KR100538767B1 - Paramagnetic nano particles coated with silica and method for preparing the same - Google Patents
Paramagnetic nano particles coated with silica and method for preparing the same Download PDFInfo
- Publication number
- KR100538767B1 KR100538767B1 KR10-2003-0010279A KR20030010279A KR100538767B1 KR 100538767 B1 KR100538767 B1 KR 100538767B1 KR 20030010279 A KR20030010279 A KR 20030010279A KR 100538767 B1 KR100538767 B1 KR 100538767B1
- Authority
- KR
- South Korea
- Prior art keywords
- silica
- particles
- water
- paramagnetic nanoparticles
- coating
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 27
- 230000005298 paramagnetic effect Effects 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 11
- 239000000377 silicon dioxide Substances 0.000 title claims description 11
- 239000002245 particle Substances 0.000 claims abstract description 16
- 238000002347 injection Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000006185 dispersion Substances 0.000 claims abstract description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000012377 drug delivery Methods 0.000 abstract description 5
- 230000005415 magnetization Effects 0.000 abstract description 5
- 102000004169 proteins and genes Human genes 0.000 abstract description 5
- 108090000623 proteins and genes Proteins 0.000 abstract description 5
- 238000000746 purification Methods 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 230000005291 magnetic effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010364 biochemical engineering Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002122 magnetic nanoparticle Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 hydroxyl ions Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000005408 paramagnetism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Manufacturing & Machinery (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Compounds Of Iron (AREA)
Abstract
본 발명은, 낮은 잔류자화 및 보자력을 가져서, 예를 들면, 단백질 분리 정제 또는 약물전달시스템에 응용되기에 매우 적합한 구조의 상자성 나노입자의 제조에 관한 것으로서, 실리카 전구체 중 하나인 물에 나노크기의 -Fe2O3 입자들을 직접분산시키는 입자분산단계와; -Fe2O3 입자가 분산되어 있는 물에 액상의 테트라 에톡시 실란[TEOS;Si(OC2H4)4]을 균일한 속도로 주입하는 주입단계와; 상기 주입단계 후 얻어진 수득물을 건조시키는 단계를 포함하는 것을 특징으로 한다.The present invention relates to the production of paramagnetic nanoparticles having a low residual magnetization and coercive force, for example, of a structure suitable for application in protein separation purification or drug delivery systems. A particle dispersion step of directly dispersing the Fe 2 O 3 particles; An injection step of injecting liquid tetra ethoxy silane [TEOS; Si (OC 2 H 4 ) 4 ] at a uniform rate into water in which -Fe 2 O 3 particles are dispersed; It characterized in that it comprises the step of drying the obtained product obtained after the injection step.
Description
본 발명은 자성 나노입자 분야에 관한 것으로서, 보다 상세하게는 낮은 잔류자화 및 보자력을 가져서, 예를 들면, 단백질 분리 정제 또는 약물전달시스템에 응용되기에 매우 적합한 구조의 상자성 나노입자의 제조에 관한 것이다. TECHNICAL FIELD The present invention relates to the field of magnetic nanoparticles, and more particularly, to the production of paramagnetic nanoparticles having a low residual magnetization and coercivity, which are very suitable for application in, for example, protein separation purification or drug delivery systems. .
기존에, 강자성 금속계 분말이 생물공정에 주로 이용되어 왔다. 여기에서, 생물공정은 자연적인 현상을 제어하여 인간이 원하는 데로 유익한 물질을 생산하게 하거나 이러한 현상을 활용하는 것이다.Conventionally, ferromagnetic metal powders have been mainly used for bioprocessing. Here, bioprocessing is to control natural phenomena to produce substances that are beneficial to human needs or to take advantage of these phenomena.
하지만, 이와 같은 강자성 금속계 분말은 높은 잔류자화 및 보자력을 가지고 있으며, 이로 인해, 단백질에 대한 분리·정제 효율이 떨어지고, 또한 약물전달 시스템에 응용되기에 부적합한 문제점을 가지고 있었다.However, such ferromagnetic metal powders have high residual magnetization and coercive force, and thus, the separation and purification efficiency of proteins is inferior, and they are also unsuitable for application to drug delivery systems.
이에 대해, 자성 나노입자에 실리카를 코팅하여 그 나노입자를 상자성화시키는 기술이 개발 또는 연구 중에 있다.On the other hand, a technology for paramagneticizing nanoparticles by coating silica on magnetic nanoparticles is under development or research.
이러한 종래 기술은 예를 들면, 졸-겔 코팅(sol-gel coating), 농축액 코팅(dense liquid coating), 2단계 코팅(two-step coating)기술을 이용하여 나노입자에 실리카를 코팅하도록 되어 있다.This prior art is designed to coat silica on nanoparticles using, for example, sol-gel coating, dense liquid coating, and two-step coating techniques.
하지만, 이러한 종래의 기술은, 알짜 반응에 상관없는 공정, 즉, 유기용매에 나노입자를 분산시킨 뒤, pH를 조절하고, 억제제 및 촉매제 등을 첨가하는 복잡한 제조공정을 거치므로, 제조비용이 많이 드는 것은 물론이고, 유기용매의 과다한 사용으로 인해 친환경적이지 못하다는 본질적인 문제점을 가지고 있었다. However, such a conventional technique has a high manufacturing cost because it undergoes a process that is irrelevant to a net reaction, that is, a nanoparticle is dispersed in an organic solvent, a pH is adjusted, and an inhibitor and a catalyst are added. Of course, there was an inherent problem that it is not environmentally friendly due to excessive use of organic solvents.
따라서, 본 발명의 목적은, 상자성체를 이루어 단백질 분리정제 및/또는 약물전달 시스템에 이용되기에 매우 적합한 상자성 나노입자를, 친환경적이고 비용절감적인 방법으로 제조하는 것이다. Accordingly, it is an object of the present invention to produce paramagnetic nanoparticles that are highly paramagnetic and are well suited for use in protein separation and / or drug delivery systems in an environmentally friendly and cost-effective manner.
상술한 목적을 달성하기 위해, 본 발명은, 실리카 전구체 중 하나인 물에 나노크기의 -Fe2O3 입자들을 직접 분산시키는 입자분산단계와; -Fe2O3 입자가 분산되어 있는 물에 액상의 테트라 에톡시 실란[TEOS;Si(OC2H4)4]을 균일한 속도로 주입하는 주입단계와; 상기 주입단계 후 얻어진 수득물을 건조시키는 단계를 포함하는 상자성 나노입자 제조방법을 제공한다.In order to achieve the above object, the present invention, the nano-sized water in one of the silica precursor A particle dispersion step of directly dispersing the Fe 2 O 3 particles; An injection step of injecting liquid tetra ethoxy silane [TEOS; Si (OC 2 H 4 ) 4 ] at a uniform rate into water in which -Fe 2 O 3 particles are dispersed; It provides a method for producing paramagnetic nanoparticles comprising the step of drying the obtained product obtained after the injection step.
이 때, 본 발명의 다른 특징에 따른 상자성 나노입자 제조방법은, 상기 주입단계 후, 상기 물을 교반하면서 에이징 처리하는 단계를 더 포함하는 것을 특징으로 한다.At this time, the paramagnetic nanoparticles manufacturing method according to another feature of the present invention, after the injection step, characterized in that it further comprises the step of aging treatment with stirring the water.
덧붙혀, 본 발명의 또 다른 특징에 따른 상자성 나노입자의 제조방법은, 얻어진 수득물과 지르코니아볼을 체망 내에 함께 장입한 후 상기 수득물을 체질하여 구상화시키는 단계를 더 포함하는 것을 특징으로 한다.In addition, the method for producing paramagnetic nanoparticles according to another aspect of the present invention is characterized in that it further comprises the step of spheroidizing the obtained product after charging the obtained product and the zirconia ball in the sieve together.
이 때, 상기 입자의 크기는 재료의 자성특성을 고려해서 10 내지 100㎚인 것이 바람직하며, 상기 주입단계에서의 TEOS의 주입속도는 너무 느린 주입에 의해 반응이 지연되거나 너무 빠른 주입에 의해 뭉치는 현상이 발생되지 않는 0.1 내지 0.7 ㎖/min인 것이 바람직하다.At this time, the particle size is preferably 10 to 100nm in consideration of the magnetic properties of the material, the injection rate of TEOS in the injection step is delayed by the injection too slow or aggregated by too fast injection It is preferable that it is 0.1-0.7 ml / min in which developing does not occur.
종래 실리카 코팅기술은 알짜반응과는 상관없는 용매에 코팅입자를 분산시켜 실리카의 전구체인 물과 TEOS를 각각 첨가하는 방법을 사용하여, 용매에 의한 오염이 심각하였지만, 본 발명은, 상기와 같이, 실리카 전구체 중 하나인 물에 -Fe2O3 입자를 직접분산시킨 후 TEOS를 주입하면서 실리카를 코팅하는 방식을 취하므로, 기존의 공정에 비해 매우 단순하며 친환경적이다.Conventional silica coating technology using a method of dispersing the coating particles in a solvent irrelevant to the net reaction and adding water and TEOS, respectively, which are precursors of silica, have serious contamination by the solvent, but the present invention, as described above, In water, one of the silica precursors Since direct dispersing of -Fe 2 O 3 particles and coating silica while injecting TEOS, it is very simple and eco-friendly compared to the existing process.
이제, 첨부된 도면을 참조로 하여 본 발명의 바람직한 실시예들이 상세하게 설명될 것이다.DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
<실시예 1><Example 1>
A. 400㎖ 증류수가 담긴 용기 내에 평균입경 50㎚인 -Fe2O3 입자 1g을 임펠러 혼합기를 이용하여 30분간 분산시켰다.A. A 50 nm average particle diameter in a vessel containing 400 ml distilled water. 1 g of -Fe 2 O 3 particles were dispersed for 30 minutes using an impeller mixer.
B. 그 후, TEOS 40㎖를 마이크로 펌프를 이용해 0.4㎖/분의 주입속도로써 상기 증류수에 주입하였다.B. Thereafter, 40 ml of TEOS was injected into the distilled water using a micropump at an injection rate of 0.4 ml / min.
C. 그 후, 임펠러를 계속 돌리면서 일주일간 에이징(aging) 처리하였다.C. Thereafter, the impeller was rotated and aged for one week.
D. 100메쉬 체망을 이용하여 지르코니아볼을 체망 바닥의 2/3 가량이 덮일 만큼 넣고 건조된 코팅체를 체질하여, 그 코팅체를 구상화시켰다.D. Using a 100 mesh sieve, the zirconia ball was covered with about 2/3 of the bottom of the sieve, and the dried coating was sieved to spheroidize the coating.
상기의 실시예로 제조된 코팅체는, 도 1에 도시된 것과 같이, -Fe2O3 나노입자 주변에 실리카(SiO2)가 코팅되어 있고, 수산화기 이온(OH-)이 붙어 있는 형태를 갖게 된다.The coating prepared in the above embodiment, as shown in Figure 1, Silica (SiO 2 ) is coated around -Fe 2 O 3 nanoparticles, and hydroxyl ions (OH − ) are attached.
<실시예 2; TEM 사진 시험><Example 2; TEM photo test>
도 2a 및 도 2b의 TEM 사진을 통해, 실시예 1에 따라 제조된 코팅체는 50㎚ 크기의 Fe2O3 표면에 5㎚ 두께의 실리카가 고르게 코팅되어 있음을 알 수 있었다.From the TEM photographs of FIGS. 2A and 2B, it could be seen that the coating prepared according to Example 1 was evenly coated with 5 nm silica on a 50 nm Fe 2 O 3 surface.
한편, 비표면적 측정결과는 7.062E+0.2m2으로 측정되어 종래 입자들에 비해 큰 값을 가지는 것으로 나타났다.Meanwhile, the specific surface area measurement result was 7.062E + 0.2m 2 It was measured and found to have a large value compared to conventional particles.
<실시예 3; 기공평가 시험><Example 3; Groundbreaking test>
실시예 1을 통해 얻어진 코팅체의 미세기공 분석결과는 도 3a의 흡착그래프(absorptions graph) 및 도 3b의 BET 그래프(isotherm)를 통해 확인할 수 있었다.The micropore analysis result of the coating obtained through Example 1 was confirmed through the adsorption graph (absorptions graph) of Figure 3a and the BET graph (isotherm) of Figure 3b.
즉, 도 3a의 그래프로부터, 코팅에 의해 형성된 미세기공의 크기가 약 10㎚ 정도로, 단일 분포(mono-distribution)한다는 것을 확인할 수 있었다.That is, it can be seen from the graph of FIG. 3A that the size of the micropores formed by the coating is about 10 nm, which is mono-distribution.
또한, 도 3b의 BET 그래프를 통해, 그 미세기공이 원통형 형태의 미세기공구조(cylindrical pore structure)임을 확인할 수 있었다.In addition, it was confirmed through the BET graph of FIG. 3B that the micropores were cylindrical pore structures (cylindrical pore structures).
다시 말해, 나노입자에 코팅된 실리카 코팅층(shell)은 나노크기의 다기공성 구조였다.In other words, the silica coating layer (shell) coated on the nanoparticles was a nano-sized porous structure.
<실시예 4; 자성특성 분석시험><Example 4; Magnetic Property Analysis Test>
실시예 1을 통해 얻어진 코팅체는 VSM 자성특성 분석결과, 도 4a의 그래프로 표시되어졌고, FT-IR 측정결과, 도 4b와 같은 FT-IR 그래프가 얻어졌다.The coating body obtained in Example 1 was shown in the graph of FIG. 4A as a result of VSM magnetic characteristic analysis, and the FT-IR graph as shown in FIG. 4B was obtained as a result of FT-IR measurement.
도 4a를 참조하면, 상기의 코팅체가 상자성을 가지며, 잔류자화값과 보자력값이 낮음을 알 수 있다. 또한, 도 4b를 참조하면, 실시예 1에 따라 제조된 코팅체에서 OH- 의 피크(peak)가 확인되었다.Referring to Figure 4a, it can be seen that the above coating has a paramagnetic property, the residual magnetization value and the coercive force value is low. In addition, referring to Figure 4b, the peak of OH - in the coating prepared according to Example 1 was confirmed.
상술한 시험결과로부터, 본 실시예에 따라 제조된 코팅체가 상자성의 물질로서 낮은 잔류자화 및 보자력값을 가져, 자장이 소거되었을 때, 재 분산에 유리하며, 또한, 비표면적이 커서 수율 및 속도향상에 매우 유리하고, 공정상 유해물질의 첨가나 발생이 없어, 무독성으로서 화학적으로 안정한 물질이므로, 인체에 무해한 물질임을 알 수 있었다.From the above test results, the coating prepared according to this embodiment has a low residual magnetization and coercive force value as a paramagnetic material, which is advantageous for redispersion when the magnetic field is erased, and also because the specific surface area is large, yield and speed are improved. It was found to be very beneficial to the human body, because it is very chemically stable and non-toxic, with no addition or generation of harmful substances in the process.
결과적으로, 본 실시예에 따라 제조된 코팅체, 즉 상자성 나노입자는 단백질 분리 정제 및/또는 약물전달시스템에 매우 적합한 물질이다.As a result, the coating prepared according to this embodiment, ie paramagnetic nanoparticles, is a very suitable material for protein separation purification and / or drug delivery systems.
본 발명에 따라 제조된 나노입자는, 종래 생물공정용 자성입자들이 가지고 있는 문제점인 강자성으로 인한 낮은 분리-정제 효율문제와 높은 운전비용 문제, 운전 및 제조에 필요한 고가의 장비로 인한 낮은 경제성 등의 문제점을 해결할 수 있는 효과를 갖는다.Nanoparticles prepared according to the present invention, such as low separation-purification efficiency problems due to the ferromagnetic problems, high operating cost problems, low economical efficiency due to the expensive equipment required for operation and manufacturing, such as problems with the conventional bioprocess magnetic particles It has the effect of solving the problem.
또한, 본 발명에 따른 나노입자 제조방법은 그 공정이 매우 단순하고 깨끗하며, 친환경적이라는 이점을 갖는다. In addition, the nanoparticle manufacturing method according to the present invention has the advantage that the process is very simple, clean, environmentally friendly.
덧붙혀, 본 발명에 따라 제조된 나노입자는, 비표면적이 거대한 미세기공구조로 리간드(ligand)가 확보되며, 상자성에 의해 인가된 자장에 의해 민감하게 반응하므로 단백질 분리 정제 또는 약물전달시스템 등에 바람직하게 이용될 수 있는 매우 효율적인 물질이다.In addition, the nanoparticles prepared according to the present invention preferably have a specific surface area having a large pore structure and ligands, and are sensitively reacted by a magnetic field applied by paramagnetism. It is a very efficient material that can be used.
도 1은 본 발명에 따라 제조된 상자성 나노입자의 개략적인 형태를 나타내는 개념도.1 is a conceptual diagram showing a schematic form of paramagnetic nanoparticles prepared according to the present invention.
도 2a 및 도 2b는 본 발명의 실시예 1에 따라 제조된 상자성 나노입자의 TEM 사진.2A and 2B are TEM photographs of paramagnetic nanoparticles prepared according to Example 1 of the present invention.
도 3a는 본 발명의 실시예 1에 따라 제조된 상자성 나노입자의 기공성 평가를 위해 도시된 흡착그래프.Figure 3a is an adsorption graph shown for the porosity evaluation of paramagnetic nanoparticles prepared according to Example 1 of the present invention.
도 3b는 본 발명의 실시예 1에 따라 제조된 상자성 나노입자의 기공성 평가를 위해 도시된 BET 그래프.Figure 3b is a BET graph shown for the porosity evaluation of paramagnetic nanoparticles prepared according to Example 1 of the present invention.
도 4a는 본 발명의 실시예 1에 따라 제조된 상자성 나노입자의 VSM 자성특성 평가결과를 도시한 그래프.Figure 4a is a graph showing the VSM magnetic properties evaluation results of the paramagnetic nanoparticles prepared according to Example 1 of the present invention.
도 4b는 본 발명의 실시예 1에 따라 제조된 상자성 나노입자의 FT-IR 그래프. 4B is an FT-IR graph of paramagnetic nanoparticles prepared according to Example 1 of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0010279A KR100538767B1 (en) | 2003-02-19 | 2003-02-19 | Paramagnetic nano particles coated with silica and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0010279A KR100538767B1 (en) | 2003-02-19 | 2003-02-19 | Paramagnetic nano particles coated with silica and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040074807A KR20040074807A (en) | 2004-08-26 |
KR100538767B1 true KR100538767B1 (en) | 2005-12-26 |
Family
ID=37361432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0010279A KR100538767B1 (en) | 2003-02-19 | 2003-02-19 | Paramagnetic nano particles coated with silica and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100538767B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1934609A4 (en) * | 2005-09-08 | 2009-06-24 | Biterials Co Ltd | Magnetic nanoparticle having fluorescent and preparation method thereof and use thereof |
KR100745745B1 (en) * | 2006-02-21 | 2007-08-02 | 삼성전기주식회사 | Nano-composite material and the maunfacturing method for the same |
KR100762969B1 (en) * | 2006-10-04 | 2007-10-04 | 요업기술원 | High efficient separation for nucleic acids and proteins with functionalized silica-coated magnetic nanoparticles |
WO2020080833A1 (en) * | 2018-10-17 | 2020-04-23 | 주식회사 이지다이아텍 | Biomaterial-detecting microparticle and biomaterial detection method using same |
-
2003
- 2003-02-19 KR KR10-2003-0010279A patent/KR100538767B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20040074807A (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Caruso et al. | Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach | |
Bagheri et al. | Modified iron oxide nanomaterials: functionalization and application | |
Fuertes et al. | A facile route for the preparation of superparamagnetic porous carbons | |
Xie et al. | Application of functionalized magnetic nanoparticles in sample preparation | |
Zhang et al. | Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes | |
Hou et al. | Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite | |
Zhang et al. | Fe3O4@ SiO2@ CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase | |
WO1998031461A1 (en) | Silica adsorbent on magnetic substrate | |
Hu et al. | Magnetic nanoparticle sorbents | |
CN102623125B (en) | A kind of Fe containing many magnetic kernels 3o 4/ SiO 2the preparation method of nanoparticle | |
Liu et al. | Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion | |
Zhang et al. | Preparation and evaluation of Fe 3 O 4-core@ Ag-shell nanoeggs for the development of fingerprints | |
Ziyadi et al. | Preparation and characterization of magnetic α-Fe2O3 nanofibers coated with uniform layers of silica | |
Fu et al. | Preparation and characteristics of core–shell structure nickel/silica nanoparticles | |
Zhang et al. | Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles | |
JP3735990B2 (en) | Method for producing magnetic silica gel | |
Arman et al. | Spherical SiO2 growth on LaFeO3 perovskite to create core–shell structures for Cd (II) adsorption on its surface | |
KR100538767B1 (en) | Paramagnetic nano particles coated with silica and method for preparing the same | |
Zhang et al. | Synthesis of composite particles with Fe 3 O 4 core and ag shell for the development of fingerprints | |
EP3257580A1 (en) | Preparation process for of functionalized superparamagnetic adsorbents with dimethyl-dichlorosilane (dmdcls) as precursor | |
CN107029802A (en) | A kind of method for preparing magnetic porous material | |
Shao et al. | Facile preparation of tiny gold nanoparticle loaded magnetic yolk–shell carbon nanoreactors for confined catalytic reactions | |
Abramson et al. | Highly porous and monodisperse magnetic silica beads prepared by a green templating method | |
Zhang et al. | Biotemplate-directed fabrication of size-controlled monodisperse magnetic silica microspheres | |
Mohebbi et al. | Synthesis and characterisation of Fe3O4 at MPTMS at Au nanocomposite by sol–gel method for the removal of methylene blue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111010 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |