support the lower end of the ring-shaped limiter 140 to accurately determine its installation position. Can be. However, the shape of the limiter 140 is not limited to a ring shape, but may be composed of a simple protrusion projecting inward from the inner wall of the valve body 100. The limiter 140 having the structure as described above is also preferably made of a nonmagnetic material in order not to affect the magnetic field formed by the permanent magnet 200.

상기와 같은 구조를 가지는 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 상기 코일(350)에 전류가 인가되지 않은 상태에서 상기 오리피스(131)가 완전히 개방된 상개식(normally open type) 밸브, 또는 상기 오리피스(131)가 완전히 폐쇄된 상폐식 (normally closed type) 밸브 등으로 구현될 수 있다. 물론, 상기 오리피스(131)가 부분적으로 닫혀 있는 상태의 밸브로 구현될 수도 있을 것이다. 이와 같이 다양한 형태의 밸브로 구현하기 위해서, 상기 니들(240)의 초기 위치는 매우 중요하며, 상기 니들(240)의 초기 위치를 결정하는 방법 또한 중요하다. 이하에서는 각 밸브 형태 별로 상기 니들(240)의 초기 위치 및 이를 결정하기 위해 본 발명에서 제시하는 구조를 도 4a 및 도 4b를 참조하여 설명한다. 참고로, 도 4a 및 도 4b는 상개식(normally open type)과 상폐식(normally closed type) 밸브로 각각 제작된 경우, 제1 요크의 수직 길이와 니들(needle)의 위치를 보여주는 도면으로 서, 도 4a는 전류가 인가되지 않은 때 니들이 오리피스(orifice)를 항상 개방하는 상개식 밸브를 나타낸 도면이고, 도 4b는 전류가 인가되지 않은 때 니들이 오리피스를 항상 폐쇄하는 상폐식 밸브를 나타낸 도면이다.Electromagnetic fluid flow control valve according to the present invention having the structure as described above is a normally open type valve (or normally open type), the orifice 131 is completely open in the state that the current is not applied to the coil 350, or The orifice 131 may be implemented as a normally closed type valve or the like. Of course, the orifice 131 may be implemented as a valve in a partially closed state. In order to implement such various types of valves, the initial position of the needle 240 is very important, and a method of determining the initial position of the needle 240 is also important. Hereinafter, the initial position of the needle 240 for each valve type and the structure proposed by the present invention to determine the same will be described with reference to FIGS. 4A and 4B. For reference, FIGS. 4A and 4B are views showing the vertical length of the first yoke and the position of the needle when the valve is manufactured as a normally open type and a normally closed type valve, respectively. FIG. 4A shows a top open valve in which the needle always opens the orifice when no current is applied, and FIG. 4B shows a top closed valve in which the needle always closes the orifice when no current is applied.

도 4a를 참조하면 상기 상개식 밸브에서 상기 니들(240)은 그 선단부(243)가 상기 오리피스(131) 내에 삽입되지 않는 상태로 배치된다. 이는 상기 영구자석(200)에 의해 형성된 자계에 의해 상기 영구자석(200)에 작용하는 자기력, 그리고 상기 스프링(160, 170)에 의해 지지되는 힘 등에 의해 가능해 진다. 이러한 원리는 이미 설명되었으므로 생략한다. 그리고 도 4b를 참조하면, 상기 상폐식 밸브에서 상기 니들(240)은 테이퍼진 선단부(243)가 상기 오리피스(131)의 입구와 완전히 밀착되게 배치된다.Referring to FIG. 4A, the needle 240 is disposed in the open valve without the tip portion 243 being inserted into the orifice 131. This is possible by the magnetic force acting on the permanent magnet 200 by the magnetic field formed by the permanent magnet 200, the force supported by the spring (160, 170) and the like. This principle has already been explained and will be omitted. 4B, the needle 240 has the tapered tip portion 243 disposed in close contact with the inlet of the orifice 131.

상기와 같이 상기 코일(350)에 전류가 인가되지 않은 상태에서 상기 니들(240)의 초기 위치를 각각 다르게 배치하기 위해서는 구조 변경이 요구된다. 이러한 구조 변경으로써, 가장 간단한 것은 도 4a 및 도 4b에 도시된 바와 같이 상기 제1 요크(300)의 상하 방향 길이를 조절하는 것이다. 즉, 서로 다른 두 개의 밸브에서 상기 코일(350)이 동일한 형태로 권선된 경우, 상기 코일(350)의 상단에서 부터 상기 제1 요크(300)의 상단까지의 길이를 서로 다르게 조정하면 상기 니들(240)의 초기 위치가 서로 다르게 결정된다. 이를 간단하게 설명한다.As described above, in order to arrange the initial positions of the needles 240 differently in a state where no current is applied to the coil 350, a structural change is required. With this structure change, the simplest is to adjust the vertical length of the first yoke 300 as shown in Figs. 4a and 4b. That is, when the coil 350 is wound in the same shape in two different valves, when the length from the top of the coil 350 to the top of the first yoke 300 is differently adjusted, the needle ( The initial position of 240 is determined differently. This is briefly explained.

도 4a와 도 4b를 비교하면, 상기 도 4a의 밸브의 제1 요크(300)의 상하 방향 길이(Lo)가 상기 도 4b의 밸브의 제1 요크(300)의 상하 방향 길이(Lc)보다 길게 형 성됨을 알수 있다. 이는 상기 도 4a의 제1 요크(300) 상단이 도 4b의 제1 요크(300) 상단보다 높은 고도를 가진다는 것을 의미한다. 그러므로 도 4a에서는 높은 위치에서 자계가 집속되며, 이에 따라 영구자석(200) 또한 높은 위치에 부상하게 되어 상기 니들(240)은 높은 위치에 배치된다. 반면, 도 4b에서는 낮은 위치에서 자계가 집속되며, 이에 따라 영구자석(200) 또한 낮은 위치에 부상하게 되므로 상기 니들(240)은 낮은 위치에 배치된다.4A and 4B, the vertical length L o of the first yoke 300 of the valve of FIG. 4A is equal to the vertical length L c of the first yoke 300 of the valve of FIG. 4B. It can be seen that it is formed longer. This means that the upper end of the first yoke 300 of FIG. 4A has a higher altitude than the upper end of the first yoke 300 of FIG. 4B. Therefore, in FIG. 4A, the magnetic field is concentrated at a high position, so that the permanent magnet 200 also floats to a high position, so that the needle 240 is disposed at a high position. On the contrary, in FIG. 4B, the magnetic field is concentrated at a low position, and thus the permanent magnet 200 also floats at a low position, so the needle 240 is disposed at a low position.

상기와 같은 원리에 의해서, 도 4a와 도 4b와 같이 상기 제1 요크(300)를 제외한 모든 부품들의 규격이 모두 동일할 경우, 상기 제1 요크(300)의 상하 방향 길이를 변경하는 간단한 구조 변경만으로도 매우 쉽게 상개식 밸브 또는 상폐식 밸브를 구현할 수 있게 된다. 물론, 상기 제1 요크(300)의 상하 방향 길이를 적절하게 설계하면 상기 니들(240)이 상기 오리피스(131) 내에 약간 삽입된 상태도 유지할 수 있게 된다. 상기와는 달리 상기 로드(230) 또는 니들(240)의 상하 방향 길이를 변경하는 방법을 통해 상기 니들(240)의 초기 위치를 결정할 수도 있을 것이다.By the same principle as described above, when all parts except for the first yoke 300 have the same size as shown in FIGS. 4A and 4B, a simple structure change of changing the length of the first yoke 300 in the vertical direction is performed. It is very easy to implement an opening valve or a closing valve. Of course, if the vertical length of the first yoke 300 is properly designed, the needle 240 may be kept slightly inserted into the orifice 131. Unlike the above, the initial position of the needle 240 may be determined by changing the length of the rod 230 or the needle 240 in the vertical direction.

상기와 같은 구조를 가지는 본 발명에 따른 전자기식 유체 흐름 밸브에서 상기 제1 포트(135) 및 제2 포트(155)에는 각각 관(미도시)(tube)이 연결된다. 여기서, 상기 제1 포트(135)에 연결되는 관을 제1 관(미도시)라하고, 상기 제2 포트(155)에 연결되는 관을 제2 관이라 한다면, 상기 제1 관 및 제2 관 중 어느 하나는 유체가 유입되는 유입관(inlet tube)으로 기능하고 다른 하나는 유체가 토출되는 토출관(outlet)으로 기능할 수 있다.In the electromagnetic fluid flow valve according to the present invention having the structure as described above, a tube (not shown) is connected to each of the first port 135 and the second port 155. Here, if the tube connected to the first port 135 is called a first tube (not shown), and the tube connected to the second port 155 is a second tube, the first tube and the second tube Any one may function as an inlet tube into which the fluid is introduced and the other may function as an outlet tube through which the fluid is discharged.

예를 들어, 압력이 높은 유체가 상기 제1 관을 통해 밸브 바디(100) 내로 유 입된 후에 상기 오리피스(131)를 경유하고 상기 제2 관을 통해 토출된다면, 상기 제1 관은 유입관, 그리고 상기 제2 관은 토출관의 기능을 수행한다. 물론, 이때 상기 제1 포트(135)는 유입 포트(inlet port), 제2 포트(155)는 토출 포트(outlet port)로 기능한다. 이와는 반대로 압력이 높은 유체가 상기 제2 관을 통해 상기 밸브 바디(100)로 유입된 후에 오리피스(131)를 거쳐 제1 관으로 토출된다면, 상기 제1 관과 제1 포트(135)는 각각 유입관과 유입 포트로, 상기 제2 관과 제2 포트(155)는 각각 토출관과 토출 포트로 기능한다.For example, if a high pressure fluid is introduced into the valve body 100 through the first tube and then discharged through the orifice 131 via the second tube, the first tube is an inlet tube, and The second tube serves as a discharge tube. Of course, at this time, the first port 135 functions as an inlet port, and the second port 155 functions as an outlet port. On the contrary, if a high pressure fluid flows into the valve body 100 through the second pipe and then is discharged through the orifice 131 to the first pipe, the first pipe and the first port 135 are respectively introduced. As a pipe and an inlet port, the second pipe and the second port 155 function as a discharge pipe and a discharge port, respectively.

한편, 본 발명에서는 높은 압력과 온도를 가진 유체가 상기 오리피스(131)를 통과한 후에 온도와 압력이 강하될 수 있는 구조를 제시한다. 이를 위해서 상기 오리피스(131)의 직경은 상기 제1 포트(135)의 직경 보다 작게 형성된다. 이와 같은 구조를 가지면, 상기 제2 포트(155)를 통해 유입된 높은 압력과 온도를 가진 유체가 상기 오리피스(131)를 통과한 후 넓은 공간으로 토출되면서 단열 팽창하게 되므로 급속하게 압력 및 온도가 강하된다. 한편, 상기 니들(240)이 위치하는 제2 피스(120)의 공간부(125)는 상기 오리피스(131)의 직경 보다 당연히 크게 형성된다. 그러므로 높은 압력과 온도를 가진 유체가 상기 제1 포트(135)를 통해 유입되는 경우에도, 상기 유체는 상기 오리피스(131)를 통과한 후 단열팽창하면서 온도와 압력이 강하된다.On the other hand, the present invention proposes a structure in which the temperature and pressure can be lowered after the fluid having a high pressure and temperature passes through the orifice 131. To this end, the diameter of the orifice 131 is smaller than the diameter of the first port 135. With such a structure, since the fluid having the high pressure and temperature introduced through the second port 155 passes through the orifice 131 and is discharged into a wide space, it is adiabaticly expanded and thus the pressure and temperature rapidly decrease. do. Meanwhile, the space 125 of the second piece 120 where the needle 240 is positioned is naturally larger than the diameter of the orifice 131. Therefore, even when a fluid having a high pressure and temperature is introduced through the first port 135, the fluid passes through the orifice 131 and thermally expands after the adiabatic expansion to decrease the temperature and pressure.

상기와 같이 상기 밸브 바디(100) 내로 유입되어 상기 오리피스(131)를 경유한 후 외부로 토출될 수 있는 유체의 종류는 매우 다양하다. 상기 유체의 예를 들면, 기체 상태, 액체 상태, 상기 기체와 액체가 혼합된 상태의 유체가 있다. 그리 고 최근 연구가 진행되면서 사용 범위가 넓어지는 초임계 유체(super critical fluid)가 있다. 이해를 돕기 위해 상기 초임계 유체에 대해 간단히 설명한다. 어떠한 유체에 임계값을 초과하는 압력과 온도가 가해지면, 상기 유체는 기체와 액체의 구별이 모호해지는 상태가 된다. 이때에는 그 이상의 압력을 가해도 액체가 되지 않고 비응축성 기체가 된다. 이러한 상태를 초임계라고 하며, 그 상태의 용매를 초임계 유체라고 한다. 이러한 초임계 유체는 액체의 밀도와 비슷한 값을 가지며, 점도는 기체에 가깝고 확산 계수는 액체보다 100배 정도 큰 값을 가진다.As described above, there are various types of fluids introduced into the valve body 100 and discharged to the outside after passing through the orifice 131. Examples of the fluid include a fluid in a gaseous state, a liquid state, and a mixture of the gas and liquid. In addition, there is a super critical fluid which has a wide range of use as recent research is conducted. For simplicity, the supercritical fluid is briefly described. When a fluid is subjected to pressures and temperatures above the threshold, the fluid is in a state where the distinction between gas and liquid is ambiguous. At this time, even if a higher pressure is applied, it does not become a liquid but becomes a non-condensable gas. This state is called supercritical, and the solvent in that state is called a supercritical fluid. This supercritical fluid has a value similar to the density of the liquid, the viscosity is close to the gas and the diffusion coefficient is about 100 times larger than the liquid.

한편, 상기한 구조를 가지는 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 다음과 같이 조립된다. 먼저, 로드(230)를 상기 영구자석(200)과 결합한다. 그리고 상기 영구자석(200)을 상기 밸브 바디(100)의 제1 피스(110)에 삽입하여 장착한다. 영구자석(200)이 장착된 후 상기 제1 피스(110) 내부 상측에 상기 리미터(140)와 상기 제1 스프링(160)을 순차적으로 삽입한 후에 상기 캡(150)을 결합시킨다. 상기한 내용은 도 3a을 참조하면 보다 쉽게 이해될 것이다.On the other hand, the electromagnetic fluid flow control valve according to the present invention having the above structure is assembled as follows. First, the rod 230 is coupled to the permanent magnet 200. The permanent magnet 200 is inserted into and mounted on the first piece 110 of the valve body 100. After the permanent magnet 200 is mounted, the cap 150 is coupled after the limiter 140 and the first spring 160 are sequentially inserted into the upper portion of the first piece 110. The foregoing will be more readily understood with reference to FIG. 3A.

다음으로 상기 제2 스프링(170)의 제2 링(173)을 상기 로드(230)의 하단부에 삽입한 다음 상기 니들(240)을 상기 로드(230)의 하단부에 결합시킨다. 그리고 상기 제2 피스(120)를 상기 제1 피스(110)에 결합시켜 고정한다. 그러면, 상기 제2 스프링(170)의 제1 링(171)은 상호 나사 결합되거나 용접 또는 압입되어 결합된 상기 제1 피스(110)와 상기 제2 피스(120) 사이에 견고하게 고정되며, 상기 제2 스프링(170)의 제2 링(173)은 상기 로드(230)의 하단부에 결합되어 고정된다. 그리고 상기 제3 피스(130)를 제2 피스(120)의 하단에 결합하여 고정한다. 이러한 과정은 도 3b를 참조하면 보다 쉽게 이해될 것이다.Next, the second ring 173 of the second spring 170 is inserted into the lower end of the rod 230, and then the needle 240 is coupled to the lower end of the rod 230. The second piece 120 is coupled to and fixed to the first piece 110. Then, the first ring 171 of the second spring 170 is firmly fixed between the first piece 110 and the second piece 120 screwed together, welded or press-fitted together, The second ring 173 of the second spring 170 is coupled to and fixed to the lower end of the rod 230. The third piece 130 is coupled to and fixed to the lower end of the second piece 120. This process will be more readily understood with reference to FIG. 3B.

밸브 바디(100)와 그 내측에 설치되는 부품들의 조립이 완료되면, 상기 코일(350)과 제2 요크(400)를 상기 밸브 바디(100) 외주면에 장착한다. 그리고 상기 제1 요크(300)를 상기 제2 요크(400) 상측에 위치하도록 상기 밸브 바디(100) 외주면에 장착한다. 이러한 과정은 도 3c를 참조하면 보다 쉽게 이해될 것이다. 본 발명은 상기한 바와 같이 구조가 매우 간단하므로 조립이 매우 쉬운 장점이 있다.When the assembly of the valve body 100 and the components installed therein is completed, the coil 350 and the second yoke 400 are mounted on the outer circumferential surface of the valve body 100. The first yoke 300 is mounted on an outer circumferential surface of the valve body 100 so as to be positioned above the second yoke 400. This process will be more readily understood with reference to FIG. 3C. The present invention has the advantage that the assembly is very easy because the structure is very simple as described above.

이하에서는, 상기한 구조를 가지는 본 발명에 따른 전자기식 유체 흐름 제어 밸브의 작동 원리에 대해 도 5 내지 도 7b를 참조하여 설명한다. 참고로, 도 7a 및 도 7b는 코일에 전류가 인가되는 방향에 따라서 형성되는 자계(magnetic field Bu)와 영구자석에 가해지는 전자기력(electromagnetic force Fu, Fd)의 관계를 보여주기 위한 것으로, 도 7a는 위에서 보았을 때 코일에 반시계 방향으로 전류가 인가된 때의 모습을 나타낸 도면이고, 도 7b는 위에서 보았을 때 코일에 시계 방향으로 전류가 인가된 때의 모습을 나타낸 도면이다.Hereinafter, the operating principle of the electromagnetic fluid flow control valve according to the present invention having the above-described structure will be described with reference to FIGS. 5 to 7B. For reference, FIGS. 7A and 7B are diagrams for showing a relationship between a magnetic field Bu formed according to a direction in which a current is applied to a coil and an electromagnetic force Fu (Fd) applied to a permanent magnet. Is a view showing a state when the current is applied to the coil in a counterclockwise direction when viewed from above, Figure 7b is a view showing a state when the current is applied in a clockwise direction when viewed from above.

먼저, 도 5를 참조하면, 코일(350)에 전류가 인가되지 않았을 때, 상기 영구자석(200)은 그 상단이 상기 제1 요크(300)의 상단과 동일한 고도에 위치하도록 부상된 후 위치를 유지하게 된다. 이를 좀더 자세히 설명하면 다음과 같다. 상기 영구자석(200) 상단 주위의 자계는 상기 제1 요크(300)의 상단 주위에 집속된다. 그러므로 상기 영구자석(200)의 상단은 집속된 자계에 의해 상기 제1 요크(300)의 상단과 동일한 위치를 유지하려고 하게 된다. 이때, 상기 영구 자석이 도 5의 Z축을 따라 상하로 이동하는 경우, 상기 영구자석(200)과 제1 요크(300) 및 상기 제2 요 크(400)에 의해서 상기 영구자석(200) 주변에는 강력한 자계가 형성되고, 상기 자계에 의해 상기 영구자석(200)에 가해지는 자기력 Fm은 도 6에 도시된 바와 같은 양상을 띠게 된다. 참고로, 도 6에서 Z축의 값은 상기 영구자석(200)의 상단 높이이며, Z0는 상기 제1 요크(300)의 상단의 높이와 동일한 높이에 있을 때의 영구자석(200)의 상단 높이이다.First, referring to FIG. 5, when no current is applied to the coil 350, the permanent magnet 200 is injured so that its upper end is positioned at the same altitude as the upper end of the first yoke 300. Will be maintained. If this is explained in more detail as follows. The magnetic field around the upper end of the permanent magnet 200 is concentrated around the upper end of the first yoke 300. Therefore, the upper end of the permanent magnet 200 is to maintain the same position as the upper end of the first yoke 300 by the focused magnetic field. In this case, when the permanent magnet moves up and down along the Z axis of FIG. 5, the permanent magnet 200, the first yoke 300, and the second yoke 400 are surrounded by the permanent magnet 200. A strong magnetic field is formed, and the magnetic force Fm applied to the permanent magnet 200 by the magnetic field has an aspect as shown in FIG. 6. For reference, in FIG. 6, the value of the Z axis is the top height of the permanent magnet 200, and Z 0 is the top height of the permanent magnet 200 when it is at the same height as the height of the top of the first yoke 300. to be.

도 6에 도시된 바와 같이 상기 영구자석(200)의 상단의 위치가 Z0보다 낮으면 위쪽으로 자기력이 작용하고, 상기 영구자석(200)의 상단의 위치가 Z0보다 높으면 아래쪽으로 자기력이 작용한다. 이에 더해서 상기 영구자석(200)이 Z0의 위치를 이탈하여 상승하거나 하강하면 상기 스프링(160, 170)에는 탄성 에너지가 축적되어 상기 영구자석(200)을 원위치로 복귀시키려는 복원력이 작용하게 된다. 이와 같이 상기 자기력과 스프링(160, 170)의 탄성복원력에 의해 상기 영구자석(200)은 상기 코일(350)에 전류가 인가되지 않은 때에 매우 안정적으로 일정한 위치에 부상된 상태를 유지하게 된다.Of the permanent magnet 200. If the position of the top is lower than the Z 0 magnetic force acting upward, and the position is high, the magnetic force acting downward than Z 0 at the top of the permanent magnet 200 as shown in Figure 6 do. In addition, when the permanent magnet 200 rises or falls outside the position of Z 0 , elastic energy is accumulated in the springs 160 and 170 to restore the permanent magnet 200 to its original position. As described above, the permanent magnet 200 is maintained in a highly stable state when the current is not applied to the coil 350 by the magnetic force and the elastic restoring force of the springs 160 and 170.

상기한 상태에서 상기 코일(350)에 전류가 인가되면 상기 영구자석(200)은 상방 또는 하방으로 이동한다. 이하에서는 이러한 원리를 도 7a 및 도 7b를 참조하여 설명한다. 도 7a 및 도 7b에서 M은 상기 영구자석(200)의 자력의 크기(magnetic field intensity)를 나타내며, Bu와 Bd는 상기 코일(350)에 전류가 인가될 때 발생하는 유도 자계(induction field)를 나타내는 것이다. 그리고 Fu와 Fd는 상기 코일(350)에 전류가 인가될 때 발생하는 유도 기전력을 나타낸다.When the current is applied to the coil 350 in the above state, the permanent magnet 200 moves upward or downward. Hereinafter, this principle will be described with reference to FIGS. 7A and 7B. 7A and 7B, M represents magnetic field intensity of the permanent magnet 200, and B u and B d represent induction fields generated when a current is applied to the coil 350. ). And F u and F d represent induced electromotive force generated when a current is applied to the coil 350.

도 7a를 참조하면, 밸브를 위에서 보았을 때 상기 코일(350)에 반시계 방향으로 전류가 인가된 경우, 자기 유도 법칙에 의해 상기 밸브 바디(100) 내에는 위쪽 방향의 자계 Bu가 유도되며, 이 유도 자계의 크기는 상기 코일(350)에 인가되는 전류의 세기에 비례한다. 이 유도 자계에 의해서 상기 영구자석(200)은 위쪽 방향으로 작용하는 유도 기전력 Fu를 받게 된다. 그러므로 상기 영구자석(200)은 상측으로 상승하게 되며, 이에 따라 상기 니들(240)이 상기 오리피스(131)로 부터 멀어지게 되므로 상기 오리피스(131)의 개방 면적을 넓히거나 완전히 개방시키게 된다.Referring to FIG. 7A, when a current is applied to the coil 350 in a counterclockwise direction when the valve is viewed from above, an upward magnetic field B u is induced in the valve body 100 by a magnetic induction rule. The magnitude of this induction magnetic field is proportional to the strength of the current applied to the coil 350. The permanent magnet 200 receives the induced electromotive force F u acting upward. Therefore, the permanent magnet 200 rises upwards, and thus the needle 240 moves away from the orifice 131, thereby widening or completely opening the open area of the orifice 131.

한편, 상기와 같이 유도 기전력에 의해 영구자석(200)이 상승하면, 상기 영구자석(200)에는 상기 영구자석(200)이 상승한 높이에 비례한 크기를 가지는 다양한 형태의 복원력이 작용한다. 이때 작용하는 복원력으로는, 상기 영구자석(200)과 상기 제1 요크(300) 및 제2 요크(400)에 의해 형성되어 상기 영구자석(200)에 작용하는 자기력과, 상기 스프링(160, 170)에 의해 작용하는 탄성 복원력이 있다. 이에 더해서, 유체가 상기 제2 포트(155)에서 유입된 후 제1 포트(135)를 통해 토출되는 경우에는, 상기 유체 자체의 압력과 더불어 상기 오리피스(131)를 통과하는 유체에 의한 압력 강하를 들 수 있다. 여기서, 유체에 의한 압력강하를 간단히 설명한다.On the other hand, when the permanent magnet 200 is raised by the induced electromotive force as described above, the permanent magnet 200 has a variety of restoring force has a size in proportion to the height of the permanent magnet 200 rises. The restoring force acting at this time is formed by the permanent magnet 200 and the first yoke 300 and the second yoke 400 to act on the permanent magnet 200 and the springs 160 and 170. There is elastic restoring force acting by). In addition, when the fluid flows in from the second port 155 and is discharged through the first port 135, the pressure drop due to the fluid passing through the orifice 131 together with the pressure of the fluid itself. Can be mentioned. Here, the pressure drop by the fluid will be briefly described.

상기 니들(240)이 상기 오리피스(131)를 개방시키게 되면 오리피스(131)를 통해 하측으로 유체가 흐르게 되면서 상기 유체의 유동 방향, 즉 하측 방향으로 압력 강하가 발생된다. 이 압력 강하에 의해서 상기 니들(240)과 로드(230) 및 영구 자석(200)에도 소정의 힘이 가해지게 된다. 그러므로 상기 유체 자체의 압력과 압력강하에 의해 가해지는 힘은 유도 기전력에 의해 상승하는 영구자석(200)을 복원시키려는 힘으로 작용한다. 반면, 상기 유체가 제1 포트(135)를 통해 유입된 후 상기 제2 포트(155)를 통해 토출되는 경우에는 상측 방향으로 유체 압력이 가해진다. 그러므로 이 경우, 상기 유체의 압력은 상기 영구자석(200)을 상승시키게 되므로 복원력이 아닌 상승력으로 작용한다.When the needle 240 opens the orifice 131, the fluid flows downward through the orifice 131, and a pressure drop occurs in the flow direction of the fluid, that is, the downward direction. Due to this pressure drop, a predetermined force is applied to the needle 240, the rod 230, and the permanent magnet 200. Therefore, the force exerted by the pressure and the pressure drop of the fluid itself acts as a force to restore the permanent magnet 200 rising by the induced electromotive force. On the other hand, when the fluid is introduced through the first port 135 and then discharged through the second port 155, the fluid pressure is applied upward. Therefore, in this case, since the pressure of the fluid raises the permanent magnet 200, it acts as a lifting force rather than a restoring force.

그러므로 상기한 바와 같이 코일(350)에 전류가 인가되면, 상기 영구자석(200)이 상승하다가, 상기 영구자석(200)을 상승시키는 유도 기전력과 상기 영구자석(200)을 복원시키려는 복원력들이 평형을 이루는 지점에서 상기 영구자석(200)이 멈추게 된다. 그러므로 상기 코일(350)에 전류가 계속 인가되면 상기 니들(240)은 상기 영구자석(200)과 함께 상승된 상태를 유지한 채로 상기 오리피스(131)를 개방할 수 있게 된다.Therefore, when a current is applied to the coil 350 as described above, the permanent magnet 200 rises, and the induced electromotive force for raising the permanent magnet 200 and the restoring forces for restoring the permanent magnet 200 are balanced. At the point where the permanent magnet 200 is stopped. Therefore, when the current is continuously applied to the coil 350, the needle 240 can open the orifice 131 while maintaining the elevated state with the permanent magnet 200.

한편, 상기 코일(350)에 인가되는 전류의 세기를 다르게 조정하면, 상기 유도 기전력의 세기가 변화되므로 변화된 유도 기전력의 세기와 상기 복원력들이 평형을 이루는 새로운 지점에서 상기 니들(240)이 위치하게 된다. 그러면, 상기 니들(240)의 선단부(243)가 이동하여 상기 오리피스(131)의 개방 면적, 즉 유체가 통과할 수 있는 유효 면적을 선형적으로 변화시키게 된다. 이에 따라 본 발명에 따른 밸브는 상기 코일(350)에 인가되는 전류의 세기를 조절함으로써 매우 용이하게 상기 오리피스(131)를 통과하는 유체의 유량을 조절할 수 있게 된다. 한편, 도 7a에 도시된 경우는, 도 4b에 도시된 바와 같은 상개식 밸브 또는 코일(350)에 전류 가 인가되지 않은 때 상기 니들(240)이 상기 오리피스(131)에 약간 삽입된 상태를 유지하도록 제작된 밸브에 유효하다.On the other hand, if the intensity of the current applied to the coil 350 is adjusted differently, since the intensity of the induced electromotive force is changed, the needle 240 is located at a new point where the intensity of the changed induced electromotive force and the restoring force are balanced. . Then, the tip portion 243 of the needle 240 is moved to linearly change the open area of the orifice 131, that is, the effective area through which the fluid can pass. Accordingly, the valve according to the present invention can adjust the flow rate of the fluid passing through the orifice 131 very easily by adjusting the strength of the current applied to the coil 350. On the other hand, in the case shown in Figure 7a, the needle 240 is slightly inserted into the orifice 131 when no current is applied to the upper valve or coil 350 as shown in Figure 4b Valid for valves designed to

도 7b를 참조하면, 밸브를 위에서 보았을 때 상기 코일(350)에 시계 방향으로 전류가 인가된 경우, 자기 유도 법칙에 의해 상기 밸브 바디(100) 내에는 아래쪽 방향의 자계 Bd가 유도되며, 이 유도 자계의 크기는 상기 코일(350)에 인가되는 전류의 세기에 비례한다. 이 유도 자계에 의해서 상기 영구자석(200)은 아래쪽 방향으로 작용하는 유도 기전력 Fd를 받게 된다. 그러므로 상기 영구자석(200)은 하측으로 하강하게 되며, 이에 따라 상기 니들(240)이 상기 오리피스(131)로 가까워지게 되므로 상기 오리피스(131)의 개방 면적을 좁히거나 완전히 폐쇄시키게 된다.Referring to FIG. 7B, when a current is applied to the coil 350 in a clockwise direction when the valve is viewed from above, a magnetic field B d of the downward direction is induced in the valve body 100 by a magnetic induction law. The magnitude of the induction magnetic field is proportional to the strength of the current applied to the coil 350. The permanent magnet 200 receives the induced electromotive force F d acting downward. Therefore, the permanent magnet 200 is lowered downward, and thus the needle 240 is closer to the orifice 131, thereby narrowing or completely closing the open area of the orifice 131.

도 7b의 경우에도 도 7a에 도시된 경우와 마찬가지로 상기 영구자석(200)이 이동할 때 복원력이 발생한다. 그러므로 상기 유도 기전력과 복원력이 상호 평형을 이루는 지점까지 상기 영구자석(200)은 하강하게 된다. 이에 따라 상기 니들(240)도 함께 하강하여 상기 오리피스(131)의 개방 면적을 감소시키거나 완전히 폐쇄하게 된다. 그러므로 본 발명을 이용하면 도 7b와 같은 방향으로 전류가 주어질 때에도 상기 오리피스(131)를 통과하는 유체의 양을 효과적으로 제어할 수 있게 되는 것이다. 한편, 도 7b에 도시된 경우는, 도 4a에 도시된 바와 같은 상개식 밸브 또는 코일(350)에 전류가 인가되지 않은 때 상기 니들(240)이 상기 오리피스(131)에 약간 삽입된 상태를 유지하도록 제작된 밸브에 유효하다.In the case of FIG. 7B, the restoring force is generated when the permanent magnet 200 moves as in the case of FIG. 7A. Therefore, the permanent magnet 200 descends to the point where the induced electromotive force and the restoring force are in equilibrium with each other. Accordingly, the needle 240 is also lowered together to reduce or completely close the open area of the orifice 131. Therefore, by using the present invention it is possible to effectively control the amount of fluid passing through the orifice 131 even when a current is given in the direction as shown in FIG. In the case illustrated in FIG. 7B, the needle 240 is slightly inserted into the orifice 131 when no current is applied to the upper valve or the coil 350 as illustrated in FIG. 4A. Valid for valves designed to

한편, 상기 도 7a와 도 7b와 같이 상기 코일(350)에 전류가 인가된 상태에서 전류 공급이 중단되면 상기 복원력에 의해서 상기 영구자석(200) 및 상기 니들(240)이 원위치로 복귀하게 된다. 이때 전류의 인가량을 서서히 줄이면서 중단하게 되면 급격한 복귀에 따른 문제점들, 예를 들면 스프링(160, 170)에 무리한 힘이 가해진다거나 영구자석(200)의 급격한 복귀 시 니들(240)과 오리피스(131) 입구, 또는 영구자석(200)과 리미터(140)가 맞부딪히는 소음 등이 발생하는 문제, 그리고 오동작 또는 파손 등을 효과적으로 방지할 수 있게 된다.On the other hand, as shown in FIGS. 7A and 7B, when the current is stopped while the current is applied to the coil 350, the permanent magnet 200 and the needle 240 return to their original positions by the restoring force. At this time, if the interruption while gradually reducing the amount of current applied to the problems caused by a sudden return, for example, excessive force is applied to the spring (160, 170) or sudden return of the permanent magnet 200 needle 240 and the orifice ( 131) It is possible to effectively prevent problems such as noise generated by the inlet or the permanent magnet 200 and the limiter 140 collide with each other, and malfunction or damage.

상기한 바와 같이 본 발명에 따른 유체 흐름 제어 밸브는, 전류의 방향과 세기를 조절하여 유체의 유동 량을 선형적으로 조정할 수 있는 선형 팽창 밸브(linear expansion valve)로 구현될 수 있다. 그리고 전류 인가 시 오리피스(131)를 개방하거나 폐쇄하는 개폐 밸브로도 구현될 수 있다. 이러한 본 발명에 따른 전자기식 유체 흐름 제어 밸브는 예를 들면, 에어컨디셔너, 냉장고 등 유체의 단열 팽창 작용을 이용한 선형 팽창 밸브 등 관내를 유동하는 유체를 제어하는 많은 분야에 널리 적용될 수 있다. 뿐만 아니라 자동차 타이어의 적정 내압을 유지하기 위해 기체의 흐름을 조절하는데 적용할 수 있다. 그리고 자동차 전자 제어 엔진용 연료 분사 장치의 과급 압력을 조절하기 위한 조절 밸브로도 적용할 수 있다. 또한, 자동차 자동 변속 장치의 유압 조절 장치, 능동 현가 장치(active suspension), 유압 조절 장치 및 자동 제동 장치(automatic braking system)의 압력 조절 장치 등에도 적용될 수 있다. 뿐만 아니라 에어컨디셔터 냉장고 등 유체의 단열 팽창 작용을 이용한 선형 팽창 밸브 등 관내를 유동하는 유체를 제어 하는 많은 분야에 널리 적용될 수 있다.As described above, the fluid flow control valve according to the present invention may be implemented as a linear expansion valve which can linearly adjust the flow amount of the fluid by adjusting the direction and intensity of the current. And it may be implemented as an on-off valve for opening or closing the orifice 131 when the current is applied. The electromagnetic fluid flow control valve according to the present invention can be widely applied to many fields for controlling fluid flowing in a pipe, such as a linear expansion valve using an adiabatic expansion action of a fluid such as an air conditioner or a refrigerator. In addition, it can be applied to control the flow of gas to maintain the proper internal pressure of the car tire. And it can also be applied as a control valve for regulating the boost pressure of the fuel injection device for an automotive electronic control engine. In addition, the present invention can be applied to a hydraulic control device, an active suspension, an hydraulic suspension device, and a pressure control device of an automatic braking system of an automatic vehicle transmission. In addition, it can be widely applied to many fields for controlling the fluid flowing in the tube, such as a linear expansion valve using the adiabatic expansion action of the fluid, such as air conditioner refrigerator.

상기에서 몇몇의 실시예가 설명되었음에도 불구하고, 본 발명이 이의 취지 및 범주에서 벗어남 없이 다른 여러 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 따라서, 상술된 실시예는 제한적인것이 아닌 예시적인 것으로 여겨져야 하며, 첨부된 청구항 및 이의 동등 범위 내의 모든 실시예는 본 발명의 범주 내에 포함된다.Although several embodiments have been described above, it will be apparent to those skilled in the art that the present invention may be embodied in many other forms without departing from the spirit and scope thereof. Accordingly, the described embodiments are to be considered as illustrative and not restrictive, and all embodiments within the scope of the appended claims and their equivalents are included within the scope of the present invention.

상기한 본 발명은 다음과 같은 효과를 가진다.The present invention described above has the following effects.

첫째, 구조가 간단하고 각 부품이 매우 유기적인 결합관계를 가지도록 설계되었으므로 조립이 매우 쉽다. 그러므로 조립성 및 작업성이 용이하여 생산성이 향상된다. 이는 제조 가격을 낮추게 되어 경제성을 높이는 효과를 가져온다.First, assembly is very easy because the structure is simple and each part is designed to have a very organic coupling relationship. Therefore, assembly and workability are easy and productivity is improved. This lowers the manufacturing price has the effect of increasing the economics.

둘째, 코일에 인가되는 전류의 방향과 세기를 조절함으로써 유체가 통과하는 오리피스의 개방 면적을 선형적으로 변화시킬 수 있다. 이에 따라 유동하는 유체의 양을 매우 용이하게 제어할 수 있다.Second, the opening area of the orifice through which the fluid passes can be changed linearly by adjusting the direction and intensity of the current applied to the coil. This makes it possible to very easily control the amount of fluid flowing.

셋째, 코일에 인가되는 전류의 세기가 고정된 경우 니들은 상기 코일에 전류가 인가될 때 상기 오리피스를 개방하거나 폐쇄하게 된다. 이에 따라 오리피스(131)를 개폐하는 개폐 밸브(bistable on/off valve)로도 사용할 수 있다.Third, when the strength of the current applied to the coil is fixed, the needle opens or closes the orifice when the current is applied to the coil. Accordingly, it can also be used as an on / off valve for opening and closing the orifice 131.

넷째, 전자기력에 의해 작동하므로 종래 보다 응답성이 빠르며 작동에 신뢰성이 확보된다.Fourth, because the operation by the electromagnetic force is faster than the conventional responsiveness and ensures the reliability in operation.

다섯째, 종래와는 유체가 있는 부분에서 작동하는 부품들과 이들을 작동시키는 부품들이 기계적으로 또는 전기적으로 연결될 필요가 없다. 그러므로 종래의 밸 브들 보다 밀봉성이 향상된다.Fifth, the components operating in the part with the fluid and the components which operate them conventionally do not need to be mechanically or electrically connected. Therefore, the sealing property is improved than the conventional valves.

여섯째, 본 발명에 따른 밸브에는 관이 연결되는 두 포트가 밸브 바디의 상단과 하단에 형성된다. 그러므로 본 발명에 따른 밸브는 유로가 변경되지 않는 부분에 제어 밸브를 설치해야하는 경우 매우 유용하다. 이와 같은 구조를 가지게 되면, 설치에 필요한 공간을 상당히 축소할 수 있다.Sixth, in the valve according to the present invention, two ports to which the pipe is connected are formed at the top and bottom of the valve body. Therefore, the valve according to the present invention is very useful when it is necessary to install the control valve in the portion where the flow path does not change. With this structure, the space required for installation can be significantly reduced.

일곱째, 발명에 따른 밸브에는 별도의 액튜에이터(actuator)가 설치될 필요가 없다. 그러므로 종래 구조의 밸브들 보다 크기를 소형화 할 수 있어 기기 전체의 크기를 콤팩트화 할 수 있는 장점이 있다.Seventh, there is no need to install a separate actuator (actuator) in the valve according to the invention. Therefore, the size can be made smaller than the valves of the conventional structure has the advantage that the size of the entire device can be compact.

본 발명의 구성을 설명하면서 기술된 장점들 또한 본 발명의 장점들에 모두 포함된다.The advantages described in describing the configuration of the present invention are also included in the advantages of the present invention.

Claims (37)

하단에 형성되는 제1 포트와, 상단에 형성되는 제2 포트와, 상기 제1 및 제2 포트를 연통시키도록 내부에 형성되는 오리피스(orifice)와, 상측 내부에 공간(space)을 가지는 밸브 바디와;A valve body having a first port formed at a lower end, a second port formed at an upper end, an orifice formed therein to communicate the first and second ports, and a space inside the upper side. Wow; 상기 공간에 상하 방향으로 이동 가능하게 설치되고, 상하 방향으로 적어도 하나 이상의 유로공(fluid passage hole)이 형성된 영구자석과;A permanent magnet installed in the space to be movable in the vertical direction and having at least one fluid passage hole formed in the vertical direction; 전기 회로와 연결되고 상기 밸브 바디 외주면에 권선되는 코일과;A coil connected to an electric circuit and wound around an outer circumferential surface of the valve body; 상기 영구자석이 자기력에 의해서 상기 공간 중에 부상된 상태를 유지할 수 있도록 상기 영구자석의 상측 일부분과 대응하는 위치의 상기 밸브 바디 외주면을 에워싸도록 설치되는 제1 요크(yoke)와;A first yoke installed to surround an outer circumferential surface of the valve body at a position corresponding to an upper portion of the permanent magnet to maintain the permanent magnet in a floating state in the space by a magnetic force; 테이퍼진 선단부(tip)가 상기 오리피스의 일측에 대응하도록 배치되고, 상기 코일에 전류가 인가될 때 발생하는 전자기력(electromagnetic force)에 의해 상기 영구자석이 상방 또는 하방으로 이동할 때 함께 이동하면서 상기 오리피스의 개방 면적을 선형적으로 변화시키는 니들(needle)을 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.A tapered tip is disposed to correspond to one side of the orifice, and moves together when the permanent magnet moves upward or downward by an electromagnetic force generated when an electric current is applied to the coil. An electromagnetic fluid flow control valve comprising a needle that changes the open area linearly. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디는 상하 방향으로 긴 원통형으로 이루어진 전자기식 유체 흐름 제어 밸브.The valve body is an electromagnetic fluid flow control valve made of a long cylindrical in the vertical direction. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디는 분리 가능한 3개의 피스(piece)를 포함하여 이루어지는 전자기식 유체 흐름 제어 밸브.Said valve body comprises three detachable pieces. 제 3 항에 있어서,The method of claim 3, wherein 상기 밸브 바디는,The valve body, 외주면에 상기 코일과 상기 제1 요크가 결합되고 내부에 상기 영구자석이 수용되며, 상단에 상기 제2 포트가 형성된 제1 피스와,A first piece in which the coil and the first yoke are coupled to an outer circumferential surface and the permanent magnet is accommodated therein, and the second port is formed at an upper end thereof; 상단과 하단이 개방되고, 외주면 일부에 상기 코일이 권선되며, 내측 공동부(cavity)에 상기 니들이 위치되도록 상기 제1 피스의 하단에 결합되는 제2 피스와,A second piece having an upper end and a lower end open, the coil wound around a portion of an outer circumferential surface thereof, and coupled to a lower end of the first piece so that the needle is positioned in an inner cavity; 내부에 상기 오리피스가 형성되고 하단에 상기 제1 포트가 형성되며, 상기 니들이 상기 오리피스에 대응하는 위치에 배치되도록 상기 제2 피스의 하단에 결합되는 제3 피스를 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.An electromagnetic fluid flow control valve having a third piece coupled to the bottom of the second piece such that the orifice is formed therein and the first port is formed at the bottom and the needle is disposed at a position corresponding to the orifice. . 제 4 항에 있어서,The method of claim 4, wherein 상기 제1 피스와 제2 피스는 비자성체(nonmagnetic substance)로 이루어진 전자기식 유체 흐름 제어 밸브.And the first piece and the second piece are made of a nonmagnetic substance. 제 1 항에 있어서,The method of claim 1, 상기 제1 포트와 제2 포트는 동일한 가상선 상에 형성되는 전자기식 유체 흐름 제어 밸브.And the first port and the second port are formed on the same imaginary line. 제 1 항에 있어서,The method of claim 1, 상기 니들은 상기 영구자석을 관통하도록 설치된 로드(rod)의 하단부에 결합되어 상기 영구자석과 함께 이동하는 전자기식 유체 흐름 제어 밸브.And the needle is coupled to a lower end of a rod installed to penetrate the permanent magnet and moves together with the permanent magnet. 제 7 항에 있어서,The method of claim 7, wherein 상기 로드는 비자성체로 이루어진 전자기식 유체 흐름 제어 밸브.The rod is a non-magnetic electromagnetic fluid flow control valve. 제 1 항에 있어서,The method of claim 1, 상기 니들은 상기 영구자석에 직접 연결되는 전자기식 유체 흐름 제어 밸브.And said needle is directly connected to said permanent magnet. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디의 상단에는, 중앙에 상하 방향으로 상기 제2 포트가 형성된, 분리 가능한 캡이 고정된 전자기식 유체 흐름 제어 밸브.An electromagnetic fluid flow control valve having a detachable cap fixed to an upper end of the valve body, wherein the second port is formed in a vertical direction at a center thereof. 제 10 항에 있어서,The method of claim 10, 상기 캡은 비자성체로 이루어진 전자기식 유체 흐름 제어 밸브.The cap is an electromagnetic fluid flow control valve made of a non-magnetic material. 제 10 항에 있어서,The method of claim 10, 상기 캡과 상기 영구자석 사이에 상기 공간의 수평 단면적을 축소하도록 설치되며, 상기 영구자석의 상승 높이를 제한하는 리미터(limiter)를 더 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.Electromagnetic fluid flow control valve is provided between the cap and the permanent magnet to reduce the horizontal cross-sectional area of the space, limiter (limiter) for limiting the rising height of the permanent magnet. 제 12 항에 있어서The method of claim 12 상기 리미터는 상기 영구자석의 외주보다 작은 내주를 가지는 링형으로 이루어진 전자기식 유체 흐름 제어 밸브.The limiter is an electromagnetic fluid flow control valve made of a ring having an inner circumference smaller than the outer circumference of the permanent magnet. 제 12 항에 있어서, 상기 리미터는 비자성체로 이루어진 전자기식 유체 흐름 제어 밸브.13. The electromagnetic fluid flow control valve of claim 12, wherein the limiter is made of nonmagnetic material. 제 1 항에 있어서,The method of claim 1, 상기 공간의 상측에 상기 공간의 수평 단면적을 축소하도록 설치되어 상기 영구자석의 상승 높이를 제한하는 리미터(limiter)를 더 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.Electromagnetic fluid flow control valve is installed on the upper side of the space to reduce the horizontal cross-sectional area of the space further comprises a limiter (limiter) for limiting the rising height of the permanent magnet. 제 1 항에 있어서,The method of claim 1, 상기 제1 요크는 투자율(permiability)이 높은 물질(substance)로 이루어진 전자기식 유체 흐름 제어 밸브.The first yoke is an electromagnetic fluid flow control valve made of a high permeability (substance). 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디의 외주면에 결합되고, 상기 코일을 에워싸도록 설치되는 제2 요크를 더 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.And a second yoke coupled to an outer circumferential surface of the valve body and installed to surround the coil. 제 17 항에 있어서,The method of claim 17, 상기 제2 요크는 투자율이 높은 물질로 이루어진 전자기식 유체 흐름 제어 밸브.The second yoke is an electromagnetic fluid flow control valve made of a high permeability material. 제 17 항에 있어서,The method of claim 17, 상기 제2 요크는,The second yoke, 상기 코일의 상측 부분을 에워싸도록 설치되는 상부 피스와,An upper piece installed to surround the upper portion of the coil; 상기 상부 피스의 하측에서 결합되고, 상기 코일의 하측 부분을 에워싸는 하부 피스를 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.An electromagnetic fluid flow control valve coupled to the lower side of the upper piece and comprising a lower piece surrounding the lower portion of the coil. 제 7 항에 있어서,The method of claim 7, wherein 일부분이 상기 밸브 바디와 상기 로드에 각각 고정되도록 설치되어, 상기 영구자석이 이동할 때, 상기 영구자석, 상기 로드 또는 상기 니들이 상기 밸브 바디의 내벽에 접촉되는 것을 방지하면서 상기 영구자석이 원위치되도록 복원력을 부여 하는 적어도 하나 이상의 스프링을 더 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.A portion is fixed to the valve body and the rod, respectively, to restore the permanent magnet to its original position while preventing the permanent magnet, the rod or the needle from contacting the inner wall of the valve body when the permanent magnet moves. Electromagnetic fluid flow control valve further comprises at least one spring to impart. 제 20 항에 있어서,The method of claim 20, 상기 스프링은,The spring is, 상기 영구자석을 관통한 상기 로드의 상단부를 지지하는 제1 스프링과,A first spring for supporting an upper end of the rod passing through the permanent magnet; 상기 니들과 연결되는 상기 로드의 하단부를 지지하는 제2 스프링을 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.And a second spring for supporting a lower end of the rod connected to the needle. 제 20 항에 있어서,The method of claim 20, 상기 각 스프링은,Each spring is, 상기 밸브 바디에 고정되는 제1 링과,A first ring fixed to the valve body; 상기 제1 링의 내측에 배치되고 내주면에 상기 로드의 외주면이 끼워지는 제2 링과,A second ring disposed inside the first ring and fitted with an inner circumferential surface of the rod; 상기 제1 링과 제2 링을 연결하고, 상기 제1 링의 반지름 방향으로는 큰 강성(stiffness)을 가지면서 상기 제1 링의 상하 방향으로는 탄력적인 서스펜더들(suspenders)을 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.Electrons formed by connecting the first ring and the second ring, having suspenders (elastic suspenders) in the vertical direction of the first ring having a large stiffness in the radial direction of the first ring Air flow control valve. 제 20 항에 있어서,The method of claim 20, 상기 각 스프링은 비자성체로 이루어진 전자기식 유체 흐름 제어 밸브.Each spring is an electromagnetic fluid flow control valve made of a non-magnetic material. 제 1 항에 있어서,The method of claim 1, 상기 유로공은 상기 영구자석에 방사상으로 다수개가 배치된 전자기식 유체 흐름 제어 밸브.The flow path is an electromagnetic fluid flow control valve is disposed in the radial plurality of the permanent magnet. 제 1 항에 있어서,The method of claim 1, 상기 니들은 상기 코일에 전류가 인가되지 않은 상태에서 상기 오리피스를 폐쇄하도록 배치되는 전자기식 유체 흐름 제어 밸브.And the needle is arranged to close the orifice in the absence of current applied to the coil. 제 1 항에 있어서,The method of claim 1, 상기 니들은 상기 코일에 전류가 인가되지 않은 상태에서 상기 오리피스를 완전히 개방시키도록 배치되는 전자기식 유체 흐름 제어 밸브.And the needle is arranged to completely open the orifice in the absence of current applied to the coil. 제 1 항에 있어서,The method of claim 1, 상기 니들은 상기 코일에 전류가 인가되지 않은 상태에서 상기 선단부가 상기 오리피스의 개방 면적 중 일부를 차지하도록 배치되는 전자기식 유체 흐름 제어 밸브.And the needle is disposed such that the tip portion occupies a part of the open area of the orifice without a current applied to the coil. 제 1 항에 있어서,The method of claim 1, 상기 전기회로는, 상기 니들이 상기 오리피스의 개방 면적을 선형적으로 증 감시킬 수 있도록, 상기 코일에 공급하는 전류의 세기 및 방향을 임의로 조절할 수 있는 회로인 것을 특징으로 하는 전자기식 유체 흐름 제어 밸브.And the electric circuit is a circuit capable of arbitrarily adjusting the strength and direction of the current supplied to the coil so that the needle linearly increases or decreases the open area of the orifice. 제 27 항에 있어서,The method of claim 27, 상기 전기 회로는 디지털화된 인가 전류의 주기 및 펄스 폭을 임의로 조절할 수 있는 펄스 폭 변조 회로(PWM circuit: pulse width modulation circuit)를 포함하여 이루어진 전자기식 유체 흐름 제어 밸브.The electrical circuit comprises a pulse width modulation circuit (PWM circuit) capable of arbitrarily adjusting the period and pulse width of the digitized applied current. 제 1 항에 있어서,The method of claim 1, 상기 전기 회로는, 상기 니들이 상기 오리피스를 개방하거나 폐쇄하는 개폐 밸브(bistable on/off valve)로 작동할 수 있도록, 상기 코일에 기 설정된 세기를 가지는 전류를 인가할 수 있는 회로인 것을 특징으로 하는 전자기식 유체 흐름 제어 밸브.Wherein the electrical circuit is a circuit capable of applying a current having a predetermined strength to the coil such that the needle can act as a bistable on / off valve to open or close the orifice. Air flow control valve. 제 1 항에 있어서,The method of claim 1, 상기 제1 포트에는 압력이 높은 유체가 유입되는 유입관(inlet tube)이 연결되고, 상기 제2 포트에는 상기 오리피스를 통과한 유체가 토출되는 토출관(outlet tube)이 연결되는 전자기식 유체 흐름 제어 밸브.The first port is connected to an inlet tube through which a high pressure fluid flows, and the second port is connected to an outlet tube through which the fluid passing through the orifice is discharged. valve. 제 30 항에 있어서,The method of claim 30, 상기 오리피스를 통과한 후 상기 유체의 압력 및 온도가 강하되도록 상기 오리피스의 직경은 상기 제1 포트의 직경 보다 작게 형성되는 전자기식 유체 흐름 제어 밸브.And the diameter of the orifice is smaller than the diameter of the first port such that the pressure and temperature of the fluid drop after passing through the orifice. 제 1 항에 있어서,The method of claim 1, 상기 제2 포트에는 압력이 높은 유체가 유입되는 유입관(inlet tube)이 연결되고, 상기 제1 포트에는 상기 오리피스를 통과한 유체가 토출되는 토출관(outlet tube)가 연결되는 전자기식 유체 흐름 제어 밸브.The second port is connected to an inlet tube through which a high pressure fluid flows, and the first port is connected to an outlet tube through which the fluid passing through the orifice is discharged. valve. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디 내로 유입되어 상기 오리피스를 경유한 후 외부로 토출되는 유체는 기체 상태로 이루어진 전자기식 유체 흐름 제어 밸브.The fluid flowing into the valve body and discharged to the outside after passing through the orifice is an electromagnetic fluid flow control valve made of a gas state. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디 내로 유입되어 상기 오리피스를 경유한 후 외부로 토출되는 유체는 액체 상태로 이루어진 전자기식 유체 흐름 제어 밸브.And the fluid flowing into the valve body and discharged to the outside after passing through the orifice is in a liquid state. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디 내로 유입되어 상기 오리피스를 경유한 후 외부로 토출되는 유체는 기체와 액체가 혼합된 상태로 이루어진 전자기식 유체 흐름 제어 밸브.And a fluid flowing into the valve body and discharged to the outside after passing through the orifice is a mixture of gas and liquid. 제 1 항에 있어서,The method of claim 1, 상기 밸브 바디 내로 유입되어 상기 오리피스를 경유한 후 외부로 토출되는 유체는 초임계 유체(super critical fluid)인 전자기식 유체 흐름 제어 밸브.And the fluid flowing into the valve body and discharged to the outside after passing through the orifice is a super critical fluid.
KR1020030045729A 2003-07-07 2003-07-07 Fluidic mass flow control valve actuated by electromagnetic force KR100546654B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020030045729A KR100546654B1 (en) 2003-07-07 2003-07-07 Fluidic mass flow control valve actuated by electromagnetic force
JP2003413538A JP2005030586A (en) 2003-07-07 2003-12-11 Electromagnetic fluid control valve
US10/780,837 US7007917B2 (en) 2003-07-07 2004-02-19 Electromagnetic control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030045729A KR100546654B1 (en) 2003-07-07 2003-07-07 Fluidic mass flow control valve actuated by electromagnetic force

Publications (2)

Publication Number Publication Date
KR20050005836A KR20050005836A (en) 2005-01-15
KR100546654B1 true KR100546654B1 (en) 2006-01-26

Family

ID=37219948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030045729A KR100546654B1 (en) 2003-07-07 2003-07-07 Fluidic mass flow control valve actuated by electromagnetic force

Country Status (1)

Country Link
KR (1) KR100546654B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130173B1 (en) * 2017-12-18 2020-07-06 (주)기하정밀 Electronic expansion valve and cooling and heating system
CN112065797B (en) * 2020-08-12 2024-06-11 浙江工业大学 Two-dimensional electrohydraulic servo proportional valve based on permanent magnet type annular air gap magnetic suspension coupling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578873A (en) * 1978-12-12 1980-06-13 Matsushita Electric Ind Co Ltd Electromagnetic pressure relief valve
JPS576171A (en) * 1980-06-09 1982-01-13 Matsushita Electric Ind Co Ltd Pressure control valve
JPS62194082A (en) * 1986-02-19 1987-08-26 Tokico Ltd Flow control device
JPH03113183A (en) * 1989-09-28 1991-05-14 Saginomiya Seisakusho Inc Motor-driven type flow rate control valve
JPH05187570A (en) * 1991-07-16 1993-07-27 Bendix Europ Services Technic Pressure regulator for fluid circuit
KR930021941U (en) * 1992-03-28 1993-10-16 전중호 Valve opening/closing device for pneumatic valves using electromagnet magnetic force
KR20010031528A (en) * 1997-10-27 2001-04-16 코울러캄파니 Self-closed solenoid operated faucet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578873A (en) * 1978-12-12 1980-06-13 Matsushita Electric Ind Co Ltd Electromagnetic pressure relief valve
JPS576171A (en) * 1980-06-09 1982-01-13 Matsushita Electric Ind Co Ltd Pressure control valve
JPS62194082A (en) * 1986-02-19 1987-08-26 Tokico Ltd Flow control device
JPH03113183A (en) * 1989-09-28 1991-05-14 Saginomiya Seisakusho Inc Motor-driven type flow rate control valve
JPH05187570A (en) * 1991-07-16 1993-07-27 Bendix Europ Services Technic Pressure regulator for fluid circuit
KR930021941U (en) * 1992-03-28 1993-10-16 전중호 Valve opening/closing device for pneumatic valves using electromagnet magnetic force
KR20010031528A (en) * 1997-10-27 2001-04-16 코울러캄파니 Self-closed solenoid operated faucet

Also Published As

Publication number Publication date
KR20050005836A (en) 2005-01-15

Similar Documents

Publication Publication Date Title
JP2005030586A (en) Electromagnetic fluid control valve
US8016087B2 (en) Fluid damper
JP4820480B2 (en) Hydraulic valve
KR100821869B1 (en) Electromagnetically actuated valve
JPH07167331A (en) Solenoid valve
JP4778204B2 (en) Solenoid operated valve
KR102137405B1 (en) Solenoid valve with function of variable force for high pressure
JP2008215615A (en) Piston/cylinder unit
CN105473919B (en) Valve gear
JP4621667B2 (en) Solenoid valve with damping disk to attenuate noise
CN102292581A (en) Open end variable bleed solenoid (vbs) valve with inherent viscous dampening
US4858956A (en) High pressure, fast response, pressure balanced, solenoid control valve
JP4825723B2 (en) Vehicle damping force variable damper
KR100539544B1 (en) Fluidic mass flow control valve actuated by electromagnetic force
WO1992021904A1 (en) General purpose fluid control valve
WO2006065786A2 (en) Magnetically-actuated manually-operated isolation valve
KR100546654B1 (en) Fluidic mass flow control valve actuated by electromagnetic force
CN109869494B (en) Electronic expansion valve and refrigeration system with same
JP2011038630A (en) Solenoid valve
EP2677218A1 (en) Control valve
JP4728862B2 (en) Magnetorheological fluid damper
KR100578086B1 (en) Magnetically levitated, electromagnetically actuated valve for fluidic mass flow control
JP2005221115A (en) Expansion valve
JP2005221115A5 (en)
KR20020084820A (en) Electrically operated pressure control valve

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091230

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee