KR100527382B1 - Scanning probe microscopy tip using carbon nanotube with vertical growth and its method - Google Patents
Scanning probe microscopy tip using carbon nanotube with vertical growth and its method Download PDFInfo
- Publication number
- KR100527382B1 KR100527382B1 KR10-2002-0068745A KR20020068745A KR100527382B1 KR 100527382 B1 KR100527382 B1 KR 100527382B1 KR 20020068745 A KR20020068745 A KR 20020068745A KR 100527382 B1 KR100527382 B1 KR 100527382B1
- Authority
- KR
- South Korea
- Prior art keywords
- tip
- cantilever
- carbon nanotubes
- scanning probe
- probe microscope
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/08—Probe characteristics
- G01Q70/10—Shape or taper
- G01Q70/12—Nanotube tips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
- G01Q10/045—Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/16—Probe manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 단일 탄소 나노튜브가 이용된 CD(Critical Dimension, 이하 CD라 함)-주사 프로브 현미경(Scanning Probe Microscopy)의 팁과 그 제조방법에 관한 것이다.The present invention relates to a tip of a CD (Critical Dimension) (Scanning Probe Microscopy) using a single carbon nanotube and a method of manufacturing the same.
본 발명의 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁 제조방법은 캔틸레버(cantilever)(1)에 뾰족하게 형성된 팁 위에 촉매물질(7)인 나노 입자의 혼합용액이 도포되는 단계; 상기 캔틸레버에 도포된 촉매물질(7)인 나노입자 혼합용액의 용매가 상온에서 증발되고 나노입자가 캔틸레버에 접착되는 단계; 상기의 나노입자가 접착된 캔틸레버를 메탄과 수소의 혼합 기체 분위기 챔버에 넣는 단계; 단일 탄소 나노튜브(6)가 성장할 팁의 위치가 선택되는 단계; 상기의 단일 탄소 나노튜브를 포함하여 성장 위치에 전자빔(5)을 조사하는 단계; 및 상기의 단일 탄소 나노튜브(6)가 수직적으로 성장되는 단계를 포함하여 제조됨에 기술적 특징이 있다.Method of manufacturing a tip of a scanning probe microscope using vertically grown carbon nanotubes of the present invention comprises the steps of applying a mixed solution of the nanoparticles of the catalytic material (7) on the tip formed pointed to the cantilever (1); The solvent of the nanoparticle mixed solution, which is the catalyst material 7 applied to the cantilever, is evaporated at room temperature, and the nanoparticles are attached to the cantilever; Placing the cantilever to which the nanoparticles are attached into a mixed gas atmosphere chamber of methane and hydrogen; Selecting the position of the tip at which the single carbon nanotubes 6 will be grown; Irradiating an electron beam (5) at a growth position including the single carbon nanotube; And the single carbon nanotube 6 is grown vertically.
따라서, 본 발명의 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁은 상기의 제조방법과 같이 기판 전체에 열반응을 일으키지 않고 탄소 나노튜브가 성장할 위치에만 국부적으로 전자빔을 조사하기 때문에 PZT 엑츄에이터가 장착된 캔틸레버에 있어서 PZT 엑츄에이터를 손상시키지 않고 단일 탄소 나노튜브를 성장시킬 수 있어서, 깊은 홈구조의 벽면구조 및 나노거칠기 측정에 활용될 수 있다.Therefore, the tip of the scanning probe microscope using the vertically grown carbon nanotubes of the present invention is a PZT actuator because the tip of the scanning probe microscope irradiates the electron beam only at the position where the carbon nanotubes are grown without causing thermal reaction to the entire substrate as in the above-described manufacturing method. In the cantilever equipped with a single carbon nanotube can be grown without damaging the PZT actuator, it can be used to measure the wall structure and nano-roughness of the deep groove structure.
Description
본 발명은 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁과 그 제조방법에 관한 것으로, 보다 자세하게는 CD(Critical Dimension, 이하 CD라 함) 주사 프로브 현미경의 프로브(probe, 탐침)에 탄소 나노튜브를 적용하는 제조방법에 관한 것으로서, 국부적으로 탄소 나노튜브가 성장할 위치에만 전자빔을 조사하여 단일 탄소 나노튜브를 수직적으로 성장시킨 팁과 그 제조방법에 관한 것이다.The present invention relates to a tip of a scanning probe microscope using vertically grown carbon nanotubes and a method of manufacturing the same, and more specifically, to a probe (probe, probe) of a CD (Critical Dimension, hereinafter referred to as a CD) scanning probe microscope The present invention relates to a method for applying nanotubes, and a tip and a method for manufacturing the same, in which a single carbon nanotube is vertically grown by irradiating an electron beam only at a position where the carbon nanotubes are to be locally grown.
CD-주사 프로브 현미경은 극미세 구조 및 깊은 홈의 벽면을 측정하기 위하여 캔틸레버(cantilever)의 움직임을 가능하게 하는 PZT 엑츄에이터(actuator)가 구비되어야 하며, 종횡비가 크고 끝이 날카로운 팁을 이용하여야 한다. 종회비가 크고 끝이 날카로운 팁을 제작하기 위해서는 실리콘 팁을 집속이온빔을 이용하여 식각하는 방법과 전자빔 조사(Electron Beam Induced, 이하 EBD)에 의한 탄소상 팁 또는 탄소 나노튜브(Carbon Nanotube, CNT) 성장 등의 방안이 존재한다. 그러나 실리콘 팁을 집속이온빔을 이용하여 식각하는 방법은 제작공정이 난이하고 균일한 형상의 팁을 어렵다는 단점이 있으며, EBD 팁은 팁의 직경을 줄일 수 있는 한계가 있기 때문에 수십 나노미터 이하의 깊은 홈 구조를 관찰하기 위해서는 종횡비가 크고 직경을 제어할 수 있는 단일 탄소 나노튜브를 이용한 팁이 제작되어야 한다.CD-scan probe microscopes should be equipped with a PZT actuator that allows the movement of the cantilever to measure the microstructure and the wall of the deep groove, and should use a tip with a large aspect ratio and a sharp tip. To produce tips with large aspect ratios and sharp tips, silicon tips may be etched using focused ion beams, and carbon phase tips or carbon nanotube (CNT) growth by electron beam irradiation (EDB), etc. Solution exists. However, the method of etching the silicon tip using the focused ion beam has a disadvantage in that the manufacturing process is difficult and the tip of the uniform shape is difficult, and since the EBD tip has a limit in reducing the diameter of the tip, a deep groove of several tens of nanometers or less In order to observe the structure, a tip using a single carbon nanotube having a large aspect ratio and controllable diameter should be manufactured.
종래에는 "Jpn. J. Appl. Phys. Vol. 40(2001) pp. 1425-1428" 에서와 같이 기존의 다발 형태의 탄소 나노튜브를 합성하여 분리한 후 전압을 인가하여 적당한 길이로 자르고, 제어기를 이용하여 캔틸레버 팁에 위치한 후 전자빔을 이용하여 접착을 행하는 방법이 제시되었으나, 이러한 방법은 여러가지 어려운 부수 공정이 요구되며, 비용이 많이 증가한다는 단점이 있었다.Conventionally, as described in "Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 1425-1428", the conventional bundle-type carbon nanotubes are synthesized and separated, and a voltage is cut to an appropriate length, and the controller Although the method of performing adhesion using an electron beam after placing the tip on the cantilever tip has been proposed, this method requires various difficult side processes and has a disadvantage in that the cost is increased.
이에 따라 단일 탄소 나노 튜브를 주사 프로브 현미경의 팁 위에 직접 성장시키는 방법이 제시되었다. "Appl. Phys. Lett., Vol. 80, No 12, 25 March 2002"에서와 미국특허 제6,457,350호, 미국특허 제6,346,189호에서는 캔틸레버에 뾰족한 팁을 만들어 나노 입자의 촉매물질을 도포하고 열반응을 통하여 단일 탄소 나노튜브를 성장시키는 방법을 제시하고 있다.Thus, a method of growing a single carbon nanotube directly on the tip of a scanning probe microscope has been presented. In "Appl. Phys. Lett., Vol. 80, No 12, 25 March 2002" and in US Pat. No. 6,457,350 and US Pat. No. 6,346,189, pointed tips are made on the cantilever to apply nanoparticle catalyst material and thermal reaction. A method of growing single carbon nanotubes is proposed.
그러나, 상기와 같은 종래의 단일 탄소 나노튜브의 성장방법은 기판이나 샘플 전체에 고온의 열을 인가하여 촉매물질의 열반응을 일으켜야 하므로 PZT 박막 엑츄에이터를 필요로 하지 않는 경우에는 적용될 수 있는 방법이지만, 이 방법을 PZT 박막 엑츄에이터가 필수적인 CD-주사 프로브 현미경의 팁에 적용하게 되면, PZT 엑츄에이터에 열손상을 가져오게 되어 깊은 홈구조의 벽면구조를 관찰할 수 없다는 문제점이 있다.However, the conventional method of growing a single carbon nanotube as described above is a method that can be applied when a PZT thin film actuator is not required because a high temperature heat must be applied to a substrate or an entire sample to cause a thermal reaction of the catalyst material. If this method is applied to the tip of a CD-scan probe microscope in which a PZT thin-film actuator is essential, there is a problem that the wall structure of the deep groove structure cannot be observed because it causes thermal damage to the PZT actuator.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 단점과 문제점을 해결하기 위한 것으로, 탄소 나노튜브를 CD-주사 프로브 현미경의 팁으로 형성시킬 때, 기판 전체에 열을 인가하지 않고, 전자빔을 이용하여 탄소 나노튜브가 성장할 위치에만 국부적으로 열반응을 시킴으로써 PZT 엑츄에이터의 열손상을 방지하여 나노 구조의 깊은 홈의 벽면구조를 관찰할 수 있는 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁 제조방법을 제공함에 본 발명의 목적이 있다. Accordingly, the present invention is to solve the above disadvantages and problems of the prior art, when forming carbon nanotubes with the tip of the CD-scan probe microscope, without applying heat to the entire substrate, using an electron beam Method for manufacturing a tip of a scanning probe microscope using vertically grown carbon nanotubes that can observe the wall structure of the deep groove of the nano structure by preventing thermal damage of the PZT actuator by locally thermally reacting only at the position where the carbon nanotubes will grow. It is an object of the present invention to provide.
본 발명의 상기 목적은 CD(Critical Dimension, 이하 CD라 함)-주사 프로브 현미경(Scanning Probe Microscopy, SPM)의 팁 부분에 단일 탄소 나노튜브가 형성되는 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁과 그 제조방법에 의해 달성된다.The object of the present invention is a scanning probe microscope using vertically grown carbon nanotubes in which a single carbon nanotube is formed at the tip of a CD (Critical Dimension, CD) -scanning probe microscope (SPM). Is achieved by a tip and a method of manufacturing the same.
본 발명은 탄소 나노튜브를 CD-주사 프로브 현미경의 팁으로 형성시킬 때, 탄소 나노튜브가 위치하게 될 캔틸레버의 뾰족한 팁 부분에 촉매물질을 도포하고, 여기에 전자빔을 조사하여 국부적 열반응을 일으켜 단일 탄소 나노튜브를 형성시킨 주사 프로브 현미경의 팁과 그 제조방법에 관한 것이다.When the carbon nanotubes are formed into the tip of a CD-scanning probe microscope, the present invention applies a catalytic material to the pointed tip portion of the cantilever where the carbon nanotubes are to be located, and irradiates the electron beam to a local thermal reaction to generate a single It relates to a tip of a scanning probe microscope formed carbon nanotubes and a method of manufacturing the same.
본 발명의 상기 목적과 기술적 구성 및 그에 따른 작용효과에 관한 자세한 사항은 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 이하 상세한 설명에 의해 보다 명확하게 이해될 것이다.Details of the above object and technical configuration of the present invention and the effects thereof according to the present invention will be more clearly understood by the following detailed description with reference to the drawings showing preferred embodiments of the present invention.
도1은 본 발명에 의한 CD-주사 프로브 현미경의 팁을 나타낸 것이다.1 shows a tip of a CD-scan probe microscope according to the present invention.
도시된 바와 같이 CD(Critical Dimension) 주사 프로브 현미경의 캔틸레버(cantilever)(1) 로드(rod)위에는 상부전극(2)과 하부전극(4) 사이에 PZT 엑츄에이터(3)가 구비되어 있다. 그리고, 본 발명에 의하여 주사 프로브 현미경의 프로브는 뾰족하게 형성된 팁을 포함하는 캔틸레버(1); 상기 캔틸레버 위에 탄소 나노튜브의 촉매물질(7)이 접착되어 있는 층; 및 상기 촉매물질(7) 위에 수직으로 성장된 단일 탄소 나노튜브(6)로 이루어져 있다.As shown, a PZT actuator 3 is provided between the upper electrode 2 and the lower electrode 4 on a cantilever 1 rod of a CD (Critical Dimension) scanning probe microscope. In addition, the probe of the scanning probe microscope according to the present invention cantilever (1) comprising a pointed tip formed; A layer on which the catalyst material 7 of carbon nanotubes is adhered on the cantilever; And a single carbon nanotube 6 grown vertically on the catalyst material 7.
이때 상기 캔틸레버는 Si를 포함하는 재질이며, 캔틸레버 로드 부분에 박막으로 제작되는 PZT 엑츄에이터는 CD(Critical Dimension)와 같은 미세 구조의 홈 부분의 벽면 형상을 측정하기 위해서 X, Y축으로 캔틸레버 로드가 움직일 수 있는 역할을 한다. 또한, 상기의 탄소 나노튜브가 성장하기 위해 도포된 촉매물질 층은 나노 사이즈의 알루미나(Alumina) 20mg과 Fe(NO3)3·9H2O 20mg 및 MoO(acac) 2 2mg이 균질하게 혼합되어 있는 물질로 이루어져 있다.At this time, the cantilever is a material containing Si, the PZT actuator made of a thin film on the cantilever rod portion is the cantilever rod is moved in the X, Y axis to measure the wall shape of the groove portion of the microstructure such as CD (Critical Dimension) Play a role. In addition, the catalyst layer coated to grow the carbon nanotubes is a homogeneous mixture of 20 mg of nano-sized alumina, 20 mg of Fe (NO 3 ) 3 .9H 2 O and 2 mg of MoO (acac) 2. It consists of matter.
다음, 도 2는 본 발명에 따라 상기와 같은 단일 탄소 나노튜브를 CD-주사 프로브 현미경의 팁으로 적용하기 위한 제조공정을 나타낸 플로우 차트이다.Next, FIG. 2 is a flow chart showing a manufacturing process for applying such a single carbon nanotube as a tip of a CD-scan probe microscope according to the present invention.
캔틸레버(cantilever)(1)에 뾰족하게 형성된 팁 위에 촉매물질(7)인 나노 입자의 혼합용액이 도포되는 단계; 상기 캔틸레버에 도포된 촉매물질(7)인 나노입자 혼합용액이 상온에서 용매증발되고 나노입자가 캔틸레버에 접착되는 단계; 상기의 나노입자가 접착된 캔틸레버(1)를 메탄과 수소의 혼합 기체 분위기 챔버에 넣는 단계; 단일 탄소 나노튜브(6)가 성장할 팁의 위치가 선택되는 단계; 상기의 단일 탄소 나노튜브를 포함하여 성장 위치에 전자빔(5)을 조사하는 단계; 및 상기의 단일 탄소 나노튜브(6)가 수직적으로 성장되는 단계를 포함하여 제조된다.Applying a mixed solution of nanoparticles, the catalyst material (7), on a tip sharply formed on the cantilever (1); Bonding the nanoparticle mixed solution, the catalyst material 7 applied to the cantilever, to solvent evaporation at room temperature, and adhering the nanoparticles to the cantilever; Placing the cantilever (1) to which the nanoparticles are attached into a mixed gas atmosphere chamber of methane and hydrogen; Selecting the position of the tip at which the single carbon nanotubes 6 will be grown; Irradiating an electron beam (5) at a growth position including the single carbon nanotube; And the single carbon nanotube 6 is grown vertically.
이때 상기 캔틸레버(cantilever)에 도포되는 촉매물질(7)은 나노 입자의 혼합 용액으로서, 메탄올 15ml에 나노 사이즈의 알루미나(Alumina) 20mg과 Fe(NO3)3·9H2O 20mg 및 MoO(acac)2 2mg을 24시간 내외로 혼합하여 1시간 내외의 시간동안 초음파 처리하여 제조한다. 그리고 이 혼합용액을 캔틸레버(1)에 도포한 뒤 상온에서 용매인 메탄올이 증발되게 하고, 170℃에서 5분동안 열처리하여 용매증발된 나노입자가 캔틸레버에 접착되도록 한다. 이렇게 나노입자가 접착된 캔틸레버는 99.999%의 고순도 메탄 기체와 수소기체가 혼합된 혼합기체를 흘려주는 챔버에 넣고 원하는 성장 길이만큼의 시간동안 전자빔(5)을 조사하여 촉매에 의한 수직적으로 단일 탄소 나노튜브를 성장시킨다.In this case, the catalyst material 7 applied to the cantilever is a mixed solution of nanoparticles, and 20 ml of nano-size alumina (Alumina), 20 mg of Fe (NO 3 ) 3 · 9H 2 O, and MoO (acac) in 15 ml of methanol. 2 2mg is mixed in about 24 hours and prepared by sonication for about 1 hour. After applying the mixed solution to the cantilever (1), the solvent methanol is evaporated at room temperature, and heat treated at 170 ° C. for 5 minutes to allow the solvent-evaporated nanoparticles to adhere to the cantilever. The cantilever to which the nanoparticles are bonded is placed in a chamber in which 99.999% of high-purity methane gas and hydrogen gas are mixed, and irradiated with an electron beam 5 for a desired growth length. Grow the tube.
따라서, 본 발명의 수직적으로 성장된 탄소 나노튜브를 이용한 주사 프로브 현미경의 팁과 그 제조방법은 단일 탄소 나노튜브를 촉매물질을 이용하여 성장시키되, 기판 전체에 열을 인가하지 않고 국부적으로 탄소 나노튜브가 성장할 부분에만 전자빔으로 열을 인가하기 때문에 PZT 엑츄에이터에 열손상을 주지 않고 단일 탄소 나노튜브를 성장시킬 수 있다. 따라서 이렇게 수직적으로 형성된 단일 탄소 나노튜브 팁은 나노 구조의 깊은 홈의 벽면구조를 관찰할 수 있는 CD-주사 프로브 현미경에 적용할 수 있다는 장점이 있다.Therefore, the tip of the scanning probe microscope using the vertically grown carbon nanotubes and a method of manufacturing the same are grown on a single carbon nanotube using a catalytic material, but without applying heat to the entire substrate, the carbon nanotubes are locally applied. Because heat is applied to the electron beam only where it grows, it is possible to grow a single carbon nanotube without damaging the PZT actuator. Therefore, this vertically formed single carbon nanotube tip has the advantage that it can be applied to the CD-scan probe microscope that can observe the wall structure of the deep groove of the nanostructure.
도 1은 본 발명에 의한 CD-주사 프로브 현미경의 팁을 나타낸 것이다.1 shows a tip of a CD-scan probe microscope according to the present invention.
도 2는 본 발명에 따라 단일 탄소 나노튜브를 CD-주사 프로브 현미경의 팁으로 적용하기 위한 제조공정을 나타낸 플로우 차트이다.2 is a flow chart illustrating a manufacturing process for applying a single carbon nanotube to the tip of a CD-scan probe microscope in accordance with the present invention.
((도면의 주요부분에 대한 부호의 설명))((Explanation of symbols for main parts of drawing))
1. 캔틸레버 2. 상부전극1. Cantilever 2. Upper electrode
3. PZT 박막 4. 하부전극3. PZT thin film 4. Bottom electrode
5. 전자빔 6. 탄소 나노튜브5. Electron Beam 6. Carbon Nanotubes
7. 촉매물질7. Catalyst Material
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0068745A KR100527382B1 (en) | 2002-11-07 | 2002-11-07 | Scanning probe microscopy tip using carbon nanotube with vertical growth and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0068745A KR100527382B1 (en) | 2002-11-07 | 2002-11-07 | Scanning probe microscopy tip using carbon nanotube with vertical growth and its method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040040575A KR20040040575A (en) | 2004-05-13 |
KR100527382B1 true KR100527382B1 (en) | 2005-11-09 |
Family
ID=37337875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0068745A KR100527382B1 (en) | 2002-11-07 | 2002-11-07 | Scanning probe microscopy tip using carbon nanotube with vertical growth and its method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100527382B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100664562B1 (en) * | 2005-02-17 | 2007-01-03 | 김성훈 | Method for selective growth of carbon nanofilaments using heat-resistant metal catalysts |
TWI392646B (en) * | 2005-11-11 | 2013-04-11 | Hon Hai Prec Ind Co Ltd | Method for manufacturing carbon anotube |
CN106796246B (en) * | 2014-02-24 | 2021-11-26 | 布鲁克纳米公司 | Precision probe deployment in an automated scanning probe microscope system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114481A (en) * | 1992-10-07 | 1994-04-26 | Advantest Corp | Production of probe for spm |
KR20020071004A (en) * | 2000-11-26 | 2002-09-11 | 요시카즈 나카야마 | Conductive probe for scanning microscope and machining method using the same |
US6457350B1 (en) * | 2000-09-08 | 2002-10-01 | Fei Company | Carbon nanotube probe tip grown on a small probe |
KR20020081258A (en) * | 2000-11-26 | 2002-10-26 | 나카야마 요시카즈 | Cantilever for vertical scanning microscope and probe for vertical scan microscope using it |
-
2002
- 2002-11-07 KR KR10-2002-0068745A patent/KR100527382B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114481A (en) * | 1992-10-07 | 1994-04-26 | Advantest Corp | Production of probe for spm |
US6457350B1 (en) * | 2000-09-08 | 2002-10-01 | Fei Company | Carbon nanotube probe tip grown on a small probe |
KR20020071004A (en) * | 2000-11-26 | 2002-09-11 | 요시카즈 나카야마 | Conductive probe for scanning microscope and machining method using the same |
KR20020081258A (en) * | 2000-11-26 | 2002-10-26 | 나카야마 요시카즈 | Cantilever for vertical scanning microscope and probe for vertical scan microscope using it |
Also Published As
Publication number | Publication date |
---|---|
KR20040040575A (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4116031B2 (en) | Carbon nanotube matrix growth apparatus and multilayer carbon nanotube matrix growth method | |
US9108850B2 (en) | Preparing nanoparticles and carbon nanotubes | |
Mårtensson et al. | Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth | |
US6203864B1 (en) | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube | |
JP4116033B2 (en) | Carbon nanotube matrix growth method | |
US7291319B2 (en) | Carbon nanotube-based device and method for making the same | |
US20080098805A1 (en) | Nanotube-Based Nanoprobe Structure and Method for Making the Same | |
WO2006025393A1 (en) | Process for producing nano-scale low-dimensional quantum structure, and process for producing integrated circuit using said process | |
EP1578599A1 (en) | Method for synthesizing nanoscale structures in defined locations | |
JP2007136661A (en) | Nanowire comprising metal nanodot and method for producing the same | |
US20110311722A1 (en) | Method of and system for forming nanostructures and nanotubes | |
US7022541B1 (en) | Patterned growth of single-walled carbon nanotubes from elevated wafer structures | |
WO2004027127A1 (en) | Acicular silicon crystal and process for producing the same | |
JP2003238123A (en) | Method for manufacturing nano-graphite structure | |
KR100527382B1 (en) | Scanning probe microscopy tip using carbon nanotube with vertical growth and its method | |
JP2010077007A (en) | Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method | |
JP2005111583A (en) | Method of manufacturing structure of nanometer scale | |
US7718224B2 (en) | Synthesis of single-walled carbon nanotubes | |
JP5137095B2 (en) | Method for producing silicon nanocrystal material and silicon nanocrystal material produced by the production method | |
US20080038538A1 (en) | Method of Producing Nanostructure Tips | |
JP2010208925A (en) | Method for producing semiconductor nanowire, and semiconductor device | |
JP3421332B1 (en) | Method for producing carbon nanotube | |
US9494615B2 (en) | Method of making and assembling capsulated nanostructures | |
JP2008308381A (en) | Manufacturing method of zinc oxide nanostructure and its junction method | |
JP2007137762A (en) | Method for manufacturing nanowire by utilizing porous template, multiprobe by using nanowire, and field emission-chip and -element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |