KR100537402B1 - Determination Method of Hydroxy-PCBs in Urine - Google Patents

Determination Method of Hydroxy-PCBs in Urine Download PDF

Info

Publication number
KR100537402B1
KR100537402B1 KR10-2003-0044460A KR20030044460A KR100537402B1 KR 100537402 B1 KR100537402 B1 KR 100537402B1 KR 20030044460 A KR20030044460 A KR 20030044460A KR 100537402 B1 KR100537402 B1 KR 100537402B1
Authority
KR
South Korea
Prior art keywords
hydroxy
pcbs
fiber
adsorption
gas chromatography
Prior art date
Application number
KR10-2003-0044460A
Other languages
Korean (ko)
Other versions
KR20050004322A (en
Inventor
박송자
표희수
홍지은
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2003-0044460A priority Critical patent/KR100537402B1/en
Publication of KR20050004322A publication Critical patent/KR20050004322A/en
Application granted granted Critical
Publication of KR100537402B1 publication Critical patent/KR100537402B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample

Abstract

본 발명은 뇨 시료 중에 함유된 히드록시 PCBs (hydroxy polychlorinated biphenyls)를 동시 분석하기 위하여, 고상 미량추출 (SPME, solid-phase microextraction)을 이용하여 추출하는 방법을 사용하여 추출 후 연속적으로 SPME 파이버 (fiber) 상에서 TMS 유도체화하여 분석하는 것을 특징으로 한다. 본 발명에서 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기를 사용하여 히드록시 PCBs의 농도를 분석한다. 본 발명의 방법에 의해 뇨 시료을 분석할 경우 우수한 감도, 분석 시간의 단축, 간편성 및 경제성을 얻을 수 있을 뿐만 아니라, 추출용매 사용시 발생되는 2차 오염을 방지할 수 있다.In order to simultaneously analyze hydroxy PCBs (hydroxy polychlorinated biphenyls) contained in urine samples, SPME fibers (fiber) are extracted continuously using a method of extracting using solid-phase microextraction (SPME). TMS derivatization on) characterized in that the analysis. In the present invention, the concentration of hydroxy PCBs is analyzed using gas chromatography or gas chromatography / mass spectrometry. When the urine sample is analyzed by the method of the present invention, it is possible not only to obtain excellent sensitivity, shorten analysis time, simplicity and economy, but also to prevent secondary contamination generated when using an extraction solvent.

Description

뇨 중에 잔류하는 히드록시 PCBs의 검출법{Determination Method of Hydroxy-PCBs in Urine}Determination Method of Hydroxy-PCBs in Urine

본 발명은 뇨 시료에서 히드록시 PCBs (hydroxy polychlorinated biphenyls) 대사체를 검출하는 검출법으로, 히드록시 대사체를 SPME 파이버에 흡착시킴으로써 추출한 후 일정한 반응 시간 및 온도하에서 트리메틸실릴(TMS) 유도체화를 한 후 이를 직접 기체 크로마토그래프(GC) 또는 기체 크로마토그래프/질량 분석기(GC/MS)를 사용하여 분석하는 방법에 관한 것이다. 본 발명의 방법은 SPME 파이버 상에서 추출 및 유도체화함으로써 우수한 감도, 분석 시간의 단축, 간편성, 및 경제성 등의 장점이 있어 뇨 시료에서 미량으로 잔류하는 히드록시 PCBs 대사체의 모니터링에 효과적으로 널리 사용될 수 있다.The present invention is a detection method for detecting hydroxy PCBs (hydroxy polychlorinated biphenyls) metabolites in urine samples, the hydroxy metabolites are extracted by adsorption on SPME fibers, and then trimethylsilyl (TMS) derivatization under a constant reaction time and temperature It is directed to a method of analyzing this using a gas chromatograph (GC) or gas chromatograph / mass spectrometer (GC / MS). The method of the present invention has advantages such as excellent sensitivity, shorter analysis time, simplicity, and economy by extracting and derivatizing on SPME fibers, and thus can be effectively used for monitoring hydroxy PCBs metabolites remaining in trace amounts in urine samples. .

PCBs는 열에 안정하고 전기 절연성이 양호하며 화학적으로 불활성이고 산 및 알칼리에 잘 견디어, 변압기 및 콘텐서 등의 절연유 및 열매체로 널리 사용되고 있으나, 독성 물질로서 오염 물질 또는 유독물로 분류되어 관리되고 있다.PCBs are thermally stable, have good electrical insulation, chemically inert, resistant to acids and alkalis, and are widely used as insulating oils and heat mediums such as transformers and capacitors, but are classified and managed as toxic substances or pollutants.

또한, PCBs는 내분비계 장애 물질의 하나로, 특히 그의 대사체인 히드록시 PCBs는 생체내에서 에스트로겐의 활성을 억제하는 등 인체에 유해한 영향을 미치기 때문에 이들의 미량 분석법의 확립이 요구된다.In addition, PCBs are one of endocrine disruptors, and especially their metabolites, hydroxy PCBs, have a harmful effect on the human body, such as inhibiting the activity of estrogen in vivo.

본 발명에서 분석하고자 하는 히드록시 PCBs는 PCBs의 대표적인 대사체로서 최근까지 환경 및 생체 내에서 지속적으로 검출되고 있는 물질이다. 생체 내에 PCBs가 유입될 경우 대사 과정을 통해 생성되는 히드록시 PCBs는 체내에서 에스트로겐 수용체의 저해제로 작용하거나 갑상선 호르몬의 대사 과정을 저해하기도 하고 세포나 미토콘트리아의 산화적 인산화 반응을 방해하는 등 내분비계 장애 물질로 작용하는 것으로 알려져 있다.Hydroxy PCBs to be analyzed in the present invention are representative metabolites of PCBs and are substances that have been continuously detected in the environment and in vivo until recently. When PCBs are introduced into a living body, hydroxy PCBs produced through metabolic processes may act as inhibitors of estrogen receptors in the body, inhibit metabolic processes of thyroid hormones, and interfere with oxidative phosphorylation of cells or mitochondria. It is known to act as a system barrier.

극미량의 히드록시 PCBs를 분석하기 위해서는 기체 크로마토그래피/질량 분석기 (GC/MS)와 같은 감도가 우수하고 분리도가 좋은 기기분석법이 요구된다. 그러나 이들 물질은 극성이 크기 때문에 GC 또는 GC/MS로 직접 분석이 어려우며 이러한 문제점을 해결하기 위해서는 추출, 농축 및 유도체화 과정이 필요하다. 이와 같이 추출 및 유도체화 과정을 거치게 되는 경우 복잡한 여러 단계의 시료 전처리 과정을 거쳐야 하기 때문에 시간이 많이 소모되고 고체상 또는 유기 용매, 유도체화 시약 등이 필요하다.Analysis of trace amounts of hydroxy PCBs requires instrumentation with good sensitivity and separation, such as gas chromatography / mass spectrometry (GC / MS). However, since these substances have high polarity, it is difficult to directly analyze them by GC or GC / MS. To solve these problems, extraction, concentration and derivatization processes are required. As such, when the extraction and derivatization process is performed, it is time-consuming and requires a solid phase or an organic solvent, a derivatization reagent, and the like because it requires a complicated sample pretreatment process.

따라서, 신속하고 경제적이며 미량까지 분석이 가능한 히드록시 PCBs의 검출법이 요구되고 있다.Therefore, there is a need for a method for detecting hydroxy PCBs that can be analyzed quickly, economically and in trace amounts.

따라서, 본 발명은 히드록시 PCBs 대사체를 생체 시료, 특히 뇨 시료중에서 효과적으로 분석할 수 있도록 하며 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석법으로 선택적이고 우수한 감도를 나타낼 수 있는 분석 방법을 제공함으로써 우수한 감도, 정확성, 분석 시간의 단축, 저비용 및 간편성 등을 만족시킬 수 있고, 생체 시료, 특히 뇨 시료 분석에 응용할 수 있는 방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention enables the effective analysis of hydroxy PCBs metabolites in biological samples, especially urine samples, and provides an analytical method capable of exhibiting selective and excellent sensitivity by gas chromatography or gas chromatography / mass spectrometry. It is an object of the present invention to provide a method that can be applied to the analysis of biological samples, especially urine samples, which can satisfy the requirements of accuracy, accuracy, short analysis time, low cost and simplicity.

본 발명자들은 SPME 파이버를 이용하여 뇨 시료 중 히드록시 PCBs를 흡착 및 추출한 후 바로 트리메틸실릴(TMS) 유도체화하고 이를 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기를 사용하여 분석할 경우 신속하고 경제적으로 히드록시 PCBs를 미량의 농도까지 분석할 수 있다는 것을 발견하여 본 발명에 이르게 되었다.We adsorbed and extracted hydroxy PCBs in urine samples using SPME fiber, and then trimethylsilyl (TMS) derivatized immediately and analyzed by gas chromatography or gas chromatography / mass spectrometry The discovery that Roxy PCBs can be analyzed to trace concentrations has led to the present invention.

이하, 본 발명의 방법에 대해 상세하게 설명하겠다.Hereinafter, the method of the present invention will be described in detail.

본 발명의 방법은 뇨 시료 중 히드록시 PCBs를 SPME의 파이버에 흡착시키는 단계, SPME의 파이버에 흡착된 히드록시 PCBs를 트리메틸실릴 (TMS) 유도체화하는 단계, 및 TMS 유도체화된 히드록시 PCBs를 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기로 분석하는 단계를 포함한다.The method of the present invention comprises the steps of adsorbing hydroxy PCBs in a urine sample to fibers of SPME, derivatizing hydroxy PCBs adsorbed to SPME fibers, and trimethylsilyl (TMS) derivatization, and gasifying TMS derivatized hydroxy PCBs. Analysis by chromatography or gas chromatography / mass spectrometry.

본 발명에서는 생체 시료, 특히 뇨 시료로부터 히드록시 PCBs를 추출 및 유도체화하기 위하여 SPME를 이용한다. 히드록시 PCBs는 극성이 큰 물질들이므로 유도체화를 거치지 않으면 GC에서 분석이 어렵다. 또한 뇨 시료 중에 포함되어 있는 물질을 추출하는 데는 여러 단계의 추출과 불순물제거 과정이 필요하고 독성이 큰 유기 용매를 다량 사용해야 하는 등의 문제점이 발생한다. 본 발명에서는 이러한 단점을 보완하기 위해서 유기 용매를 사용하여 히드록시 PCBs를 추출하지 않고 직접 SPME 파이버에 흡착시킨 후 SPME 파이버에 흡착된 히드록시 PCBs를 모두 TMS 유도체화한다. 이러한 유도체화 반응의 예를 들면 하기 반응식 1과 같다.In the present invention, SPME is used to extract and derivatize hydroxy PCBs from biological samples, particularly urine samples. Since hydroxy PCBs are highly polar substances, they are difficult to analyze in GC without derivatization. In addition, the extraction of substances contained in the urine sample requires several steps of extraction and impurity removal processes, and a large amount of highly toxic organic solvents are used. In the present invention, in order to compensate for these disadvantages, the organic solvent is used to directly adsorb the hydroxy PCBs without extracting the hydroxy PCBs to the SPME fiber, and then all TMS derivatized hydroxy PCBs adsorbed on the SPME fiber. Examples of such derivatization reactions are shown in Scheme 1 below.

상기 식에서, X는 Cl 또는 NCOCF3이다.Wherein X is Cl or NCOCF 3 .

먼저 SPME 파이버로의 흡착 과정에서는 흡착 시간, 흡착 온도, 파이버의 종류 등이 매우 중요하다. 흡착 시간은 약 60분 이상, 흡착 온도는 약 90℃ 이상이 적합하며, 파이버는 PDMS (폴리디메틸실록산), PA (폴리아크릴레이트) 및 PDMS-DVB (폴리디메틸실록산-디비닐벤젠) 파이버 등 모든 파이버가 본 발명에 따라 사용가능하나, PDMS-DVB 파이버가 가장 적합하다.First, the adsorption time, adsorption temperature, type of fiber, etc. are very important in the adsorption process into SPME fibers. Adsorption time of about 60 minutes or more and adsorption temperature of about 90 ° C or more are suitable, and the fibers are all made of PDMS (polydimethylsiloxane), PA (polyacrylate) and PDMS-DVB (polydimethylsiloxane-divinylbenzene) fibers. Fibers can be used according to the invention, although PDMS-DVB fibers are most suitable.

TMS 유도체화 과정에서는 약 60℃의 온도에서 약 5분 이상, 바람직하게는 약 5분 내지 30분의 반응 시간이 가장 적절하며, 반응 시약은 N,N-비스(트리메틸실릴)트리플루오로아세트아미드 (BSTFA)를 사용하며 사용량은 약 10㎕가 적합하다. 또한, 뇨 시료와 같이 매질이 복잡한 시료인 경우 파이버를 직접 시료에 접촉시킬 경우 파이버의 오염이 급속히 일어나므로 이러한 문제점을 해결하기 위하여 도 1에 나타낸 바와 같은 형태로 헤드스페이스 (headspace) 위치에 파이버를 놓고 흡착 및 유도체화를 실시한다.In the TMS derivatization process, a reaction time of at least about 5 minutes, preferably about 5 to 30 minutes, at a temperature of about 60 ° C. is most suitable, and the reaction reagent is N, N-bis (trimethylsilyl) trifluoroacetamide (BSTFA) is used and the dosage is about 10 μl. In addition, in the case of a sample having a complex medium such as a urine sample, when the fiber is directly contacted with the sample, the fiber is rapidly contaminated. Therefore, in order to solve the problem, the fiber is placed in the headspace position as shown in FIG. The adsorption and derivatization are carried out.

이와 같이 유도체화된 히드록시 PCBs를 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기를 사용하여 분석한다. 분석시 본 발명에서 이동상으로 사용될 수 있는 기체는 기체 크로마토그래피에서 일반적으로 사용되는 모든 기체가 가능하며, 바람직하게는 산화에 불활성인 기체, 즉 질소, 헬륨 및 수소 등이 이동상으로 사용될 수 있다. 또한, 본 발명에 따라 사용될 수 있는 컬럼의 경우는 컬럼의 길이와 내경에는 특별한 제한이 없으며 단지 중간 정도 극성이면 된다.The derivatized hydroxy PCBs are analyzed using gas chromatography or gas chromatography / mass spectrometry. Gases that can be used as mobile phases in the present invention in the analysis can be any gas generally used in gas chromatography, preferably gases which are inert to oxidation, ie nitrogen, helium and hydrogen can be used as the mobile phase. In addition, in the case of a column that can be used according to the present invention, there is no particular limitation on the length and the inner diameter of the column, but only a moderate polarity.

이와 같이 본 발명에 따라 히드록시 PCBs를 추출하면 유기 용매를 전혀 사용하지 않고 SPME 파이버에 흡착하여 추출을 완성할 수 있으며 또한 흡착된 히드록시 PCBs를 SPME 파이버 상에서 TMS 유도체화함에 따라 직접 GC/MS로 분석이 가능해진다. BSTFA를 사용하여 유도체화할 경우 추출 후 모든 용매를 증발시킨 다음 반응이 가능하지만 이러한 경우 별도의 추출과정과 증발 등의 복잡한 과정을 거쳐야 하며 60℃ 이상의 반응기에서 30분 이상의 반응 시간이 소요되어야 반응이 완결되는 단점이 있으나, 본 발명을 따를 경우 약 60분 정도의 흡착 후 5분간의 반응만으로 모든 추출과 유도체화가 종결되므로 매우 간편하게 히드록시 PCBs를 분석할 수 있다.As described above, if the hydroxy PCBs are extracted, the hydroxy PCBs may be adsorbed onto the SPME fiber without using any organic solvent to complete the extraction. Also, the hydroxy PCBs may be directly converted into GC / MS by derivatizing the TMS on the SPME fiber. Analysis is possible. In case of derivatization using BSTFA, all solvents can be evaporated and then evaporated after extraction, but in this case, it must go through a separate extraction process and evaporation process, and the reaction is completed when the reaction time is over 30 minutes in a reactor of 60 ℃ or higher. However, according to the present invention, since all extraction and derivatization are terminated by reaction for about 5 minutes after adsorption for about 60 minutes, hydroxy PCBs can be analyzed very simply.

이하, 하기 실시예로 본 발명을 보다 구체적으로 설명하겠지만, 본 발명은 어떠한 식으로든 하기 실시예에 제한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples in any way.

하기 실시예에서 사용된 시약은 다음과 같다.The reagents used in the examples below are as follows.

- 11종 히드록시 PCBs의 표준물질 용액: n-헥산 1㎖ 당 각각의 표준물질 10㎍, Accustandard사, (3-히드록시-4,4'-디클로로비페닐(3-OH-4,4'-DCB), 2-히드록시-2',3,5'-트리클로로비페닐(2-OH-2',3,5'-TrCB), 2-히드록시-2',5,5'-트리클로로비페닐(2-OH-2',5,5'-TrCB), 4-히드록시-3,4',5-트리클로로비페닐(4-OH-3,4',5-TrCB), 4-히드록시-2',3',4',5'-테트라클로로비페닐(4-OH-2',3',4',5'-TeCB), 4-히드록시-2',3,5,5'-테트라클로로비페닐(4-OH-2',3,5,5'-TeCB), 4,4'-디히드록시-3,3',5,5'-테트라클로로비페닐(4,4'-DiOH-3,3',5,5'-TeCB), 4-히드록시-2',3,3',4',5'-펜타클로로비페닐(4-OH-2',3,3',4',5'-PeCB), 2-히드록시-2',3',4',5,5'-펜타클로로비페닐(2-OH-2',3',4',5,5'-PeCB), 4-히드록시-2',3,3',4',5,5'-헥사클로로비페닐(4-OH-2',3,3',4',5,5'-HxCB), 4-히드록시-2',3,3',5,5',6-헥사클로로비페닐(4-OH-2',3,3',5,5',6-HxCB)) - standard solution of 11-hydroxy-PCBs: n- hexane each standard 10㎍, Accustandard four per 1㎖, (3- hydroxy-4,4'-dichloro-biphenyl (3-OH-4,4 ' -DCB), 2-hydroxy-2 ', 3,5'-trichlorobiphenyl (2-OH-2', 3,5'-TrCB), 2-hydroxy-2 ', 5,5'-trichloro Lobbyphenyl (2-OH-2 ', 5,5'-TrCB), 4-hydroxy-3,4', 5-trichlorobiphenyl (4-OH-3,4 ', 5-TrCB), 4- Hydroxy-2 ', 3', 4 ', 5'-tetrachlorobiphenyl (4-OH-2', 3 ', 4', 5'-TeCB), 4-hydroxy-2 ', 3,5 , 5'-tetrachlorobiphenyl (4-OH-2 ', 3,5,5'-TeCB), 4,4'-dihydroxy-3,3', 5,5'-tetrachlorobiphenyl ( 4,4'-DiOH-3,3 ', 5,5'-TeCB), 4-hydroxy-2', 3,3 ', 4', 5'-pentachlorobiphenyl (4-OH-2 ' , 3,3 ', 4', 5'-PeCB), 2-hydroxy-2 ', 3', 4 ', 5,5'-pentachlorobiphenyl (2-OH-2', 3 ', 4 ', 5,5'-PeCB), 4-hydroxy-2', 3,3 ', 4', 5,5'-hexachlorobiphenyl (4-OH-2 ', 3,3', 4 ' , 5,5'-HxCB), 4-hydroxy-2 ', 3,3', 5,5 ', 6-hexachlorobiphenyl (4-OH-2', 3,3 ', 5,5' , 6-HxCB))

- 피렌-d10 용액: n-헥산 1㎖ 당 10㎍, Aldrich사 - pyrene -d 10 solution: n- hexane 10㎍, Aldrich Co. per 1㎖

- N,N-비스(트리메틸실릴)-트리플루오로아세트아미드 (BSTFA): Aldrich사N, N-bis (trimethylsilyl) -trifluoroacetamide (BSTFA): Aldrich

- N-(tert-부틸디메틸실릴)-N-에틸트리플루오로아세트아미드 (MTBSTFA): Aldrich사N- (tert-butyldimethylsilyl) -N-ethyltrifluoroacetamide (MTBSTFA): Aldrich

- 펜타플루오로프로피온산 무수물 (PFPA): Aldrich사Pentafluoropropionic anhydride (PFPA): from Aldrich

- 헵타플루오로부티르산 무수물 (HFBA): Aldrich사Heptafluorobutyric anhydride (HFBA): from Aldrich

<실시예 1><Example 1>

본 실시예는 흡착 온도에 따른 흡착율을 보기 위한 것이다.This embodiment is for viewing the adsorption rate according to the adsorption temperature.

4개의 4㎖의 바이알을 준비하여 각각의 바이알에 공시료 (PCB 투여 전 쥐 (rat)의 뇨) 2㎖씩 넣은 후 11종 히드록시 PCBs의 표준물질 용액을 각각 10㎕ 넣고 내부표준물질인 피렌-d10 용액을 10㎕ 첨가한 후 PDMS-DVB 파이버 홀더를 바이알 속 용매의 수면위 헤드스페이스 (headspace)에 고정시킨 다음, 파이버 홀더의 니들에서 파이버를 빼내어 수면위 1cm 정도의 위치에서 노출시켰다. 이때 가열기의 온도를 각각 20, 40, 60, 90℃로 조절하여 바이알을 1시간 동안 가열하면서 흡착시켰다. 히드록시 PCBs가 흡착된 파이버들을 꺼내어 60℃의 가열기에서 온도조절된 BSTFA 10㎕ 용액의 헤드스페이스에서 다시 노출시켜 유도체화하였다.Four 4 ml vials were prepared, and 2 ml of blank sample (rat urine prior to PCB administration) was added to each vial, followed by 10 μl of standard solution of 11 hydroxy PCBs. After adding 10 µl of the -d 10 solution, the PDMS-DVB fiber holder was fixed in the headspace above the water of the solvent in the vial, and the fiber was removed from the needle of the fiber holder and exposed at a position of about 1 cm above the water. At this time, the temperature of the heater was adjusted to 20, 40, 60 and 90 ° C., respectively, and the vial was adsorbed while heating for 1 hour. The hydroxy PCBs adsorbed fibers were taken out and derivatized by exposing again in the headspace of a 10 μl solution of temperature controlled BSTFA in a 60 ° C. heater.

흡착도 확인을 위하여 유도체화된 히드록시 PCBs가 흡착된 파이버를 기체 크로마토그래피/질량 분석기의 주입구에 주입한 후 기체 크로마토그래피의 오븐 온도를 올리면서 11종의 히드록시 PCBs를 분리하고 질량 분석기를 이용하여 검출하여 하기 표 1에 나타낸 각 물질의 선택 이온의 크기에 따라 흡착도를 비교하였다. 그 결과는 도 2에 나타낸 것과 같고 위의 4가지 온도중 90℃에서 흡착한 경우 가장 높은 흡착도를 나타내었다.In order to check the adsorption degree, the derivatized hydroxy PCBs adsorbed fibers were injected into the inlet of the gas chromatography / mass spectrometer, and eleven hydroxy PCBs were separated by increasing the oven temperature of the gas chromatography. The degree of adsorption was compared according to the size of the selected ions of the substances shown in Table 1 below. The results are as shown in Figure 2 and showed the highest adsorption degree when the adsorption at 90 ℃ of the above four temperatures.

No.No. 대상 물질Target substance 선택 이온 (m/z)Ion (m / z) optional 1One 3-OH-4,4'-DCB3-OH-4,4'-DCB 93 310 31293 310 312 22 2-OH-2',3,5'-TrCB2-OH-2 ', 3,5'-TrCB 93 344 34693 344 346 33 2-OH-2',5,5'-TrCB2-OH-2 ', 5,5'-TrCB 93 344 34693 344 346 44 4-OH-3,4',5-TrCB4-OH-3,4 ', 5-TrCB 173 344 346173 344 346 55 4-OH-2',3',4',5'-TeCB4-OH-2 ', 3', 4 ', 5'-TeCB 365 380 378365 380 378 66 4-OH-2',3,5,5'-TeCB4-OH-2 ', 3,5,5'-TeCB 365 363 380365 363 380 77 4,4'-DiOH-3,3',5,5'-TeCB4,4'-DiOH-3,3 ', 5,5'-TeCB 93 466 46893 466 468 88 4-OH-2',3,3',4',5'-PeCB4-OH-2 ', 3,3', 4 ', 5'-PeCB 93 412 41493 412 414 99 2-OH-2',3',4',5,5'-PeCB2-OH-2 ', 3', 4 ', 5,5'-PeCB 93 412 41493 412 414 1010 4-OH-2',3,3',4',5,5'-HxCB4-OH-2 ', 3,3', 4 ', 5,5'-HxCB 433 446 448433 446 448 1111 4-OH-2',3,3',5,5',6-HxCB4-OH-2 ', 3,3', 5,5 ', 6-HxCB 93 446 44893 446 448

<실시예 2><Example 2>

본 실시예는 흡착 시간에 따른 흡착율을 보기 위한 것이다.This embodiment is for viewing the adsorption rate according to the adsorption time.

5개의 4㎖의 바이알을 준비하여 각각의 바이알에 공시료 (PCB 투여 전 쥐의 뇨) 2㎖씩 넣은 다음 11종 히드록시 PCBs의 표준물질 용액을 각 바이알에 10㎕ 넣고 내부표준물질인 피렌-d10 용액을 각각 10㎕씩 첨가한 후 PDMS-DVB 파이버 홀더를 바이알 속 용액의 수면위 헤드스페이스에 고정시킨 다음, 파이버 홀더의 니들에서 파이버를 빼내어 수면위 1cm 정도의 위치에서 노출시켰다. 이때, 가열기의 온도를 90℃로 조절하고 흡착 시간을 각각 10, 30, 45, 60, 120분으로 달리하여 바이알을 가열하면서 흡착시킨 다음, 히드록시 PCBs가 흡착된 파이버들을 60℃의 가열기에서 온도조절된 BSTFA 10㎕ 용액의 헤드스페이스에서 다시 노출시켜 유도체화하였다.Five 4 ml vials were prepared, each containing 2 ml of a blank sample (urine urine prior to PCB administration) and a standard solution of 11 hydroxy PCBs was added to each vial. Add 10µl and add 10µl each of the internal standard Pyrene-d 10 solution, and fix the PDMS-DVB fiber holder to the headspace above the water of the solution in the vial, and then remove the fiber from the needle of the fiber holder. It was exposed at the position of degree. At this time, the temperature of the heater is adjusted to 90 ° C. and the adsorption time is changed to 10, 30, 45, 60, and 120 minutes, respectively, to adsorb the vials while heating, and the hydroxy PCBs adsorbed fibers are heated at a temperature of 60 ° C. Derivatization was performed by exposing again in the headspace of the adjusted BSTFA 10 μl solution.

상기 실시예 1에서와 같이 각 물질의 선택 이온의 크기에 따라 흡착도를 비교하여, 흡착도를 확인하였다. 결과는 도 3에 나타낸 것과 같고, 60분까지 흡착도가 증가하였으나 그 이상에서는 흡착도가 증가하지 않음을 알 수 있었다.As in Example 1, the degree of adsorption was checked by comparing the degree of adsorption according to the size of the selected ion of each material. The results are as shown in Figure 3, the adsorption increased up to 60 minutes, it can be seen that the adsorption does not increase above.

<실시예 3><Example 3>

본 실시예는 흡착 파이버에 따른 흡착율을 보기 위한 것이다.This embodiment is for viewing the adsorption rate according to the adsorption fiber.

3개의 4㎖의 바이알을 준비하여 각각의 바이알에 공시료 (PCB 투여전 쥐의 뇨) 2㎖씩 넣은 다음 11종 히드록시 PCBs의 표준물질 용액을 각각 10㎕ 넣고 내부표준물질인 피렌-d10 용액을 각각 10㎕ 첨가한 후 PDMS, PA 또는 PDMS-DVB 파이버 홀더를 바이알 속 용액의 수면위 헤드스페이스에 고정시킨 다음, 파이버 홀더의 니들에서 파이버를 빼내어 수면위 1cm 정도의 위치에서 노출시켰다. 이때 가열기의 온도를 90℃로 조절하여 바이알을 가열하면서 노출 시간을 60분으로 하여 흡착시킨 다음, 히드록시 PCBs가 흡착된 파이버들을 60℃의 가열기에서 온도조절된 BSTFA 10㎕ 용액의 헤드스페이스에서 다시 노출시켜 유도체화하였다.Prepare three 4 ml vials, add 2 ml of blank sample (urine urine before PCB administration) to each vial, add 10 µl of each standard solution of 11 hydroxy PCBs, and use the internal standard pyrene-d 10. After adding 10 µl of the solution, the PDMS, PA or PDMS-DVB fiber holder was fixed in the headspace above the water of the solution in the vial, and then the fibers were removed from the needle of the fiber holder and exposed at about 1 cm above the water surface. At this time, the temperature of the heater was adjusted to 90 ° C., and the vial was heated and the exposure time was adjusted to 60 minutes. Then, the hydroxy PCBs-adsorbed fibers were adsorbed again in a headspace of a 10 μl BSTFA solution temperature controlled in a 60 ° C. heater. Derivatization by exposure.

상기 실시예 1에서와 같이 각 물질의 선택 이온의 크기에 따라 흡착도를 비교하여, 흡착도를 확인하였다. 그 결과는 도 4에 나타낸 것과 같고 위의 PDMS/DVB 파이버를 사용하여 흡착한 경우 가장 높은 흡착도를 나타내었다.As in Example 1, the degree of adsorption was checked by comparing the degree of adsorption according to the size of the selected ion of each material. The results are as shown in Figure 4 and showed the highest adsorption when adsorbed using the above PDMS / DVB fiber.

<실시예 4><Example 4>

본 실시예는 유도체화 시약에 따른 반응율을 보기 위한 것이다.This example is to see the reaction rate according to the derivatization reagent.

4개의 4㎖의 바이알을 준비하여 각각의 바이알에 공시료(PCB 투여 전 주의 뇨) 2㎖씩 넣은 다음 11종 히드록시 PCBs의 표준물질 용액을 10㎕ 넣고 내부표준물질인 피렌-d10 용액을 각각 10㎕ 첨가한 후 PDMS-DVB 파이버 홀더를 바이알 속 용액의 수면위 헤드스페이스에 고정시킨 다음, 파이버 홀더의 니들에서 파이버를 빼내어 수면위 1cm 정도의 위치에서 노출시켰다. 가열기의 온도를 90℃로 조절하고 바이알을 가열하면서 노출 시간을 60분으로 하여 흡착시킨 다음, 히드록시 PCBs가 흡착된 파이버들을 60℃의 가열기에서 온도조절된 BSTFA, MTBSTFA, PFPA 또는 HFBA 10㎕ 용액의 헤드스페이스에서 각각 노출시켜 유도체화하였다.Prepare 4 4 ml vials, add 2 ml of blank sample (urine urine before PCB administration) to each vial, add 10 µl of the standard solution of 11 hydroxy PCBs, and add the internal standard pyrene-d 10 solution. After adding 10 μl each, the PDMS-DVB fiber holder was fixed in the headspace above the water of the solution in the vial, and then the fiber was removed from the needle of the fiber holder and exposed at about 1 cm above the water surface. The temperature of the heater was adjusted to 90 ° C. and the vial was heated and the exposure time was 60 minutes. Then, the hydroxy PCBs adsorbed fibers were adsorbed in a 10 µl solution of BSTFA, MTBSTFA, PFPA or HFBA, which were temperature-controlled in a 60 ° C. heater. Derivatization was performed in each of the headspace of.

상기 실시예 1에서와 같이 각 물질의 선택 이온의 크기에 따라 흡착도를 비교하여, 반응성을 확인하였다. 그 결과는 도 5에 나타낸 것과 같고 BSTFA를 사용하여 TMS 유도체화한 경우 가장 높은 반응성을 나타내었다.As in Example 1, the degree of reactivity was confirmed by comparing the degree of adsorption according to the size of the selected ion of each material. The results are as shown in Figure 5 and showed the highest reactivity when TMS derivatization using BSTFA.

<실시예 5>Example 5

상기 실시예 1-4에서 얻은 최적의 조건에 따라 PDMS-DVB 파이버를 설치하고 가열기의 온도를 90℃로 조절하고 흡착 시간을 60분으로 하여 흡착시킨 다음 히드록시 PCBs가 흡착된 파이버를 60℃의 가열기에서 온도조절된 BSTFA 10㎕ 용액의 헤드스페이스에 노출시켜 유도체화한 후 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기에 주입하여 도 6에 나타낸 바와 같이 11종의 히드록시 PCBs의 피크와 내부표준물질의 크로마토그램을 얻었다. 도 7은 유도체화된 11종의 표준물질 중 대표적으로 4-히드록시-3,4',5-트리클로로비페닐(4-OH-3,4',5-TrCB)의 TMS 유도체화물의 질량스펙트럼을 나타내고 있는데 유도체화된 각각의 분자량과 특성 토막이온이 잘 나타나 있다.The PDMS-DVB fiber was installed in accordance with the optimum conditions obtained in Examples 1-4, and the temperature of the heater was adjusted to 90 ° C., the adsorption time was adjusted to 60 minutes, and the hydroxy PCBs adsorbed fiber was kept at 60 ° C. After derivatization by exposure to a headspace of a 10 μl solution of temperature-controlled BSTFA in a heater, it was injected into a gas chromatography or a gas chromatography / mass spectrometer to show peaks and internal standards of 11 hydroxy PCBs as shown in FIG. 6. A chromatogram of was obtained. 7 is a mass spectrum of a TMS derivatized product of 4-hydroxy-3,4 ', 5-trichlorobiphenyl (4-OH-3,4', 5-TrCB), among 11 derivatized standards. Each of the derivatized molecular weights and characteristic ions are well represented.

이와 같은 11종 히드록시 PCBs의 농도를 결정하기 위하여 사용된 기기로는 휴렛-팩커드(Hewlett-Packard)사의 5972 질량 분석기와 여기에 연결된 5890 플러스(plus) 기체 크로마토그래프이었다. 사용된 이온화 방법은 전자충격법(Electron impact, EI)이며 이온원의 온도는 200℃이었다. 정량을 위하여 선택이온검출법 (selected ion monitoring) 모드가 사용되었으며 선택된 이온은 상기 표 1에 나타낸 바와 같다. 분석에 사용된 컬럼은 길이가 25m, 내경이 0.25mm, 필름 두께가 0.25㎛인 울트라(ultra) 2 컬럼을, 이동상 기체로는 헬륨을 사용하였으며 흐름속도는 0.8㎖/min이었다. 컬럼의 온도는 초기에 100℃에서 10℃/min 속도로 200℃까지 승온시키고 200℃에서 3분간 유지시킨 다음, 다시 10℃/min의 속도로 300℃까지 승온하였다. 시료 주입구의 온도는 250℃이었으며, 기체 크로마토그래프와 질량 분석기 연결장치의 온도는 280℃이었다.The instrument used to determine the concentration of these 11 hydroxy PCBs was a Hewlett-Packard 5972 mass spectrometer and a 5890 plus gas chromatograph connected thereto. The ionization method used was Electron Impact (EI) and the temperature of the ion source was 200 ° C. Selected ion monitoring mode was used for quantification and the selected ions are shown in Table 1 above. The column used in the analysis was an ultra 2 column having a length of 25 m, an inner diameter of 0.25 mm, and a film thickness of 0.25 μm, and helium as the mobile phase gas, and the flow rate was 0.8 ml / min. The temperature of the column was initially elevated to 200 ° C. at 100 ° C. at 10 ° C./min, held at 200 ° C. for 3 minutes, and then again at 300 ° C. at 10 ° C./min. The temperature of the sample inlet was 250 ° C., and the temperature of the gas chromatograph and mass spectrometer connector was 280 ° C.

<실시예 6><Example 6>

PCB를 투여한 쥐 (rat)의 뇨 시료를 2㎖ 채취하여 내부표준물질인 피렌-d10 용액을 10㎖ 첨가한 후 PDMS-DVB 파이버를 시료 바이얼 위에 설치하고 가열기의 온도를 90℃로 조절하고 흡착 시간을 60분으로 하여 흡착시킨 다음, 히드록시 PCBs가 흡착된 파이버를 60℃의 가열기에서 온도조절된 BSTFA 10㎕ 시약에 5분간 노출시켜 유도체화하였다. 흡착된 파이버를 GC 주입구에 주입하여 기체 크로마토그래피/질량 분석기로 분석한 결과, 투여 후 채취한 시간에 따라 뇨 시료로부터 히드록시 PCBs 대사체가 15 ~ 580ng 범위의 양으로 검출됨을 확인하였다.2 ml of urine sample of PCB-treated rat was added, 10 ml of internal standard pyren-d 10 solution was added, and PDMS-DVB fiber was installed on the sample vial and the temperature of the heater was adjusted to 90 ° C. After adsorbing at 60 minutes, the hydroxy PCBs adsorbed fibers were derivatized by exposing them to 10 μl of BSTFA temperature controlled at 60 ° C. for 5 minutes. The adsorbed fibers were injected into the GC inlet and analyzed by gas chromatography / mass spectrometry. As a result, hydroxy PCBs metabolites were detected from urine samples in amounts ranging from 15 to 580 ng, depending on the time taken after administration.

상기 설명한 바와 같이, 본 발명은 히드록시 PCBs를 뇨 시료중에서 효과적으로 분석할 수 있도록 하며 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기에 대하여 선택적이고 우수한 감도를 제공한다. 또한 뇨 시료중에 포함된 물질의 분석에 일반적으로 사용되는 기체 크로마토그래피/질량 분석기로 분석하는데 있어서 필요한 전처리 과정인 추출 및 유도체화를 SPME 장치를 이용하여 매우 간편하게 실시할 수 있다.As described above, the present invention enables the effective analysis of hydroxy PCBs in urine samples and provides selective and superior sensitivity for gas chromatography or gas chromatography / mass spectrometry. In addition, extraction and derivatization, which is a pretreatment required for analysis by gas chromatography / mass spectrometry, which is generally used for the analysis of substances contained in urine samples, can be performed very simply using the SPME apparatus.

따라서 본 발명을 이용할 경우 우수한 감도, 정확성, 분석 시간의 단축, 저비용 및 간편성 등을 만족시킬 수 있으며 이로 인해 인체에 유해한 물질인 PCBs의 히드록시 대사체를 뇨 시료에서 동시에 분석 할 수 있어 특히 생체 시료에 폭넓게 응용할 수 있다.Therefore, the present invention can satisfy the excellent sensitivity, accuracy, shortening of analysis time, low cost and simplicity, and thus can simultaneously analyze the hydroxy metabolites of PCBs, which are harmful to humans, in urine samples. It is widely applicable to.

도 1은 본 발명에서 사용한 SPME (solid-phase microextraction)의 장치의 도식도.1 is a schematic diagram of a device of solid-phase microextraction (SPME) used in the present invention.

도 2는 실시예 1에서 SPME 흡착 온도에 따른 11종의 히드록시 PCBs (hydroxy polychlorinated biphenyls)의 흡착율을 나타낸 그래프.Figure 2 is a graph showing the adsorption rate of 11 hydroxy PCBs (hydroxy polychlorinated biphenyls) according to the SPME adsorption temperature in Example 1.

도 3는 실시예 2에서 SPME 흡착 시간에 따른 11종의 히드록시 PCBs의 흡착율을 나타낸 그래프.Figure 3 is a graph showing the adsorption rate of 11 hydroxy PCBs according to the SPME adsorption time in Example 2.

도 4는 실시예 3에서 SPME 흡착 파이버 (fiber)에 따른 11종의 히드록시 PCBs의 흡착율을 나타낸 그래프.4 is a graph showing the adsorption rate of 11 hydroxy PCBs according to the SPME adsorption fiber (fiber) in Example 3.

도 5는 실시예 4에서 SPME 유도체화 시약에 따른 11종의 히드록시 PCBs의 상대비를 나타낸 그래프.FIG. 5 is a graph showing the relative ratios of 11 hydroxy PCBs according to the SPME derivatization reagent in Example 4. FIG.

도 6는 실시예 5에서 11종 히드록시 PCBs를 기체 크로마토그래피/질량 분석기로 분석한 크로마토그램.6 is a chromatogram of 11 hydroxy PCBs analyzed in a gas chromatography / mass spectrometer in Example 5. FIG.

도 7은 본 발명에 따라 유도체화된 히드록시 PCBs 중 4-히드록시-3,4',5-트리클로로비페닐(4-OH-3,4',5-TrCB)의 질량 스펙트럼.7 is a mass spectrum of 4-hydroxy-3,4 ', 5-trichlorobiphenyl (4-OH-3,4', 5-TrCB) in hydroxy PCBs derivatized according to the present invention.

Claims (6)

뇨(urine) 중 히드록시 PCBs (hydroxy polychlorinated biphenyls)를 폴리디메틸실록산/디비닐벤젠 파이버에 흡착시키는 단계, 폴리디메틸실록산/디비닐벤젠 파이버에 흡착된 히드록시 PCBs를 트리메틸실릴 유도체화하는 단계, 및 트리메틸실릴 유도체화된 히드록시 PCBs를 기체 크로마토그래피 또는 기체 크로마토그래피/질량 분석기로 분석하는 단계를 포함함을 특징으로 하는, 뇨 중 히드록시 PCBs의 농도를 결정하는 방법.Adsorbing hydroxy PCBs (urethane polychlorinated biphenyls) in urine to polydimethylsiloxane / divinylbenzene fiber, trimethylsilyl derivatizing hydroxy PCBs adsorbed on polydimethylsiloxane / divinylbenzene fiber, and Analyzing the trimethylsilyl derivatized hydroxy PCBs by gas chromatography or gas chromatography / mass spectrometry. 제1항에 있어서, N,N-비스(트리메틸실릴)-트리플루오로아세트아미드 (BSTFA)를 사용하여 폴리디메틸실록산/디비닐벤젠 파이버에 흡착된 히드록시 PCBs를 트리메틸실릴 유도체화하는 방법.The process of claim 1 wherein N, N-bis (trimethylsilyl) -trifluoroacetamide (BSTFA) is used to trimethylsilyl derivatize hydroxy PCBs adsorbed onto polydimethylsiloxane / divinylbenzene fiber. 삭제delete 삭제delete 제1항에 있어서, 90℃ 이상의 온도에서 적어도 60분 동안 헤드스페이스 (headspace) 위치에서 히드록시 PCBs를 흡착하는 방법.The method of claim 1, wherein the hydroxy PCBs are adsorbed at a headspace location for at least 60 minutes at a temperature of 90 ° C. or higher. 제1항에 있어서, 60℃의 온도에서 5 내지 30분 동안 헤드스페이스 위치에서 유도체화하는 방법.The method of claim 1, wherein the derivatization is at a headspace position for 5 to 30 minutes at a temperature of 60 ° C. 3.
KR10-2003-0044460A 2003-07-02 2003-07-02 Determination Method of Hydroxy-PCBs in Urine KR100537402B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0044460A KR100537402B1 (en) 2003-07-02 2003-07-02 Determination Method of Hydroxy-PCBs in Urine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0044460A KR100537402B1 (en) 2003-07-02 2003-07-02 Determination Method of Hydroxy-PCBs in Urine

Publications (2)

Publication Number Publication Date
KR20050004322A KR20050004322A (en) 2005-01-12
KR100537402B1 true KR100537402B1 (en) 2005-12-19

Family

ID=37219011

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0044460A KR100537402B1 (en) 2003-07-02 2003-07-02 Determination Method of Hydroxy-PCBs in Urine

Country Status (1)

Country Link
KR (1) KR100537402B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028042B1 (en) 2009-05-20 2011-04-08 한국과학기술연구원 Method for determination of volatile organic compounds metabolites in urine
CN102331466A (en) * 2011-07-25 2012-01-25 四川省宜宾五粮液集团有限公司 Method for comprehensively testing fragrant components of crops

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613400B1 (en) * 2004-11-10 2006-08-17 한국과학기술연구원 METHOD FOR DETERMINATION OF PAHs AND PCBs IN SAMPLE BY GC/MS WITH SPME
CN103245544B (en) * 2013-05-20 2015-05-13 延边大学 Air-flowing type dynamic liquid-phase micro-extracting method for online derivatization
KR102549115B1 (en) * 2018-10-05 2023-06-28 주식회사 엘지화학 Method of Analyzing Polar Compounds in Aquoeus Solutions by Using Solid-Phase Microextraction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028042B1 (en) 2009-05-20 2011-04-08 한국과학기술연구원 Method for determination of volatile organic compounds metabolites in urine
CN102331466A (en) * 2011-07-25 2012-01-25 四川省宜宾五粮液集团有限公司 Method for comprehensively testing fragrant components of crops
CN102331466B (en) * 2011-07-25 2013-05-15 四川省宜宾五粮液集团有限公司 Method for comprehensively testing fragrant components of crops

Also Published As

Publication number Publication date
KR20050004322A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
Koide et al. Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen–phosphorus detection
Chang et al. Determining leaching of bisphenol A from plastic containers by solid-phase microextraction and gas chromatography–mass spectrometry
Li et al. Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography
Dugay et al. Effect of the various parameters governing solid-phase microextraction for the trace-determination of pesticides in water
Stashenko et al. Derivatization and solid-phase microextraction
Shin et al. Sensitive determination of bisphenol A in environmental water by gas chromatography with nitrogen–phosphorus detection after cyanomethylation
Pan et al. Determination of amines in air and water using derivatization combined with solid-phase microextraction
Cortazar et al. MultiSimplex optimisation of the solid-phase microextraction–gas chromatographic–mass spectrometric determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalates from water samples
Müller et al. Determination of aromatic amines by solid-phase microextraction and gas chromatography–mass spectrometry in water samples
Centineo et al. Multielemental speciation analysis of organometallic compounds of mercury, lead and tin in natural water samples by headspace-solid phase microextraction followed by gas chromatography–mass spectrometry
Hook et al. Detection of VX contamination in soil through solid-phase microextraction sampling and gas chromatography/mass spectrometry of the VX degradation product bis (diisopropylaminoethyl) disulfide
Wei et al. Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography–electron-capture detection
Zafra et al. Gas chromatographic–mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater
Li et al. Determination of 23 organophosphorous pesticides in surface water using SPME followed by GC-MS
Helaleh et al. Column silylation method for determining endocrine disruptors from environmental water samples by solid phase micro-extraction
Lee et al. Application of solid-phase microextraction and gas chromatography–mass spectrometry for the determination of chlorophenols in urine
Tsai et al. Determination of Antioxidants and Preservatives in Cosmetics by SPME Combined with GC–MS
KR100613400B1 (en) METHOD FOR DETERMINATION OF PAHs AND PCBs IN SAMPLE BY GC/MS WITH SPME
Murtada et al. Thin-film microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry screening for presence of multiclass organic pollutants in drinking water samples
Winkler et al. Optimization of solid-phase microextraction for the gas chromatographic–mass spectrometric determination of synthetic musk fragrances in water samples
Zachariadis et al. Speciation of organotin compounds in urine by GC–MIP-AED and GC–MS after ethylation and liquid–liquid extraction
Wang et al. Full automatic determination of chlorophenols in water using solid‐phase microextraction/on‐fiber derivatization and gas chromatography‐mass spectrometry
de Aguiar Porto et al. Profiling naphthenic acids in produced water using hollow fiber liquid-phase microextraction combined with gas chromatography coupled to Fourier transform Orbitrap mass spectrometry
KR100537402B1 (en) Determination Method of Hydroxy-PCBs in Urine
Tsai et al. Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081201

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee