KR100536120B1 - Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties - Google Patents

Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties Download PDF

Info

Publication number
KR100536120B1
KR100536120B1 KR10-2002-0071817A KR20020071817A KR100536120B1 KR 100536120 B1 KR100536120 B1 KR 100536120B1 KR 20020071817 A KR20020071817 A KR 20020071817A KR 100536120 B1 KR100536120 B1 KR 100536120B1
Authority
KR
South Korea
Prior art keywords
liquid silicone
silicone rubber
dielectric breakdown
temperature
molded article
Prior art date
Application number
KR10-2002-0071817A
Other languages
Korean (ko)
Other versions
KR20040043526A (en
Inventor
윤승훈
남진호
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR10-2002-0071817A priority Critical patent/KR100536120B1/en
Publication of KR20040043526A publication Critical patent/KR20040043526A/en
Application granted granted Critical
Publication of KR100536120B1 publication Critical patent/KR100536120B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명에서는 절연-반도전 이액형 부가형 액상실리콘 고무재료를 이용한 고무 성형물의 제조방법에 있어서, 절연 재료와 반도전 재료의 주가교반응후 추가가교반응을 통해 계면 접착을 유도하는 단계를 포함하는 절연파괴강도와 접착특성이 우수한 액상실리콘 고무 성형물의 제조방법에 관한 것이다. 추가가교반응은 바람직하게는 100℃~220℃의 온도 0.5시간~24시간 조건에서 이루어지며, 더욱 바람직하게는 150℃~180℃의 온도 1시간~6시간 조건에서 이루어진다. 본 발명의 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법에 따라 부가형 액상실리콘 고무재료의 접착성을 개선하고 이에 따라 계면물성을 강화하여 우수한 전기절연특성을 달성할 수 있다. In the present invention, in the manufacturing method of the rubber molding using the insulation-semiconductor two-component addition liquid silicone rubber material, after the main cross-linking reaction of the insulating material and the semi-conductive material, the insulating comprising a step of inducing the interface adhesion The present invention relates to a method for producing a liquid silicone rubber molded article having excellent fracture strength and adhesive properties. The additional crosslinking reaction is preferably made at a temperature of 0.5 hours to 24 hours at a temperature of 100 ° C to 220 ° C, and more preferably at a temperature of 1 hour to 6 hours at a temperature of 150 ° C to 180 ° C. According to the manufacturing method of the liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties of the present invention, it is possible to improve the adhesiveness of the additional liquid silicone rubber material and thereby to enhance the interfacial properties to achieve excellent electrical insulating properties.

Description

절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법{PREPARATOIN METHOD OF LIQUID SILICONE RUBBER FORMING MATERIAL WITH GOOD INSULATION-BREAKDOWN AND ADHESION PROPERTIES} Method for manufacturing liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties {PREPARATOIN METHOD OF LIQUID SILICONE RUBBER FORMING MATERIAL WITH GOOD INSULATION-BREAKDOWN AND ADHESION PROPERTIES}

본 발명은 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법에 관한 것이다. The present invention relates to a method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties.

접속함의 경우에는 도체와 절연체의 중간부위에 전계를 완화시키기 위하여 반도전 재료를 사용하는데, 절연체와 반도전체는 일반적으로 화학적 및 물리학적으로 접합시켜야 원하는 수준의 절연파괴성능을 부여할 수 있다. In case of junction box, semi-conductive material is used to alleviate electric field in middle part of conductor and insulator. Insulator and semiconductor are generally chemically and physically bonded to provide the desired level of breakdown performance.

종래에 접속함, 특히 초고압 전력 케이블용 접속함의 재료로서, 에폭시를 주로 사용하였으나, 재료의 특성상 외부에서 주어진 충격, 응력등을 고려한 복잡한 기계 구조 설계가 필요하다는 단점이 있었다. Conventionally, epoxy is mainly used as a material for a junction box, particularly an ultra high voltage cable, but has a disadvantage in that a complicated mechanical structure design is required in consideration of an externally given impact or stress.

또한 보다 유연한 소재로서 이피디엠(EPDM) 고무를 적용한 접속함이 개발되었는데, 이피디엠은 에틸렌(ethylene)과 프로필렌(propylene) 및 디엔(diene)이 공중합된 고무 고분자로서, 무극성이며 분자 구조내에 이중결합이 없어서 절연특성을 나타내는 것이기는 하지만, 장기간 운용에 있어 이피디엠 재료의 노화 성능이 저하되는 문제점이 있어, 보다 신뢰성이 있는 재료의 적용이 필요하였다. In addition, a junction box using EPDM rubber was developed as a more flexible material. EPDM is a rubber polymer in which ethylene, propylene, and diene are copolymerized. Although there is no insulation, the aging performance of EPDM materials deteriorates in long-term operation, and thus a more reliable application of the material is required.

따라서 이러한 이피디엠 재료보다 우수한 노화물성 및 내구성을 가진 고무재료로서 실리콘 고무를 사용하였는데, 그 중 특히, 액상 실리콘 고무는 일반적으로 전기절연성, 특히 절연파괴강도가 초고압용 전기재료로 사용하기에 적절하고, 고무 탄성체의 점탄성 거동을 나타내는 재료이므로 초고압 케이블의 연결부위나 분기부에의 적용이 용이한 장점이 있다.Therefore, silicone rubber is used as a rubber material having better aging properties and durability than the EPDM material. Among them, liquid silicone rubber is generally suitable for use as an electric material for ultra-high pressure, in particular electrical insulation, in particular, breakdown strength. In addition, since the material exhibits the viscoelastic behavior of the rubber elastic body, there is an advantage that it is easy to apply to the connection portion or the branch portion of the ultra-high voltage cable.

이러한 액상 실리콘 재료는 크게 2가지로 분류가 가능한데, 먼저 폴리비닐실록산의 축합반응에 의해 가교반응이 진행되는 축합형 액상실리콘과, 백금등의 특수한 희귀금속이 가교반응의 촉매로 작용하는 방식의 부가형 액상실리콘으로 크게 구분할 수 있다. These liquid silicone materials can be classified into two types. First, an addition type of a condensation type liquid silicone in which a crosslinking reaction proceeds by a condensation reaction of polyvinylsiloxane and a special rare metal such as platinum act as a catalyst for the crosslinking reaction. It can be divided into liquid silicone.

그러나 이중 축합형 실리콘 고무의 경우 경화반응 후 반응부산물이 형성되기 때문에 초고압용으로 사용하는 것에는 제약이 따른다. 반면 부가형 액상 실리콘의 경우 반응 부산물이 생성되지 않고, 특정 온도 이상에서는 가교 반응이 순간적으로 일어나는 특성으로 인해 축합형에 비해 우수한 전기절연특성을 나타내는 재료로 알려져 있다.However, in the case of the double condensation type silicone rubber, the reaction by-product is formed after the curing reaction. On the other hand, in the case of the addition liquid silicone, reaction by-products are not produced, and due to a property in which a crosslinking reaction occurs instantaneously at a specific temperature or more, it is known as a material exhibiting excellent electrical insulation properties compared to the condensation type.

이러한 부가형 액상 실리콘은 가교 개시 온도에 따라서 상온 가교형과 일반적으로 100℃이상의 온도에서 가교반응이 진행되는 고온가교형으로 구분할 수 있다. Such additional liquid silicone may be classified into a room temperature crosslinking type and a high temperature crosslinking type in which a crosslinking reaction proceeds at a temperature of generally 100 ° C. or more according to the crosslinking initiation temperature.

한편 종래 절연체 및 반도전체의 조합체를 제조하는 방법으로서 다음과 같은 방법이 있었다. On the other hand, as a method of manufacturing a combination of a conventional insulator and a semiconductor, there has been the following method.

첫째, 두 계면사이에 강한 접착성을 나타내고자 특수한 화학가교가 가능하도록 설계된 커플링제를 절연-반도전 액상실리콘 계면의 프라이머로서 사용하는 방법이 있었다.First, there was a method of using a coupling agent designed to enable special chemical crosslinking as a primer of an insulating-semiconducting liquid silicon interface to show strong adhesion between two interfaces.

그러나 상기 방법은 전계가 인가되는 경우에, 커플링제가 일종의 이물로 작용하여 바람직한 절연파괴특성을 구현할 수 없어, 특히 높은 전계가 인가되었을 경우 절연파괴강도등 고도의 전기절연성이 요구되는 초고압용 재료로서의 적용이 실질적으로 어렵다는 문제점이 있었다.However, in the above method, when the electric field is applied, the coupling agent acts as a kind of foreign material, and thus, it is impossible to realize desirable dielectric breakdown characteristics. Especially, when a high electric field is applied, it is used as an ultra high pressure material that requires high electrical insulation such as dielectric breakdown strength. There was a problem that the application is practically difficult.

둘째, 상온경화형 액상실리콘이나 고온경화형 액상실리콘을 백금을 포함하는 가교메카니즘을 통해 적절한 방법으로 원하는 물리적, 전기적 특성을 가지도록 실리콘 성형물을 제조하는 방법이 있었다. Second, there was a method of manufacturing a silicone molding to have a desired physical and electrical properties by a suitable method through a cross-linking mechanism containing platinum at room temperature curing liquid silicone or high temperature curing liquid silicone.

즉, 예를 들어 하이드로 실릴화 반응이 가능한 주제와 가교제 성분 폴리디메틸 실록산에 각각 결합시킨 화합물을 백금을 포함하는 촉매를 사용하는 방법으로 가교를 실시하는데, 백금촉매를 억제하는 경화 억제 화합물(inhibitor)이 분해되는 온도 이상의 온도에서 경화 반응이 일어나도록 하였다. That is, for example, crosslinking is carried out by using a catalyst containing platinum to the main compound capable of hydrosilylation reaction and the compound bound to the crosslinking agent component polydimethyl siloxane, using a catalyst containing platinum, which inhibits the platinum catalyst (inhibitor). The curing reaction occurred at a temperature above the decomposition temperature.

또는 우수한 전기절연특성을 나타내는 절연체 액상실리콘 재료와 이에 전도성 카본블랙을 일정 함량 첨가하여 전기가 흐를 수 있도록 전기 절연성을 낮춘 반도전체 액상 실리콘의 두가지를 조합하여 성형하는 방법이 알려져 있었다.Alternatively, a method of forming a combination of two types of insulator liquid silicon material exhibiting excellent electrical insulation properties and semiconducting liquid silicon having a low electrical insulation property to allow electricity to flow by adding a certain amount of conductive carbon black thereto has been known.

그러나 상기 방법은 부가형 액상실리콘 조합물을 주가교 조건만으로 성형하는 방법으로서, 이와 같이 주가교만으로 성형물을 제조하는 경우 일반적인 재료 특성은 만족시킬 수 있으나 충분한 접착력 및 이에 수반되는 절연파괴특성을 나타내기에는 부족하다는 문제점이 있었다.However, the above method is a method of forming an additive liquid silicone compound under only main crosslinking conditions. In the case of forming a molded article using only main crosslinking as described above, general material properties may be satisfied, but sufficient adhesive strength and accompanying dielectric breakdown properties may be exhibited. There was a problem of lack.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, Therefore, the present invention has been made to solve the above problems,

본 발명의 목적은 절연-반도전 이액형 부가형 액상실리콘 고무재료를 이용한 고무 성형물의 제조방법에 있어서, 절연 재료와 반도전 재료의 추가가교반응을 통해, 접착력을 강화하고 이를 통해 절연파괴특성을 상승시킬 수 있는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a rubber molding using an insulating-semiconductor two-component addition liquid silicone rubber material. It is to provide a method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties.

이러한 본 발명의 목적은 절연-반도전 이액형 부가형 액상실리콘 고무재료를 이용한 고무 성형물의 제조방법에 있어서, 절연 재료와 반도전 재료의 주가교반응후 추가가교반응을 통해 계면 접착을 유도하는 단계를 포함하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법을 통해 달성될 수 있다.The object of the present invention is a method for producing a rubber molding using an insulating-semiconductor two-component addition liquid silicone rubber material, the step of inducing the interfacial adhesion through an additional crosslinking reaction after the main crosslinking reaction of the insulating material and the semiconductive material It can be achieved through a method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties.

그리고 추가가교반응은 100℃~220℃의 온도에서 0.5시간~24시간동안 이루어지는 것이 바람직하며, 150℃~180℃의 온도에서 1시간~6시간동안 이루어지는 것이 더욱 바람직하다. And the additional crosslinking reaction is preferably made for 0.5 hours to 24 hours at a temperature of 100 ℃ ~ 220 ℃, more preferably for 1 hour to 6 hours at a temperature of 150 ℃ ~ 180 ℃.

이하 본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘 고무 성형물의 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties will be described in detail.

본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법은 주가교 및 추가가교의 적절한 가교공정조건에 따라 계면 접착력을 향상시키는 방법을 통해 우수한 접착특성 및 전기 절연파괴강도를 가지도록 하는 것이다.The method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties according to the present invention has excellent adhesion and electrical breakdown strength through a method of improving interfacial adhesion according to the appropriate crosslinking process conditions of main crosslinking and additional crosslinking. To do that.

즉, 본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법은, 통상적으로 액상실리콘 제조사에서 추천하고 있는 성형조건(온도, 시간)으로, 상이한 두가지 액상실리콘 재료(절연체, 반도전체)의 물리적 접촉을 통해 주가교를 실시하고, 이 후, 추가가교를 실시한다. That is, the method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties according to the present invention is a molding condition (temperature, time) which is generally recommended by a liquid silicone manufacturer. Main crosslinking is carried out through physical contact, and then further crosslinking is performed.

절연-반도전의 상이한 계면을 가지는 액상실리콘 재료(액상실리콘 절연 재료 및 액상실리콘 반도전 재료)로서, 바람직한 일예로는 백금촉매를 통한 하이드로-실릴화 반응(Hydro-silylation reaction)에 의한 상온가교형 액상실리콘(이하 RTV라고 한다) 또는 고온가교형 액상실리콘(이하 LSR이라고 한다)을 사용한다. 이러한 RTV 및 LSR은 가교 온도 등에 따른 구분으로서, 당업자에게 주지되어 시판되고 있는 상용화제품들이 사용될 수 있다.Liquid-silicon materials (liquid-silicon insulating material and liquid-silicon semiconducting material) having different interfaces of insulation and semiconducting, and in one preferred embodiment, room temperature crosslinking by a hydro-silylation reaction through a platinum catalyst Liquid silicone (hereinafter referred to as RTV) or high temperature crosslinked liquid silicone (hereinafter referred to as LSR) is used. Such RTV and LSR are classified according to the crosslinking temperature and the like, and commercially available products well known to those skilled in the art may be used.

더욱 바람직하게는 절연 재료의 경우, 5,000~50,000 cps의 점도를 가지는 절연 RTV 혹은 50,000~1,500,000 cps의 점도를 가지는 절연 LSR을 사용하고, 반도전 재료의 경우는 500,000~4,000,000 cps의 점도를 가지는 반도전 LSR을 사용한다.More preferably, an insulating material uses an insulating RTV having a viscosity of 5,000 to 50,000 cps or an insulating LSR having a viscosity of 50,000 to 1,500,000 cps, and a semiconducting material having a viscosity of 500,000 to 4,000,000 cps for a semiconducting material. Use LSRs.

상기와 같은 점도범위내의 절연 또는 반도전 재료를 채택하므로써, 공정 수행의 용이성을 달성할 뿐만 아니라, 하기하는 실시예에서 보는 바와 같이, 본 발명의 실시예에 따른 추가 가교의 공정 조건(온도 및 시간)에서의 접착강도 및 절연파괴특성 향상의 효과가 우수하다. By adopting an insulating or semiconducting material within the above viscosity range, not only the ease of performing the process can be achieved, but also as shown in the following examples, further crosslinking process conditions (temperature and time) according to the embodiment of the present invention. ), The effect of improving the adhesive strength and dielectric breakdown properties is excellent.

상기 RTV 또는 LSR에 있어서, 각각의 주제 또는 가교제는 바람직하게는 폴리디비닐디메틸실록산 및 폴리디하이드라이드디메틸실록산을 포함하도록 한다.In the above RTV or LSR, each subject or crosslinker preferably comprises polydivinyldimethylsiloxane and polydihydridedimethylsiloxane.

또한 바람직하게는 폴리디비닐디메틸실록산과 폴리디하이드라이드디메틸실록산의 몰당량비가 1:1.1~1:5가 되도록 하며, 더욱 바람직하게는 몰당량비가 1:2.5~1:3.5가 되도록 한다.Also preferably, the molar equivalent ratio of polydivinyldimethylsiloxane and polydihydride dimethylsiloxane is 1: 1.1 to 1: 5, and more preferably the molar equivalent ratio is 1: 2.5 to 1: 3.5.

과량으로 포함된 폴리디하이드라이드디메틸실록산은 추가 가교시에 가교반응을 일으켜 계면 접착 강도를 향상시키게 되며 이에 따라 절연파괴 강도도 향상된다. The polydihydride dimethylsiloxane contained in excess causes crosslinking reaction upon further crosslinking to improve the interfacial adhesion strength and thus the breakdown strength.

폴리디하이드라이드디메틸실록산의 몰당량비가 폴리디비닐디메틸실록산 1에 대해 1.1 미만으로 포함되는 경우는 계면 접착력 향상이 미비하고 몰당량비가 5를 초과하는 경우는 제조 공정의 비효율성을 유발할 수 있고, 타물질의 물성에 영향을 줄 수 있다. When the molar equivalent ratio of polydihydride dimethylsiloxane is included below 1.1 with respect to polydivinyldimethylsiloxane 1, the improvement in interfacial adhesion is insufficient, and when the molar equivalent ratio exceeds 5, it may cause inefficiency of the manufacturing process. It may affect the physical properties of other materials.

폴리디하이드라이드디메틸실록산의 몰당량비는, 추가가교에서의 계속적인 제공 및 공정의 효율성을 달성하기 위해, 몰당량비가 2.5 내지 3.5로 포함되는 것이 더욱 바람직하다.More preferably, the molar equivalent ratio of polydihydride dimethylsiloxane is included in the molar equivalent ratio of 2.5 to 3.5 to achieve continuous provision in further crosslinking and process efficiency.

또한 액상실리콘 절연 재료 및 액상실리콘 반도전 재료는 바람직하게는 부가적으로 무기실리카 성분의 충전제와 실리콘 레진을 함유하도록 하여, 백금의 촉매반응에 의해 가교가 일어나도록 한다.In addition, the liquid silicon insulating material and the liquid silicon semiconducting material preferably additionally contain a filler of inorganic silica component and a silicone resin so that crosslinking occurs by catalytic reaction of platinum.

무기실리카 성분의 충전제 및 실리콘 레진의 부가적인 함유는 원재료의 경제성에 대한 고려를 바탕으로 하며, 함유하는 경우에, 인장 강도 및 경도등의 물성을 향상시킨다. The additional inclusion of the inorganic silica component filler and the silicone resin is based on consideration of the economics of the raw materials, and when contained, improves physical properties such as tensile strength and hardness.

주가교반응은 통상적으로 알려진 바와 같이 스태틱 믹서(static mixer)등 적절한 혼합장치를 이용해 교반하여 가사시간(pot-life)이 지나기 전 믹싱한 후, 상온에서 주가교를 실시한다.Main crosslinking reaction is conventionally known by stirring using an appropriate mixing device such as a static mixer and mixing before the pot-life passes, and then main crosslinking at room temperature.

추가가교반응은 고온 및 장시간으로 이루어지도록 하는데, 100℃~220℃의 온도의 오븐에서 0.5시간~24시간동안 이루어지는 것이 바람직하며, 150℃~180℃의 온도의 오븐에서 1시간~6시간동안 이루어지는 것이 더욱 바람직하다. The additional crosslinking reaction is to be made at a high temperature and a long time, it is preferably made for 0.5 hours to 24 hours in an oven at a temperature of 100 ℃ ~ 220 ℃, it is made for 1 hour to 6 hours in an oven at a temperature of 150 ℃ ~ 180 ℃ More preferred.

반응 온도가 100℃ 미만에서는 추가가교의 활성도가 낮아 효과가 떨어지고, 220℃ 를 초과하는 경우에는 고온 조건에 의한 계면 접착력 저하등의 악영향이 일어나므로 바람직하지 않다. If the reaction temperature is less than 100 ° C, the effect of additional crosslinking activity is low, and if the reaction temperature is higher than 220 ° C, adverse effects such as lowering of interfacial adhesion due to high temperature conditions are not preferable.

반응 시간이 0.5시간 미만이 되면 충분한 반응이 진행되지 못하므로 본 발명에 따른 추가가교반응의 채택의 의미가 없어지며, 24시간을 초과하는 경우는 실질적인 응용예가 될 수 없다. If the reaction time is less than 0.5 hours does not proceed enough reaction to adopt the additional cross-linking reaction according to the present invention, if more than 24 hours can not be a practical application.

반응 조건이 150℃~180℃의 온도와 1시간~6시간이 되는 경우에, 다음에서 설명하는 실시예에서 보는 바와 같이, 추가 가교에 의한 접착강도 및 절연파괴특성 향상의 효과가 우수하여 더욱 바람직하다. When the reaction conditions are between 150 ° C and 180 ° C and between 1 hour and 6 hours, as shown in the examples described below, the effect of improving the adhesive strength and the dielectric breakdown property by additional crosslinking is more preferable. Do.

본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법은, 주가교이외에 추가가교반응을 통해, 주가교시에 미반응된 액상실리콘 성형물 내부에 잔류하는 성분의 계면화학반응을 유도한다. The method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties according to the present invention, through the cross-linking reaction in addition to the main cross-linking, induces the interfacial chemical reaction of the components remaining in the unreacted liquid silicone molding during the main cross-linking do.

즉, RTV 또는 LSR을 사용하는 경우, 상기한 반응조건에 따른 추가가교반응에 의해 미반응의 하이드라이드 성분이 추가반응하여 계면 접착이 유도된다. 따라서 계면 접착성이 강화되므로써 결과적으로 주가교 단독 처리시에 비하여 우수한 전기절연특성이 부여된다.In other words, in the case of using RTV or LSR, an unreacted hydride component is further reacted by an additional crosslinking reaction according to the above reaction conditions, thereby inducing interfacial adhesion. As a result, the interfacial adhesion is enhanced, and as a result, superior electrical insulating properties are conferred as compared with the main cross-linking treatment alone.

본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법은, 그 추가가교반응이 주가교반응을 거친 절연-반도전 액상실리콘 고무재료 특정 성분의 계면 접착을 유도하여 액상 실리콘 고무의 접착성 개선 및 이를 통한 전기절연 특성을 향상하는 것으로, 주로 액상 실리콘 고무의 기계적 물성, 특히 영구압축줄음율의 개선을 주목적으로 할 경우에만 제한적으로 사용되어 왔던 추가가교프로세스와는 전혀 상이하다.The method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties according to the present invention, liquid silicone rubber by inducing the interfacial adhesion of a specific component of the insulating-semiconductor liquid silicone rubber material whose additional crosslinking reaction has undergone the main crosslinking reaction In order to improve the adhesive properties and electrical insulation properties of the, it is completely different from the additional cross-linking process that has been used limitedly mainly to improve the mechanical properties of the liquid silicone rubber, in particular, the permanent compression shrinkage.

이하, 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 하기 실시예에 한정되는 것은 아니라 첨부된 특허청구범위내에서 다양한 형태의 실시예들이 구현될 수 있으며, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common to those skilled in the art to complete the present disclosure. It is intended to facilitate the implementation of the invention to those with knowledge.

[실시예]EXAMPLE

접착력의 시험은 T-peel 테스트로써 ASTM D 1876에 준하여 시험하였으며, RTV절연체/LSR반도전체 혹은 LSR절연체/LSR반도전체의 조합을 구성하여 성형 및 테스트를 진행하였다. 절연파괴강도는 Phenix사의 장비를 사용하여 ASTM D149에 준하여 승압속도 500V/sec의 조건으로 실시하였다.The adhesion test was conducted according to ASTM D 1876 as a T-peel test, and a combination of RTV insulator / LSR semiconductor or LSR insulator / LSR semiconductor was formed and tested. The dielectric breakdown strength was performed under the conditions of a boosting speed of 500V / sec according to ASTM D149 using Phenix equipment.

표1은 본 실시예들에 따른 반도전체, 절연체의 주가교 조건 및 추가가교조건을 나타낸 것이다. Table 1 shows the main crosslinking conditions and additional crosslinking conditions of the semiconductor, insulator according to the present embodiments.

구분division 주가교조건(반도전체) State Bridge Conditions (Whole Peninsula) 주가교조건(반도전체+절연체) Main crosslinking condition (whole semiconductor + insulator) 추가가교조건(반도전체+절연체)Additional crosslinking condition (whole semiconductor + insulator) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 실시예1Example 1 SS 130130 0.20.2 R1R1 4545 55 130130 0.50.5 실시예2Example 2 SS 130130 0.20.2 R1R1 4545 55 130130 66 실시예3Example 3 SS 130130 0.20.2 R1R1 4545 55 200200 1One 실시예4Example 4 SS 130130 0.20.2 R1R1 125125 0.20.2 180180 1One 실시예5Example 5 SS 130130 0.20.2 L1L1 125125 0.20.2 130130 66 실시예6Example 6 SS 130130 0.20.2 L1L1 125125 0.20.2 150150 22 실시예7Example 7 SS 130130 0.20.2 L1L1 125125 0.20.2 180180 1One 실시예8Example 8 SS 130130 0.20.2 L2L2 125125 0.20.2 180180 1One 실시예9Example 9 SS 130130 0.20.2 L2L2 125125 0.20.2 200200 1212

S:반도전 LSR(점도: 500,000~4,000,000 cps)S: Semiconductor LSR (Viscosity: 500,000 ~ 4,000,000 cps)

R1:절연 RTV(점도: 5,000~50,000 cps)R1: Isolated RTV (Viscosity: 5,000-50,000 cps)

본 발명의 실시예로서 9가지 조건을 선정하였다.Nine conditions were selected as examples of the present invention.

반도전체 성형물을 먼저 만든 후, 절연체 성형물을 금형 캐비티에 부어 넣어 전기절연파괴시험이 가능한 형태의 반도전체 및 절연체 조합(반도전체+절연체) 성형물을 제조하였다. 마지막으로 경화 오븐에 오염이 되지 않도록 성형물을 적절히 밀봉투입하여 추가가교를 시켰다. After the semiconducting molding was made first, the insulator molding was poured into a mold cavity to prepare a semiconductor and an insulator combination (semiconductor + insulator) molding in the form of an electrical breakdown test. Finally, the crosslinking was carried out by properly sealing the molded product so as not to be contaminated in the curing oven.

도 1a는 반도전체 성형용 금형(10)을 나타내는 개략도이고, 도 1b는 반도전체 성형물(20)의 탈형후 구조를 나타내는 개략도이다. FIG. 1A is a schematic view showing a mold 10 for forming a semiconducting material, and FIG. 1B is a schematic view showing a post-deformation structure of the semiconducting molding 20.

반도전 재료의 주가교 조건은 130℃×0.2시간의 동일한 조건하에서 도 1에 서 도시된 바와 같이, 금형(10)으로 고무성형용 유압프레스를 사용하여 성형하였다. The main crosslinking conditions of the semiconductive material were molded using a hydraulic press for rubber molding into the mold 10 as shown in FIG. 1 under the same conditions of 130 ° C × 0.2 hours.

도 2a는 반도전체 및 절연체 조합 성형용 금형(100)을 나타내는 개략도이고, 도 2b는 반도전체 및 절연체 조합 성형물(200)의 탈형후 구조를 나타내는 개략도이다. FIG. 2A is a schematic view showing a mold 100 for semiconducting and insulator combination molding, and FIG. 2B is a schematic view showing post-deformation structure of the semiconducting and insulator combination molding 200.

반도전체 및 절연체의 조합 재료는 45℃×5시간(RTV의 경우), 혹은 125℃×0.2시간(LSR의 경우)의 조건으로 두어, 도 2에서 나타난 바와 같이, 금형(100)으로 고무성형용 유압프레스를 사용하여 성형하였다. The combination material of the semiconductor and the insulator is placed under conditions of 45 ° C. × 5 hours (for RTV) or 125 ° C. × 0.2 hours (for LSR), and as shown in FIG. 2, for molding the rubber into the mold 100. It was molded using a hydraulic press.

이렇게 성형된 조합체 성형물(20, 200)을 적절한 용량의 경화용 오븐에 알루미늄박이나, 적절한 용기에 담아 추가적인 가교반응을 진행시켰다. The molded articles 20 and 200 thus formed were put in aluminum foil or an appropriate container in a curing oven of an appropriate capacity to further crosslink the reaction.

표2는 비교예들에 따른 주가교조건과 접착강도, 주절연파괴강도를 나타낸 것이다. Table 2 shows the main crosslinking conditions, adhesive strength, and main breakdown strength according to the comparative examples.

구분division 주가교조건(반도전체) State Bridge Conditions (Whole Peninsula) 주가교조건(반도전체+절연체) Main crosslinking condition (whole semiconductor + insulator) 접착강도(1)(kgf/in)Adhesive Strength (1) (kgf / in) 주절연파괴강도(1kV/mm)Main breakdown strength (1kV / mm) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 비교예1Comparative Example 1 SS 130130 0.20.2 R1R1 4545 55 1.21.2 22.022.0 비교예2Comparative Example 2 SS 130130 0.20.2 R1R1 125125 0.20.2 2.52.5 23.023.0 비교예3Comparative Example 3 SS 130130 0.20.2 L1L1 125125 0.20.2 3.03.0 22.522.5 비교예4Comparative Example 4 SS 130130 0.20.2 L2L2 125125 0.20.2 3.53.5 23.523.5

S:반도전 LSR(점도: 500,000~4,000,000 cps)S: Semiconductor LSR (Viscosity: 500,000 ~ 4,000,000 cps)

R1:절연 RTV(점도: 5,000~50,000 cps)R1: Isolated RTV (Viscosity: 5,000-50,000 cps)

L1:절연 LSR 1(점도: 50,000~800,000 cps)L1: Insulated LSR 1 (viscosity: 50,000 to 800,000 cps)

L2:절연 LSR 2(점도: 100,000~1,500,000 cps)L2: Insulated LSR 2 (viscosity: 100,000-1,500,000 cps)

추가가교조건 없이 주가교조건 단독 적용시의 접착강도(1)를 측정한 결과 약 1.2~3.5kgf/in의 값을 나타내었다. 추가가교조건 없이 주가교조건 단독 적용시의 절연파괴강도(1)도 마찬가지로 22~23.5kV/mm의 범위를 나타내고 있음을 알 수 있었다.Adhesion strength (1) when the main crosslinking condition was applied alone without additional crosslinking condition showed 1.2 ~ 3.5kgf / in. The dielectric breakdown strength (1) when the main crosslinking condition was applied alone without additional crosslinking conditions also showed a range of 22 ~ 23.5kV / mm.

표 3은 본 실시예들에 따른 접착강도, 절연파괴강도를 나타낸 것이다. Table 3 shows the adhesive strength and dielectric breakdown strength according to the present embodiments.

구분division 주가교조건(반도전체) State Bridge Conditions (Whole Peninsula) 주가교조건(반도전체+절연체) Main crosslinking condition (whole semiconductor + insulator) 접착강도(1)(kgf/in)Adhesive Strength (1) (kgf / in) 절연파괴강도(1)(kV/mm)Insulation Breaking Strength (1) (kV / mm) 추가가교조건(반도전체+절연체)Additional crosslinking condition (whole semiconductor + insulator) 접착강도(2)(kgf/in)Adhesive Strength (2) (kgf / in) 절연파괴강도(2)(kV/mm)Insulation Breaking Strength (2) (kV / mm) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 재료material 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 온도(℃)Temperature (℃) 시간(Hr)Time (Hr) 실시예1Example 1 SS 130130 0.20.2 R1R1 4545 55 1.21.2 22.022.0 130130 0.50.5 2.02.0 22.522.5 실시예2Example 2 SS 130130 0.20.2 R1R1 4545 55 1.21.2 22.022.0 130130 66 3.53.5 23.523.5 실시예3Example 3 SS 130130 0.20.2 R1R1 4545 55 1.21.2 22.022.0 180180 1One 22.022.0 24.524.5 실시예4Example 4 SS 130130 0.20.2 R1R1 125125 0.20.2 2.52.5 23.023.0 180180 1One 22.522.5 25.025.0 실시예5Example 5 SS 130130 0.20.2 L1L1 125125 0.20.2 3.03.0 22.522.5 130130 66 5.05.0 23.023.0 실시예6Example 6 SS 130130 0.20.2 L1L1 125125 0.20.2 3.03.0 22.522.5 150150 22 10.010.0 25.025.0 실시예7Example 7 SS 130130 0.20.2 L1L1 125125 0.20.2 3.03.0 22.522.5 180180 1One 19.019.0 27.027.0 실시예8Example 8 SS 130130 0.20.2 L2L2 125125 0.20.2 3.53.5 23.523.5 180180 1One 17.017.0 28.028.0 실시예9Example 9 SS 130130 0.20.2 L2L2 125125 0.20.2 3.53.5 23.523.5 200200 1212 13.013.0 26.526.5

본 발명의 실시예 1 내지 9의 반도전체 재료는 주가교조건을 130℃에서 0.2시간의 동일 조건으로 설정하여 프레스 성형하였으며, 반도전체 및 절연체 조합 성형재료는 RTV의 경우는 실시예 1 내지 3에서와 같이 45℃×5시간, LSR의 경우는 실시예4에서 9까지의 조건과 같이 125℃×0.2시간의 동일한 조건으로 설정하여 압축 몰딩방식으로 성형하였다. 또한 오븐에서 실시예 1 내지 9의 조건으로 추가가교를 실시하여 이때의 접착강도(2)와 절연파괴강도(2)를 측정하였다. The semiconducting materials of Examples 1 to 9 of the present invention were press-molded by setting the main crosslinking conditions at the same conditions of 0.2 hours at 130 ° C., and the semiconducting and insulator combination molding materials of Examples 1 to 3 in the case of RTV. As described above, in the case of 45 ° C. × 5 hours and LSR, the molding was performed under the same conditions of 125 ° C. × 0.2 hours as in the case of Examples 4 to 9, and molded by compression molding. Further cross-linking was carried out in the oven under the conditions of Examples 1 to 9 to measure the adhesive strength (2) and the dielectric breakdown strength (2) at this time.

주가교 단독 경우에 비해 고온, 장시간 처리한 추가가교조건 결과 접착강도(2)가 접착강도(1)에 비해 높아짐을 알 수 있으며, 절연파괴강도(2) 역시 절연파괴강도(1)에 비해 최고 4.5kV/mm까지 강화됨을 알 수 있다.As a result of the additional crosslinking conditions treated at a high temperature and for a long time compared to the main crosslinking alone, it can be seen that the adhesive strength (2) is higher than that of the adhesive strength (1). It can be seen that it is strengthened up to 4.5kV / mm.

이는 추가가교를 통해 반도전체/절연체으로 구성된 성형물 내부에 미반응된 하이드라이드 성분의 추가적인 반응이 계면에서 진행되어 접착강도가 개선되며 접착강도의 강화를 통해 절연파괴강도 역시 동시에 높아진다고 할 수 있다. This can be said that the additional reaction of the unreacted hydride component inside the molding composed of the semiconductor / insulator proceeds at the interface through the additional crosslinking, thereby improving the adhesive strength and increasing the dielectric breakdown strength by strengthening the adhesive strength.

즉, 주가교 조건만을 적용한 실시예 1 내지 9까지 전체에 걸쳐 접착강도(1)는 1.2~3.5kgf/in, 절연파괴강도(1)는 22~23.5kV/mm 범위의 값을 나타내지만, 150~180℃의 고온에서 1Hr~6Hr의 조건으로 추가가교를 실시하게 되면, 접착강도(2) 및 절연파괴강도(2)가 상승하는 것을 알 수 있다.In other words, the adhesive strength (1) is 1.2 ~ 3.5kgf / in, the dielectric breakdown strength (1) is in the range of 22 ~ 23.5kV / mm throughout the Examples 1 to 9 applying only the main cross-linking conditions, 150 When further crosslinking is performed under conditions of 1Hr to 6Hr at a high temperature of ˜180 ° C., it can be seen that the adhesive strength 2 and the dielectric breakdown strength 2 increase.

특히 실시예 3, 4와 실시예 7, 8, 9의 경우가 실시예 1, 2 및 실시예 5, 6에비해 접착강도(2)와 절연파괴강도(2)가 동시에 개선됨을 알 수 있다.In particular, it can be seen that in the case of Examples 3, 4 and Examples 7, 8, and 9, the adhesive strength 2 and the dielectric breakdown strength 2 are simultaneously improved compared with those of Examples 1, 2, 5, and 6.

따라서 고온 혹은 장시간에서의 추가가교조건이 주어질수록, 접착강도의 강화 효과에 따른 절연파괴 강도가 증가하게 된다. Therefore, given the additional crosslinking conditions at high temperature or for a long time, the dielectric breakdown strength increases due to the strengthening effect of the adhesive strength.

본 발명에 따른 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법은 부가형 액상실리콘 고무재료의 접착성을 개선하고 이에 따라 계면물성을 강화하여 우수한 전기절연특성을 달성한다. The method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties according to the present invention improves the adhesiveness of the additional liquid silicone rubber material and thereby enhances the interfacial properties to achieve excellent electrical insulating properties.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다. Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

도 1a는 본 실시예에 따른 반도전체 성형용 금형을 나타내는 개략도,1A is a schematic view showing a mold for forming a semiconducting material according to the present embodiment,

도 1b는 본 실시예에 따른 반도전체 성형물의 탈형후 구조를 나타내는 개략도,Figure 1b is a schematic diagram showing the structure after demolding the semiconducting molding according to the present embodiment,

도 2a는 본 실시예에 따른 반도전체 및 절연체 조합 성형용 금형을 나타내는 개략도,2A is a schematic view showing a mold for forming a semiconductor and an insulator combination according to the present embodiment;

도 2b는 본 실시예에 따른 반도전체 및 절연체 조합 성형물의 탈형후 구조를 나타내는 개략도이다. Figure 2b is a schematic diagram showing the post-deformation structure of the semiconducting and insulator combination molding according to this embodiment.

*도면의 주요부분에 대한 설명** Description of the main parts of the drawings *

10 : 반도전체 성형용 금형 20 : 반도전체 성형물10: mold for semiconducting molding 20: semiconducting molding

100: 반도전체 및 절연체 조합 성형용 금형 100: Mold for forming a combination of semiconductor and insulator

200: 반도전체 및 절연체 조합 성형물200: semi-conductor and insulator combination molding

Claims (9)

절연-반도전 이액형 부가형 액상실리콘 고무재료를 이용한 접속함용 고무 성형물의 제조방법에 있어서, In the manufacturing method of the rubber molded article for the junction box using the insulating-semiconductor two-component addition liquid silicone rubber material, 백금을 포함하는 촉매를 사용하여, 절연 재료와 반도전 재료의 주가교반응후 추가가교반응을 통해 계면 접착을 유도하는 단계를 포함하는 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.Liquid silicone rubber molding having excellent dielectric breakdown strength and adhesive properties, comprising the step of inducing interfacial adhesion through a main crosslinking reaction between the insulating material and the semiconductive material using a catalyst containing platinum. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 추가가교반응은 100℃~220℃의 온도에서 0.5시간~24시간의 조건에서 이루어지는 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.The additional crosslinking reaction is a method for producing a liquid silicone rubber molded article excellent in dielectric breakdown strength and adhesive properties, characterized in that the temperature is made from 0.5 hours to 24 hours at a temperature of 100 ℃ ~ 220 ℃. 제 2 항에 있어서, The method of claim 2, 상기 추가가교반응은 150℃~180℃의 온도에서 1시간~6시간의 조건에서 이루어지는 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.The additional crosslinking reaction is a method for producing a liquid silicone rubber molded article excellent in dielectric breakdown strength and adhesive properties, characterized in that the temperature is made from 1 hour to 6 hours at a temperature of 150 ℃ ~ 180 ℃. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 절연 재료 및 상기 반도전 재료는 주제 또는 가교제에 폴리디비닐디메틸실록산 및 폴리디하이드라이드디메틸실록산을 포함하는 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.Wherein said insulating material and said semiconducting material comprise polydivinyldimethylsiloxane and polydihydride dimethylsiloxane in a main or crosslinking agent. 제 4 항에 있어서, The method of claim 4, wherein 상기 폴리디비닐디메틸실록산과 상기 폴리디하이드라이드디메틸실록산은 몰당량비가 1:1.1~1:5인 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.The polydivinyl dimethyl siloxane and the polydihydride dimethyl siloxane is a method of producing a liquid silicone rubber molded article excellent in dielectric breakdown strength and adhesive properties, characterized in that the molar equivalent ratio is 1: 1.1 to 1: 5. 제 5 항에 있어서, The method of claim 5, 상기 폴리디비닐디메틸실록산과 상기 폴리디하이드라이드디메틸실록산은 몰당량비가 1:2.5~1:3.5인 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.The polydivinyl dimethyl siloxane and the polydihydride dimethyl siloxane is a method of producing a liquid silicone rubber molded article excellent in dielectric breakdown strength and adhesive properties, characterized in that the molar equivalent ratio is 1: 2.5 ~ 1: 3.5. 제 4 항에 있어서, The method of claim 4, wherein 상기 절연 재료는 무기실리카 성분의 충전제 및 실리콘 레진을 더 포함하는 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘고무 성형물의 제조방법.The insulating material is a method for producing a liquid silicone rubber molded article excellent in dielectric breakdown strength and adhesive properties, characterized in that it further comprises a filler of inorganic silica component and silicone resin. 제 1 항 내지 제 3 항중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 절연 재료는 5,000~50,000 cps의 점도를 가지는 절연 RTV 또는 50,000~1,500,000 cps의 점도를 가지는 절연 LSR인 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상 실리콘 고무 성형물의 제조방법.The insulating material is an insulating RTV having a viscosity of 5,000 to 50,000 cps or an insulating LSR having a viscosity of 50,000 to 1,500,000 cps. 제 1 항 내지 제 3 항중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 반도전 재료는 500,000~4,000,000 cps의 점도를 가지는 반도전 LSR인 것을 특징으로 하는 절연파괴강도와 접착특성이 우수한 액상실리콘 고무 성형물의 제조방법.The semiconductive material is a method for producing a liquid silicone rubber molded article having excellent dielectric breakdown strength and adhesive properties, characterized in that the semiconducting LSR having a viscosity of 500,000 ~ 4,000,000 cps.
KR10-2002-0071817A 2002-11-19 2002-11-19 Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties KR100536120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0071817A KR100536120B1 (en) 2002-11-19 2002-11-19 Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0071817A KR100536120B1 (en) 2002-11-19 2002-11-19 Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties

Publications (2)

Publication Number Publication Date
KR20040043526A KR20040043526A (en) 2004-05-24
KR100536120B1 true KR100536120B1 (en) 2005-12-14

Family

ID=37339982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0071817A KR100536120B1 (en) 2002-11-19 2002-11-19 Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties

Country Status (1)

Country Link
KR (1) KR100536120B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625805B1 (en) * 2004-05-18 2006-09-20 엘에스전선 주식회사 Insulation and semi-conductive liquid silicone rubber material with high adhesion property and the producing method using thereof
KR102180981B1 (en) * 2018-10-23 2020-11-19 중부대학교 산학협력단 Surface modification method for nanosilica with vinylsilane and alkylsilane, and silicone rubber/nanosilica composite for high voltage insulation using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502080A (en) * 1973-05-09 1975-01-10
US4528324A (en) * 1982-11-01 1985-07-09 General Electric Company Process for producing RTV silicone rubber compositions using a devolatilizing extruder
WO1997005150A1 (en) * 1995-07-27 1997-02-13 Novartis Ag Iridium-diphosphine complexes and process for the hydrogenation of imines
KR0175976B1 (en) * 1994-11-24 1999-05-15 카나가와 치히로 Liquid silicone rubber composition
KR100256932B1 (en) * 1992-05-08 2000-05-15 킴 베를리 요트. 우르달. Process for the continuous preparation of liquid silicone rubbers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502080A (en) * 1973-05-09 1975-01-10
US4528324A (en) * 1982-11-01 1985-07-09 General Electric Company Process for producing RTV silicone rubber compositions using a devolatilizing extruder
KR100256932B1 (en) * 1992-05-08 2000-05-15 킴 베를리 요트. 우르달. Process for the continuous preparation of liquid silicone rubbers
KR0175976B1 (en) * 1994-11-24 1999-05-15 카나가와 치히로 Liquid silicone rubber composition
WO1997005150A1 (en) * 1995-07-27 1997-02-13 Novartis Ag Iridium-diphosphine complexes and process for the hydrogenation of imines

Also Published As

Publication number Publication date
KR20040043526A (en) 2004-05-24

Similar Documents

Publication Publication Date Title
CN109438995B (en) Low oil-permeability high-strength addition type silicone gel and preparation method thereof
JP2594142B2 (en) Electronic component manufacturing method
US3965065A (en) Method of improving the electrical properties of organopolysiloxane elastomers and compositions therefor
KR101967695B1 (en) Resin composition with high dielectric insulation properties
JP2588972B2 (en) Packaging electronic device products and packaging equipment
JP2011116955A (en) Silicone rubber composition
KR20190025722A (en) Elastomer compositions and applications thereof
CN111417687B (en) Silicone rubber composition and composite material obtained using the same
CN114945634A (en) Curable polyorganosiloxane composition, cured product thereof, protective agent or adhesive, and electrical/electronic device
JPH08259820A (en) Silicone rubber composition for high-voltage electrical insulator
US9123639B2 (en) Power semiconductor module
CN105348809A (en) Novel organic siloxane polymer material for electronic packaging
KR102478213B1 (en) Liquid curable silicone adhesive composition, cured product thereof and use thereof
JP2021113326A (en) High dielectric insulating silicone rubber composition and electric field relaxation layer
KR100536120B1 (en) Preparatoin method of liquid silicone rubber forming material with good insulation-breakdown and adhesion properties
EP0509515B1 (en) Curable organopolysiloxane gel composition
CN113677750A (en) Self-adhesive silicone gel composition and silicone gel comprising cured product thereof
JP7205481B2 (en) Millable type silicone rubber composition and electric field relaxation layer
JP2008231247A (en) Silicone gel composition and method for producing the same
JPH09320342A (en) High voltage equipment part for power transmission line
KR100625805B1 (en) Insulation and semi-conductive liquid silicone rubber material with high adhesion property and the producing method using thereof
JP3395456B2 (en) Silicone rubber composition for high voltage electrical insulator
JP3822321B2 (en) Semiconductor device
JP3903850B2 (en) Inverter module
JP2835527B2 (en) Non-inducing silicone composition for electrical contacts and method for preventing electrical interference

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161206

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee