KR100545826B1 - Manufacturing method of fuel cell - Google Patents

Manufacturing method of fuel cell Download PDF

Info

Publication number
KR100545826B1
KR100545826B1 KR1019980060127A KR19980060127A KR100545826B1 KR 100545826 B1 KR100545826 B1 KR 100545826B1 KR 1019980060127 A KR1019980060127 A KR 1019980060127A KR 19980060127 A KR19980060127 A KR 19980060127A KR 100545826 B1 KR100545826 B1 KR 100545826B1
Authority
KR
South Korea
Prior art keywords
fuel cell
slurry
electrode
cobalt
green sheet
Prior art date
Application number
KR1019980060127A
Other languages
Korean (ko)
Other versions
KR20000043717A (en
Inventor
윤영기
최영태
문길호
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1019980060127A priority Critical patent/KR100545826B1/en
Publication of KR20000043717A publication Critical patent/KR20000043717A/en
Application granted granted Critical
Publication of KR100545826B1 publication Critical patent/KR100545826B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

개시된 내용은, 코발트 금속분말을 사용하여 전극을 제조한 후, 전지에 장착하여 운전과정에서 산화코발트리튬을 형성하는 연료전지의 제조방법에 관한 것으로, 본 발명은, 코발트 금속분말을 유기용제, 바인더 및, 가소제와 혼합하여 슬러리를 제조하는 단계; 상기 슬러리를 탈포, 테이프 캐스팅 및 건조 처리하여 그린시트를 제조하는 단계; 상기 그린시트를 질소/수소 환원분위기에서 연속소결하는 단계; 상기 전극을 연료전지에 적층한 후 산화시켜 산화코발트리튬을 형성하는 단계를 포함하는 연료전지의 제조방법으로 이루어져 있다.The present disclosure relates to a method of manufacturing a fuel cell in which an electrode is manufactured using cobalt metal powder, and then mounted on a battery to form cobalt tritium oxide in an operation process. The present invention relates to a cobalt metal powder in an organic solvent and a binder. And mixing the plasticizer to prepare a slurry. Defoaming, tape casting and drying the slurry to prepare a green sheet; Continuously sintering the green sheet in a nitrogen / hydrogen reduction atmosphere; And stacking the electrode on a fuel cell and oxidizing the electrode to form cobalt tritium oxide.

Description

연료전지의 제조방법Manufacturing method of fuel cell

본 발명은 산화코발트리튬(LiCoO2)을 공기극으로 사용하는 연료전지의 제조방법에 관한 것으로, 특히, 코발트금속분말을 사용하여 전극을 제조한 후, 전지에 장착하여 운전과정에서 산화코발트리튬을 형성하는 연료전지의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fuel cell using cobalt trioxide (LiCoO 2 ) as an air electrode. In particular, after fabricating an electrode using cobalt metal powder, the cobalt tritium oxide is formed during operation by mounting the electrode. It relates to a fuel cell manufacturing method.

연료전지란, 애노드에는 연료를, 캐소드에는 연료를 산화하는 물질을 각각 연속적으로 공급해서, 화학반응의 자유에너지 변화를 직접 전기에너지로 변환하는 고효율, 저공해의 장치를 말한다.The fuel cell refers to a high efficiency and low pollution device that converts a free energy change of a chemical reaction directly into electrical energy by continuously supplying fuel to an anode and a cathode to oxidize fuel.

이러한 연료전지는 유력한 직접발전시스템의 하나로서, 현재 실용화를 위해 개발되고 있는 것으로는, H3PO4를 전해액으로 사용한 것과 용해탄산염을 전해질로 한 것이 있다.Such a fuel cell is one of the leading direct power generation systems, and is currently being developed for practical use, using H 3 PO 4 as the electrolyte and dissolved carbonate as the electrolyte.

특히, 용해탄산염을 전해질로 사용한 용융탄산염형 연료전지에 있어서는, 연료전지의 수명이 캐소드의 용해현상에 의해 크게 좌우된다. 예를 들어, 캐소드가 산화니켈Ⅱ(NiO)로 이루어진 용융탄산염의 용해반응을 살펴보면 다음과 같다.In particular, in a molten carbonate type fuel cell using dissolved carbonate as an electrolyte, the life of the fuel cell largely depends on the dissolution of the cathode. For example, look at the dissolution reaction of the molten carbonate cathode is made of nickel oxide (NiO) as follows.

우선, 캐소드측에서의 용해반응의 반응식은 다음과 같다.First, the reaction formula of the dissolution reaction on the cathode side is as follows.

NiO→Ni+ONiO → Ni + O

이 반응의 평형은 전해질 내에서의 니켈과 산소의 농도에 의해 결정된다. 용해된 니켈은 연료전지 운전 중 니켈의 농도구배와 매트릭스에 걸쳐 형성된 전기장에 의해 캐소드측에서 애노드측으로 이동하여 애노드측에서 환원, 석출되어 니켈석출물을 형성하게 된다.The equilibrium of this reaction is determined by the concentration of nickel and oxygen in the electrolyte. The molten nickel is moved from the cathode side to the anode side by the concentration gradient of nickel and the electric field formed over the matrix during operation of the fuel cell, and reduced and precipitated on the anode side to form nickel precipitates.

이 과정은 애노드에서 생성된 전자에 의해 니켈이 환원되는 과정이며, 다음과 같이 나타낼 수 있다.This process is a process in which nickel is reduced by the electrons generated at the anode, and can be expressed as follows.

Ni+2e→Ni석출Ni + 2e → Ni precipitation

이 과정이 계속 진행되어 니켈석출물이 매트릭스 내에서 애노드측에서 출발하여 캐소드방향으로 성장하여 캐소드와 만나게 되면, 전기적 통로가 형성되게 되어 매트릭스를 통한 이온전도는 잘 일어나지 않고, 니켈석출물을 통한 전자전달에 의해 전도가 일어나게 되며, 전기적 쇼트가 일어나서 셀이 정상적인 동작을 할 수 없게 된다. 그 결과, 연료전지의 출력이 현저히 감소하여 작동 불능상태에 빠지게 되며, 일단 이런 상태가 되면 연료전지를 회생시킬 수 없게 된다.If this process continues and the nickel precipitate starts from the anode side in the matrix and grows in the cathode direction and meets with the cathode, an electrical passage is formed, so that ion conduction through the matrix does not occur, and electrons pass through the nickel precipitate. This will cause conduction, and an electrical short will occur, preventing the cell from operating normally. As a result, the output of the fuel cell is significantly reduced, resulting in an inoperable state, and once in this state, the fuel cell cannot be regenerated.

이를 해결하기 위해 많은 방법들이 제안되어 있으며, 이를 크게 두 분류로 나눌 수 있다. 그 중 한 방법은 산화니켈Ⅱ를 공기극으로 그대로 사용하면서 산화니켈Ⅱ의 용해속도를 감소시키는 것이다. 또 다른 한 방법은 산화니켈Ⅱ를 공기극으로 쓰는 대신 전해질에 용해도가 극히 낮은 대체 캐소드를 사용하는 것이다.Many methods have been proposed to solve this problem, and it can be divided into two categories. One method is to reduce the dissolution rate of nickel oxide while using nickel oxide as the cathode. Another alternative is to use nickel-oxide (II) as the cathode instead of using an alternative cathode with very low solubility in the electrolyte.

상기 첫 번째 방법인 산화니켈Ⅱ의 용해속도를 감소시키는 방법은, 주로 종래의 니켈/칼륨계 전해질 대신 니켈/나트륨 또는 니켈/칼륨/나트륨을 사용하여 전해질의 조성을 조정하거나 산화니켈Ⅱ에 마그네슘, 스트론튬, 칼슘, 바륨 등의 첨가제를 넣는 방법으로 이루어진다.The first method to reduce the dissolution rate of nickel oxide II is to use nickel / sodium or nickel / potassium / sodium instead of conventional nickel / potassium-based electrolyte to adjust the composition of the electrolyte or magnesium, strontium in the nickel oxide II , Calcium, barium and other additives.

두 번째 방법에 있어서 대체 캐소드로 가장 주목받는 것은 산화코발트리튬(Li2CoO2)이며, 이외에, 고체산화물 연료전지에 사용되는 라듐-철계 산화물을 사용하는 경우도 있다. 산화코발트니켈은 일반적으로 탄산리튬(Li2CO3)과 탄산코발트(Co2(CO3)3)를 고온에서 고상반응시켜 제조된다. 이렇게 얻어진 분말을 분쇄하여 원하는 크기의 분말을 얻고 이를 고온에서 소결하여 전극을 제조하고 있다.In the second method, cobalt tritium oxide (Li 2 CoO 2 ) is most attention as an alternative cathode, and in addition, a radium-iron oxide used in a solid oxide fuel cell may be used. Cobalt nickel oxide is generally prepared by solid phase reaction of lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (Co 2 (CO 3 ) 3 ) at a high temperature. The powder thus obtained is pulverized to obtain a powder having a desired size and sintered at a high temperature to produce an electrode.

그러나, 종래의 제조방법의 경우, 취성이 강하기 때문에 취급과 대면적으로 제조하기가 곤란하다는 문제가 있다. 또한, 낮은 전기전도도는 전지의 성능을 감소시킨다.However, in the case of the conventional manufacturing method, there is a problem that it is difficult to manufacture in handling and large area because brittleness is strong. In addition, low electrical conductivity reduces battery performance.

본 발명의 목적은, 취급이 용이하고 대면적의 용융탄산염형 연료전지를 제조할 수 있으며, 또한 전기전도도의 저하를 방지하여 전지의 성능을 향상시킬 수 있는 연료전지의 제조방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell manufacturing method capable of producing a molten carbonate fuel cell with easy handling and having a large area, and further improving the performance of the battery by preventing a decrease in electrical conductivity.

상기 본 발명의 목적은, 코발트 금속분말을 유기용제, 바인더 및, 가소제와 혼합하여 슬러리를 제조하는 단계; 상기 슬러리를 탈포, 테이프 캐스팅 및 건조 처리하여 그린시트를 제조하는 단계; 상기 그린시트를 질소/수소 환원분위기에서 연속소결하는 단계; 상기 전극을 연료전지에 적층한 후 산화시켜 산화코발트리튬을 형성하는 단계를 포함하는 연료전지의 제조방법에 의해 달성된다.The object of the present invention is to prepare a slurry by mixing the cobalt metal powder with an organic solvent, a binder, and a plasticizer; Defoaming, tape casting and drying the slurry to prepare a green sheet; Continuously sintering the green sheet in a nitrogen / hydrogen reduction atmosphere; The electrode is laminated to a fuel cell and then oxidized to form a cobalt tritium oxide.

또한, 본 발명은 산화코발트리튬의 낮은 전기전도도에 의해 저하되는 전지의 성능을 향상시키기 위해, 매트릭스의 두께를 약 0.3∼0.5㎜으로 하고 있다.In addition, in the present invention, the thickness of the matrix is about 0.3 to 0.5 mm in order to improve the performance of the battery which is lowered by the low electrical conductivity of cobalt tritium oxide.

이하, 본 발명의 구성을 실시예 및 첨부도면을 참고하여 설명한다.Hereinafter, the configuration of the present invention will be described with reference to the embodiments and the accompanying drawings.

용융탄산염형 연료전지를 제조하는 방법은, 크게 슬러리의 제조, 그린시트의 제조, 그린시트의 소결 및 산화과정으로 나눌 수 있다.The method for manufacturing a molten carbonate fuel cell can be broadly divided into a slurry production, a green sheet production, a green sheet sintering, and an oxidation process.

첫 번째 단계인, 슬러리의 제조단계에서는, 우선, 적당한 유기용제와 바인더, 가소제를 적당량 잘 혼합하여 슬러리 용액을 준비한다. 이 때, 유기용제로는 톨루엔, 알코올류, 메틸에틸케톤 등을 사용하며, 바인더로는 PVB, PVA를 사용하며, 가소제로는 디부틸프탈레이트, 부틸벤질프탈레이트 등을 사용한다. 이들의 조성은 무게비로 용매:바인더:가소제의 비를 약 70:25:5 정도로 한다. 이렇게 준비한 슬러리 용액에 코발트분말을 혼합하여 4∼12시간 정도 볼밀링한다. 코발트분말의 크기는 입도 10∼20㎛의 크기가 적당하며, 상기 슬러리용액과의 비는 무게비로 85:15 정도로 혼합한다.In the first step of preparing a slurry, first, a slurry solution is prepared by mixing a suitable amount of a suitable organic solvent, a binder and a plasticizer. At this time, toluene, alcohols, methyl ethyl ketone, and the like are used as organic solvents, PVB and PVA are used as binders, and dibutyl phthalate and butyl benzyl phthalate are used as plasticizers. Their composition is about 70: 25: 5 in weight ratio of solvent: binder: plasticizer. The cobalt powder is mixed with the slurry solution thus prepared and ball milled for about 4 to 12 hours. The size of the cobalt powder is suitable for the particle size of 10 ~ 20㎛, the ratio with the slurry solution is mixed in a weight ratio of about 85:15.

이렇게 제조된 슬러리를 10∼30분 정도 진공펌프로 탈포하여 슬러리에 포함된 기포를 제거한다. 탈포가 끝난 후 닥터-블레이드(doctor-blade)법을 사용하여 테이프캐스팅을 하고 건조하여 두께가 약 0.7∼0.8㎜인 얇은 그린시트를 얻는다.The slurry thus prepared is degassed with a vacuum pump for about 10 to 30 minutes to remove bubbles contained in the slurry. After defoaming, tape casting is carried out using a doctor-blade method and dried to obtain a thin green sheet having a thickness of about 0.7 to 0.8 mm.

다음으로, 상기 그린시트를 연속소결로에서 최고 온도가 700∼800℃가 되도록 하여, 30분 정도 질소/수소 환원분위기에서 연속소결한다. 이 때, 배치형의 로일 경우에도 이와 비슷하게 최고 온도가 700∼800℃가 되도록 하여, 30분 정도 질소/수소 환원분위기에서 연속소결한다.Next, the green sheet is continuously sintered in a nitrogen / hydrogen reducing atmosphere for about 30 minutes with the maximum temperature of 700 to 800 ° C. in the continuous sintering furnace. At this time, in the case of a batch furnace, the maximum temperature is similarly set to 700 to 800 ° C., and continuous sintering is performed in a nitrogen / hydrogen reduction atmosphere for about 30 minutes.

이렇게 소결된 전극은 전지 내에서 산화되도록 한다. 즉, 소결된 전극을 연료전지에 적층한 후, 승온과정에서 공기극쪽에 공급되는 산소에 의해 산화가 이루어지게 한다. 산화가 이루어지면, 산화된 코발트가 모세관 압력에 의해 용융된 탄산염을 흡수하고, 탄산염 중에 존재하는 리튬이온은 산화코발트 내로 확산하여 산화코발트리튬을 형성한다.This sintered electrode is allowed to oxidize in the cell. That is, after the sintered electrode is laminated to the fuel cell, oxidation is performed by oxygen supplied to the cathode side during the temperature increase process. Once oxidized, the oxidized cobalt absorbs the molten carbonate by capillary pressure, and lithium ions present in the carbonate diffuse into cobalt oxide to form cobalt tritium oxide.

이렇게 공기극으로 산화코발트리튬을 사용하는 경우 산화코발트리튬의 전기전도도가 다소 낮은 편이므로 전지의 성능이 저하될 수 있다. 이를 저지하기 위해, 본 발명에서는 매트릭스의 두께를 기존의 0.9∼1.8㎜에 비해 훨씬 얇은 약 0.3∼0.5㎜정도로 설정하고 있다. 이는, 매트릭스의 역할이 해질을 함침하고 탄산이온의 통로를 제공하는 것이므로, 쇼트가 일어나지 않는 한, 매트릭스의 두께는 얇을수록 전지의 성능이 향상되기 때문이다.When cobalt trioxide is used as the cathode, the electrical conductivity of cobalt trioxide is rather low, and thus battery performance may be degraded. In order to prevent this, in the present invention, the thickness of the matrix is set to about 0.3 to 0.5 mm, which is much thinner than the conventional 0.9 to 1.8 mm. This is because the role of the matrix is to impregnate the sun and provide the passage of carbonate ions, so that the shorter the thickness of the matrix is, the better the performance of the battery is, unless a short occurs.

상술한 바와 같이, 코발트금속분말을 사용하여 전극을 제조한 후 전지에 장착하여 운전과정에서 산화코발트리튬을 형성하는 것에 의해, 대면적의 공기극을 제조하기가 용이하며, 산화 전에는 취성이 거의 없으므로 취급이 용이해 진다.As described above, by preparing an electrode using a cobalt metal powder and mounting it in a battery to form cobalt trioxide in operation, it is easy to manufacture a cathode of a large area, and there is almost no brittleness before oxidation. This becomes easy.

또한, 매트릭스의 두께를 기존에 비해 얇게 하는 것에 의해, 산화코발트리튬의 낮은 전기전도도에 의한 전지의 성능저하를 방지할 수 있다.In addition, by reducing the thickness of the matrix as compared with the conventional one, it is possible to prevent performance degradation of the battery due to low electrical conductivity of cobalt tritium oxide.

Claims (1)

톨루엔, 알코올류, 메틸에틸케톤 중에서 어느 하나가 선택되는 유기용제와, PVB, PVA 중에서 어느 하나가 선택되는 바인더와, 디부틸프탈레이트, 부틸벤질프탈레이트 중에서 어느 하나가 선택되는 가소제를 70:25:5의 무게비로 혼합하여 슬러리용액을 준비하는 단계;70: 25: 5 organic solvent selected from toluene, alcohols and methyl ethyl ketone, binder selected from PVB and PVA, and plasticizer selected from dibutyl phthalate and butyl benzyl phthalate Preparing a slurry solution by mixing in a weight ratio of; 코발트분말을 상기 슬러리용액에 혼합하여 볼밀링함으로써 슬러리를 제조하는 단계;Preparing a slurry by mixing cobalt powder with the slurry solution and ball milling; 상기 슬러리를 진공펌프로 탈포한 후, 닥터-블레이드법을 사용하여 테이프캐스팅하고 건조처리하여 그린시트를 제조하는 단계;Degassing the slurry with a vacuum pump, and then using a doctor-blade method to produce a green sheet by tape casting and drying; 상기 그린시트를 연속소결로에서 질소/수소 환원 분위기에서 연속소결하여 전극을 제조하는 단계; 및Preparing an electrode by continuously sintering the green sheet in a nitrogen / hydrogen reducing atmosphere in a continuous sintering furnace; And 상기 소결된 전극을 연료전지에 적층한 후 승온과정에서 공기극쪽에 공급되는 산소에 의해 산화시켜 산화코발트리튬을 형성하는 단계를 포함하여 이루어지며,Stacking the sintered electrode on a fuel cell and oxidizing the oxygen by oxygen supplied to the cathode in a temperature increase process to form cobalt tritium oxide; 상기 연료전지의 매트릭스의 두께가 0.3~0.5㎜인 것을 특징으로 하는 연료전지의 제조방법A method of manufacturing a fuel cell, wherein the matrix of the fuel cell has a thickness of 0.3 to 0.5 mm.
KR1019980060127A 1998-12-29 1998-12-29 Manufacturing method of fuel cell KR100545826B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980060127A KR100545826B1 (en) 1998-12-29 1998-12-29 Manufacturing method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980060127A KR100545826B1 (en) 1998-12-29 1998-12-29 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
KR20000043717A KR20000043717A (en) 2000-07-15
KR100545826B1 true KR100545826B1 (en) 2006-03-28

Family

ID=19566973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980060127A KR100545826B1 (en) 1998-12-29 1998-12-29 Manufacturing method of fuel cell

Country Status (1)

Country Link
KR (1) KR100545826B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method

Also Published As

Publication number Publication date
KR20000043717A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
KR101192701B1 (en) Removal of impurity phases from electrochemical devices
US4663250A (en) Reduction of electrode dissolution
EP0682816B1 (en) Process for producing the cathode layer of molten carbonate fuel cells
CN112768737B (en) Preparation method of ultrathin dense electrolyte of solid oxide battery and ultrathin dense electrolyte obtained by preparation method
CN112299495A (en) Lithium-containing oxide precursor and preparation method thereof
CN112952041A (en) Garnet type solid electrolyte composite positive electrode and preparation method and application thereof
CN111224139B (en) Proton ceramic membrane fuel cell with composite structure and preparation
KR100545826B1 (en) Manufacturing method of fuel cell
KR20060088166A (en) Ni-al alloy anode for molten carbonate fuel cell by in-situ sintering the ni-al alloy and method for preparing the same
CN1167158C (en) Process for preparing nickel oxide-base cathode of fused carbonate fuel battery
JP3208935B2 (en) Method for producing electrode for molten carbonate fuel cell
CN114843569B (en) Proton-oxygen ion mixed conductor electrolyte preparation method, product and battery
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite
KR102203876B1 (en) Laminate with advanced efficiency for molten carbonate fuel cell, cathod comflex comprising the same and molten carbonate fuel cell comprising the same
KR102369060B1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded
KR19990081359A (en) Method for manufacturing anode of molten carbonate fuel cell
KR100332302B1 (en) A pile up method for matrix of molten carbonate fuel cell
CA2244969C (en) Process for the production of an electrode for a fused carbonate fuel cell, electrode produced according to this process and fused carbonate fuel cell provided with an electrode produced according to this process
JP3219220B2 (en) Air electrode precursor green sheet and molten carbonate fuel cell using the same
KR100331082B1 (en) A method for making anode of molten carbonate fuel cell
KR100331083B1 (en) An anode of molten carbonate fuel cell
KR100331081B1 (en) A method for making anode of molten carbonate fuel cell
CN117542974A (en) Flaky radiation type lithium-rich material, preparation method and application thereof in high-voltage solid-state battery
CN116119657A (en) Modified graphite material and preparation method and application thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140115

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160115

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 12

EXPY Expiration of term