KR100521144B1 - Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof - Google Patents

Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof Download PDF

Info

Publication number
KR100521144B1
KR100521144B1 KR10-2002-0079153A KR20020079153A KR100521144B1 KR 100521144 B1 KR100521144 B1 KR 100521144B1 KR 20020079153 A KR20020079153 A KR 20020079153A KR 100521144 B1 KR100521144 B1 KR 100521144B1
Authority
KR
South Korea
Prior art keywords
initiator
polymerization
present
living radical
radical initiator
Prior art date
Application number
KR10-2002-0079153A
Other languages
Korean (ko)
Other versions
KR20040051254A (en
Inventor
정호순
윤관한
김재원
Original Assignee
(주)케피로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케피로스 filed Critical (주)케피로스
Priority to KR10-2002-0079153A priority Critical patent/KR100521144B1/en
Publication of KR20040051254A publication Critical patent/KR20040051254A/en
Application granted granted Critical
Publication of KR100521144B1 publication Critical patent/KR100521144B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Abstract

본 발명은 고분자 중합용 리빙라디칼 개시제 및 이를 이용한 PMMA(polymethylmethacrylate) 분말의 제조방법에 관한 것으로서, The present invention relates to a living radical initiator for polymer polymerization and a method for preparing PMMA (polymethylmethacrylate) powder using the same.

본 발명에 따른 신규한 고분자 중합용 리빙라디칼 개시제는 2,8-디티오카바모일 술파닐-4-피페라진-1,10-디메틸벤조산(2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10-dimethylbenzoic acid)이며, 본 발명에 따른 폴리메틸메타크릴레이트 분말의 제조방법은 위의 리빙라디칼 개시제와 250~380nm 파장의 광선을 이용하는 유화중합법 또는 현탁중합법에 의하여 수행되고,The novel living radical initiator for polymer polymerization according to the present invention is 2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10-dimethylbenzoic acid (2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10 -dimethylbenzoic acid), the polymethyl methacrylate powder production method according to the present invention is carried out by the emulsion polymerization method or suspension polymerization method using the above-mentioned living radical initiator and the light of 250 ~ 380nm wavelength,

본 발명의 개시제를 이용하는 제조방법에 따르면, 균일한 입도 분포를 갖는 폴리메틸메타크릴레이트 분말을 간단하고도 효과적으로 제조할 수가 있음과 동시에, 개시제 함량의 조절만으로도 입자의 크기를 조절하여 원하는 크기의 입자들을 용이하게 얻을 수 있으며, 종래의 니트록사이드법이나 RAFT법에 비해 반응시간이 두 배 내지 세 배 정도 단축 가능하고 ATRP법에서와 같이 고분자 정제과정에서 전이금속을 분리하는 등의 복잡하고 힘든 과정을 수행할 필요가 전혀 없는 장점이 있다. According to the production method using the initiator of the present invention, the polymethyl methacrylate powder having a uniform particle size distribution can be produced simply and effectively, and the particle size of the desired size is controlled by controlling the particle size only by controlling the initiator content. It can be easily obtained, and the reaction time can be shortened by two to three times compared with the conventional nitroxide method or RAFT method, and complicated and difficult process such as separating transition metal in polymer purification process as in ATRP method. There is no advantage at all.

Description

고분자 중합용 리빙라디칼 개시제 및 이를 이용한 PMMA분말의 제조방법{Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof}Living Radial Initiator for Polymer Polymerization and Manufacturing Method of PMMA Powder Using the Same {Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using

본 발명은 고분자 중합용 리빙라디칼 개시제 및 이를 이용한 PMMA 분말의 제조방법에 관한 것이며, 더욱 상세하게는, 유화제성분이 함유된 고분자 중합용의 신규한 개시제와 이를 이용한 리빙라디칼 중합방법에 의한 균일한 입도 분포를 갖는 폴리메틸메타크릴레이트 분말의 제조방법에 관한 것이다. The present invention relates to a living radical initiator for polymer polymerization and a method for producing PMMA powder using the same, and more particularly, to a uniform particle size by a novel initiator for polymer polymerization containing an emulsifier component and a living radical polymerization method using the same. A method for producing a polymethyl methacrylate powder having a distribution.

종래, 폴리메틸메타크릴레이트 분말의 제조방법의 예로서는, 안정제를 슬러리 상태로 제조한 후 보조안정제 분산액을 제조하고 아조화합물을 개시제로 사용하는 방법이 한국 특허공개 제2001-94318호에 제안되어 있으며, 고분자의 특성 요소를 선택적으로 제어하기 위해 아조계 및 과산화물 개시제를 사용하는 방법이 한국 특허공개 제2002-3403호에 제안되어 있으나, 상술한 중합방법으로는 균일한 크기의 분말을 얻기가 여전히 용이하지 않다는 문제점이 있다.Conventionally, as an example of a method for producing polymethylmethacrylate powder, a method of preparing a stabilizer in a slurry state, preparing an auxiliary stabilizer dispersion, and using an azo compound as an initiator has been proposed in Korean Patent Publication No. 2001-94318. A method of using an azo-based and peroxide initiator to selectively control the characteristic elements of a polymer has been proposed in Korean Patent Publication No. 2002-3403, but it is still not easy to obtain a powder of uniform size by the above-described polymerization method. There is a problem.

일반적으로 에멀젼 중합 또는 현탁 중합과 같은 불균일계 중합은 고분자 합성의 중요한 방법 중의 하나로 균일계 중합에 비해 많은 장점들을 가지고 있으나 모든 라디칼이 동시에 개시되지 않으며 종결반응이 우세하기 때문에 최종 고분자의 구조나 분자량을 제어하기 힘들고 균일한 크기의 고분자를 얻기 어려운 단점이 있다. In general, heterogeneous polymerization, such as emulsion polymerization or suspension polymerization, is one of the important methods of polymer synthesis, but has many advantages over homogeneous polymerization, but since all radicals do not start at the same time and the termination reaction is predominant, It is difficult to control and difficult to obtain a polymer of uniform size.

이러한 단점을 보완하고자 이니퍼터(iniferter)법, 니트록사이드(nitroxide)법, Cu나 Co 등을 이용한 ATRP(atom transfer radical polymerization) 법, 디티오에스테르류(dithioesters)나 트리티오카보네이트류(trithiocarbonates) 등을 이용한 RAFT(reversible addition-fragmentation chain transfer)법 등의 리빙라디칼 방법이 산업적으로 관심을 모으고 있다.To compensate for these drawbacks, the iniferter method, the nitroxide method, the atom transfer radical polymerization (ATRP) method using Cu or Co, dithioesters or trithiocarbonates, etc. Living radical methods, such as the reversible addition-fragmentation chain transfer (RAFT) method, have been attracting industrial attention.

하지만 이니퍼터 방식은 활성종(active species)과 휴면종(dormant species) 사이의 교환반응 속도가 성장반응 속도에 비해 느려서 분자량 분포가 매우 넓고, 분자량을 조절하기 힘든 단점이 있으며, 니트록사이드를 이용하는 방법은 반응 시간이 너무 오래 걸리는 단점이 있으며, ATRP법은 고분자 정제과정에서 전이금속을 분리해 내기 어려운 등의 단점이 있다.However, the Iniferter method has a disadvantage in that the exchange rate between the active species and the dormant species is slow compared to the growth reaction rate, so that the molecular weight distribution is very wide and the molecular weight is difficult to control. The method has a disadvantage in that the reaction takes too long, and the ATRP method has a disadvantage in that it is difficult to separate the transition metal during the polymer purification process.

따라서, 본 발명자들은 상기한 종래의 방법들이 갖는 제반 문제점을 개선하고자 다년간에 걸쳐 연구를 거듭한 결과, 불균일계 중합 시 효과적으로 이용할 수 있도록 하나의 개시제에 여러 가지 다양한 기능을 부여함으로써 첨가제 간의 상호작용을 저감시키고 분자량 조절이 용이하도록 유화제성분을 포함시킨 신규한 개시제를 합성하기에 이르렀으며, 이로써 본 발명은 완성되었다.Therefore, the present inventors have been studying for many years to improve the problems of the conventional methods described above, and as a result, the interaction between the additives by providing a variety of functions to one initiator to be effectively used in heterogeneous polymerization A novel initiator containing an emulsifier component has been synthesized to reduce the molecular weight and to facilitate molecular weight adjustment, thereby completing the present invention.

본 발명의 첫 번째 목적은 균일한 입도 분포를 갖는 고분자 입자를 용이하고도 효과적으로 얻을 수가 있는 신규한 고분자 중합용 리빙라디칼 개시제를 제공하기 위한 것이다.A first object of the present invention is to provide a novel living radical initiator for polymer polymerization, which can easily and effectively obtain polymer particles having a uniform particle size distribution.

본 발명의 두 번째 목적은 상기한 본 발명의 첫 번째 목적에 따른 신규한 개시제를 이용하여 250~380nm 파장의 UV를 조사하는 것에 의하여 제조공정이 간단하고 효과적이며 반응물의 선택적 조절이 가능한 폴리메틸메타크릴레이트 분말의 리빙라디칼 중합방법에 의한 제조방법을 제공하기 위한 것이다.The second object of the present invention is a polymethylmeta which is simple and effective in the production process by the UV irradiation of the wavelength of 250 ~ 380nm using a novel initiator according to the first object of the present invention and the selective control of the reactants It is to provide a production method by a living radical polymerization method of acrylate powder.

이하, 본 발명에 관하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 신규한 고분자 중합용 리빙라디칼 개시제는 하기의 구조식 (I)로 표시된다.The novel living radical initiator for polymer polymerization according to the present invention is represented by the following structural formula (I).

[구조식 I][Formula I]

삭제delete

삭제delete

삭제delete

2,8-디티오카바모일 술파닐-4-피페라진-1,10-디메틸벤조산(2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10-dimethylbenzoic acid)2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10-dimethylbenzoic acid (2,8-dithiocarbamoyl sulfanyl-4-piperazine-1,10-dimethylbenzoic acid)

보다 구체적으로 설명하면 본 발명에 따른 구조식(I)로 표시되는 개시제는, 하기의 구조식(II)로 표시되는 4-디에틸티오카바모일 술파닐 메틸 벤조산(4-Diethylthiocarbamoyl sulfanyl methyl benzoic acid; DTBA)이 254nm 또는 356nm 파장대의 광원에 의하여 활성종인 4-메틸벤조산(4-methylbenzoic acid) 라디칼과 휴면종인 디에틸디티오카바모일(diethyldithiocarbamoyl) 라디칼로 가역적으로 분해되며 4-메틸벤조산 라디칼은 단량체인 메틸메타크릴레이트(MMA)와 반응하여 리빙중합이 일어나 분자량이 커지게 되고 성장하는 라디칼은 휴면종과 반응하여 다시 종결반응이 일어나는 하기 반응식 1의 가역적인 반응과 본질적으로 동일한 반응 양태에 의해 성장과 종결이 일어나며, 최종물인 폴리메틸메타크릴레이트의 분자량을 용이하게 제어 할 수가 있다.[구조식 II] More specifically, the initiator represented by the structural formula (I) according to the present invention, 4-diethylthiocarbamoyl sulfanyl methyl benzoic acid (DTBA) represented by the following structural formula (II) The 254 nm or 356 nm wavelength light source reversibly decomposes the active 4-methylbenzoic acid radical and the dormant diethyldithiocarbamoyl radical, and the 4-methylbenzoic acid radical is a monomer methylmethyl. Reaction with methacrylate (MMA) causes living polymerization to increase molecular weight, and the growing radical reacts with dormant species and terminates again. Can occur, and the molecular weight of the final product, polymethyl methacrylate, can be easily controlled.

삭제delete

[반응식 1]Scheme 1

본 발명에 따른 구조식(I)로 표시되는 개시제를 이용하는 본 발명에 따른 중합방식은 불균일계에서 입자의 분산도가 낮은 에멀젼중합을 사용하는 것이 바람직하며, 따로 유화제를 사용하지 않고 개시제에 유화제의 성분을 포함시킴으로써 불균일계에서 생길 수 있는 첨가제들에 의한 상호작용을 줄이고, 분자량의 변수를 줄여 보다 용이하게 입자의 크기를 조절할 수가 있다. 보다 구체적으로는, 본 발명에 사용되는 상기한 구조식(I)로 표시되는 개시제는 유화제 역할을 하는 친수성 관능기를 함유하고 있어 개시제의 첨가량이 증가하게 되면 임계미셀농도 이상에 도달하게 되는데 임계미셀농도 이상의 농도에서도 언제나 동일한 크기의 입자를 생성하게 되는 것이 특징이다. In the polymerization method according to the present invention using the initiator represented by Structural Formula (I) according to the present invention, it is preferable to use an emulsion polymerization having a low dispersion degree of particles in a heterogeneous system, and the component of the emulsifier to the initiator without using an emulsifier separately. By reducing the interaction between the additives that can occur in the heterogeneous system, it is possible to control the particle size more easily by reducing the variable of the molecular weight. More specifically, the initiator represented by the above-mentioned structural formula (I) used in the present invention contains a hydrophilic functional group that acts as an emulsifier, and when the amount of the initiator is increased, the critical micelle concentration is higher than the critical micelle concentration. It is characteristic that particles always produce the same size even in concentration.

삭제delete

또한 본 발명에 따른 제조방법에 있어서의 개시반응은 열, 빛 또는 방사선의 어느 것이라도 사용할 수 있으나, 본 발명에서 사용된 개시제는 자외선의 조사에 의하여 라디칼을 생성하는 특징이 있으므로 빛을 사용하는 것이 바람직하며 구체적으로는 자외선 A 내지 C영역을 사용할 수 있다. 보다 구체적으로 설명하면 254nm 또는 365nm의 자외선을 선택적으로 사용하는 것이 바람직하다.In addition, the initiation reaction in the production method according to the present invention may be any of heat, light or radiation, but the initiator used in the present invention is characterized by generating radicals by irradiation of ultraviolet rays, so it is preferable to use light. Preferably, the ultraviolet rays A to C region may be used. In more detail, it is preferable to selectively use ultraviolet rays of 254 nm or 365 nm.

또한 본 발명의 제조방법에 사용되는 고분자중합방식으로는 유화 또는 현탁중합법이 사용될 수 있으며, 바람직하게는 유화중합을 사용함으로써 동일한 크기의 중합된 입자를 보다 효과적으로 얻을 수 있으며, 단량체(monomer)를 추가로 첨가할 경우에도 새로운 입자의 생성이 일어나지 않고 계속해서 입자의 크기가 균일하게 성장하게 된다. 또한, 중합반응 시에 교반속도가 낮을수록 입자의 크기는 커지나 교반 속도가 200rpm 이하인 경우 응집현상이 발생할 우려가 있으며, 반면에 교반 속도가 너무 높게 되면 입자의 파쇄현상이 일어날 우려가 있다.In addition, as the polymer polymerization method used in the preparation method of the present invention, an emulsion or suspension polymerization method may be used. Preferably, by using emulsion polymerization, polymerized particles having the same size may be more effectively obtained, and monomers may be obtained. Additional additions do not produce new particles and continue to grow evenly in particle size. In addition, when the stirring speed is lower during the polymerization reaction, the size of the particles increases, but when the stirring speed is 200 rpm or less, there is a fear that aggregation may occur. On the other hand, when the stirring speed is too high, the particles may be broken.

본 발명의 제조방법에 있어서는 제조되는 폴리메틸메타크릴레이트 분말의 입자 크기 및 분포도 제어는 자외선 조사시간, 개시제의 양, 고형분의 함량을 필요에 따라 적절히 조절하는 것에 의하여 수행될 수 있으며, 이에 대한 사항은 당업자라면 적절히 선택하여 용이하게 수행할 수 있는 것이므로 이에 대한 구체적인 언급은 생략하기로 한다.In the production method of the present invention, the particle size and distribution control of the polymethyl methacrylate powder to be prepared can be carried out by appropriately adjusting the UV irradiation time, the amount of the initiator, the content of solids as necessary, Since a person skilled in the art can be easily selected by appropriate selection, specific description thereof will be omitted.

또한, 본 발명의 제조방법은 통상의 반응기 또는 워터재킷반응기(water jacket reactor)를 사용할 수 있으나, 석영 반응기를 사용하는 것이 보다 바람직하다. In addition, the production method of the present invention may use a conventional reactor or a water jacket reactor, more preferably using a quartz reactor.

이하, 실시예와 참고예 및 비교예를 통하여 본 발명을 더욱 상세히 설명하기로 한다.참고예 1: 구조식(II)의 개시제의 합성소디움 디에틸디티오카바메이트 삼수화물(225.31g/mol)과 α-브로모-p-톨루엔산(215.05g/mol)을 메탄올에 용해시킨 후, 약 80℃의 온도에서 질소 가스를 30분 가량 주입하면서 브롬화반응을 시켰다. Hereinafter, the present invention will be described in more detail through Examples, Reference Examples and Comparative Examples. Reference Example 1: Synthesis of Initiator of Structural Formula (II) Sodium diethyldithiocarbamate trihydrate (225.31 g / mol) and (alpha) -bromo-p-toluic acid (215.05 g / mol) was dissolved in methanol, and bromination was carried out while injecting nitrogen gas at a temperature of about 80 ° C for about 30 minutes.

삭제delete

삭제delete

분별증류를 통해 용제를 제거하고, 얻어진 반응물을 증류수로 세척하여 불순물을 제거하고, 수산화나트륨 수용액에 용해시켜 불순물을 제거한 후, 염화수소 수용액으로 침전시킨 다음, 증류수로 세척하고 진공 건조하여 백황색의 목적 물질을 얻었다. The solvent is removed through fractional distillation, the obtained reactant is washed with distilled water to remove impurities, dissolved in sodium hydroxide aqueous solution to remove impurities, precipitated with aqueous hydrogen chloride solution, washed with distilled water and dried under vacuum to give a white yellow target substance. Got.

이를 하기의 반응식 2에 나타낸다.This is shown in Scheme 2 below.

[반응식 2]Scheme 2

실시예 1: 구조식(I)의 개시제의 합성1mol의 피페라진 86.14g을 2 리터 반응기 내부로 투입하고 1 리터의 클로로포름으로 희석시킨 후 반응기 내부의 온도를 0~10℃로 유지시켰다. 2mol의 이황화탄소 152g을 반응기 내부로 서서히 투입하면서 1시간 동안 교반하였다. Example 1 Synthesis of Initiator of Structural Formula (I) 86.14 g of 1 mol of piperazine was charged into a 2 liter reactor, diluted with 1 liter of chloroform, and the temperature inside the reactor was maintained at 0-10 ° C. 152 g of 2 mol of carbon disulfide was slowly added into the reactor and stirred for 1 hour.

삭제delete

삭제delete

반응기 내부의 희석 용제로 사용된 클로로포름을 감압, 제거하고 40g의 수산화나트륨을 100ml의 증류수에 녹여 상온에서 투입하며 1시간 동안 교반하였다. 반응기 내부의 온도를 80℃로 유지시키면서 2mol의 4-(브로모메틸)벤조산을 800ml의 메탄올에 용해시킨 후 반응기 내부로 투입하고 8시간 동안 교반하면서 반응시켰다. Chloroform used as a diluting solvent in the reactor was removed under reduced pressure, and 40 g of sodium hydroxide was dissolved in 100 ml of distilled water, and added at room temperature, followed by stirring for 1 hour. 2 mol of 4- (bromomethyl) benzoic acid was dissolved in 800 ml of methanol while maintaining the temperature inside the reactor at 80 ° C., and then reacted with stirring for 8 hours.

반응 후 용제인 메탄올을 감압으로 제거하고 약간 황색을 띄는 목적 물질을 얻었다. After the reaction, the solvent methanol was removed under reduced pressure to obtain a slightly yellow target substance.

이를 하기의 반응식 3에 나타낸다.This is shown in Scheme 3 below.

[반응식 3]Scheme 3

참고예 2~7과 실시예 2~7 및 비교예 1~6: 폴리메틸메타크릴레이트 분말의 제조하기의 표 1에 나타낸 바와 같은 혼합물을 각각 준비하고, 2리터 용량의 석영 반응기에 투입하고 하기의 표 1에 나타낸 바와 같은 각각의 개시제를 반응기 내부에 투여하였다(참고예 1 및 실시예 1의 경우에는 수산화나트륨 5% 수용액에 용해시킨 수용액으로 투여). Reference Examples 2-7 and Examples 2-7 and Comparative Examples 1-6: Preparation of Polymethylmethacrylate Powders The mixtures as shown in Table 1 below were prepared, respectively, and charged into a 2-liter quartz reactor and Each initiator as shown in Table 1 was administered inside the reactor (in Reference Example 1 and Example 1, it was administered in an aqueous solution dissolved in 5% aqueous sodium hydroxide solution).

삭제delete

삭제delete

이어서, 반응기 온도를 25℃로 유지하면서 반응기 내부로 질소가스를 주입하였다. 반응기와 25cm 이격된 거리에서 자외선램프(100w, 254nm)를 6시간 동안 조사하면서 600rpm으로 일정하게 교반하였다. Subsequently, nitrogen gas was injected into the reactor while maintaining the reactor temperature at 25 ° C. The UV lamp (100w, 254nm) at a distance of 25cm away from the reactor was constantly stirred at 600rpm while irradiating for 6 hours.

중합후 우유빛의 현탁액인 폴리메틸메타크릴레이트는 냉동건조 과정을 거쳐 수득하였다. Polymethyl methacrylate, a milky suspension after polymerization, was obtained through a freeze-drying process.

수득된 PMMA 입자의 입도 범위를 하기의 표 1에 함께 나타낸다.The particle size ranges of the obtained PMMA particles are also shown in Table 1 below.

폴리메틸메타크릴레이트 분말의 원료성분 함량 및 입도 범위Raw Material Content and Particle Size Range of Polymethylmethacrylate Powder 개시제1Initiator 1 개시제2Initiator 2 개시제3Initiator 3 가교제Crosslinking agent 단량체Monomer 증류수Distilled water 고형분의 함량Solid content 입자의 크기Particle size 참고예 2Reference Example 2 1.02g1.02 g -- -- 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 1-2㎛1-2㎛ 실시예 2Example 2 -- 2.45g2.45 g -- 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 2-4㎛2-4㎛ 비교예 1Comparative Example 1 -- -- 0.97g0.97 g 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 120-150nm120-150nm 참고예 3Reference Example 3 0.51g0.51 g -- -- 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 2-3㎛2-3㎛ 실시예 3Example 3 -- 1.23g1.23 g -- 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 3-5㎛3-5㎛ 비교예 2Comparative Example 2 -- -- 0.49g0.49 g 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 180-192nm180-192 nm 참고예 4Reference Example 4 0.23g0.23 g -- -- 5.95g5.95 g 53.55g53.55 g 290.5g290.5 g 17%17% 4-6㎛4-6㎛ 실시예 4Example 4 -- 0.61g0.61 g -- 5.95g5.95 g 53.55g53.55 g 300g300 g 17%17% 5-6㎛5-6㎛ 비교예 3Comparative Example 3 -- -- 0.24g0.24 g 5g5 g 53.55g53.55 g 290.5g290.5 g 17%17% 200-215nm200-215 nm 참고예 5Reference Example 5 0.23g0.23 g -- -- 8.25g8.25 g 73.25g73.25 g 268.5g268.5g 25%25% 10-12㎛10-12㎛ 실시예 5Example 5 -- 0.61g0.61 g -- 8.25g8.25 g 73.25g73.25 g 268.5g268.5g 25%25% 13-20㎛13-20㎛ 비교예 4Comparative Example 4 -- -- 0.24g0.24 g 8.25g8.25 g 73.25g73.25 g 268.5g268.5g 25%25% 18-24㎛18-24㎛ 참고예 6Reference Example 6 0.23g0.23 g -- -- 7g7 g 63g63 g 280g280 g 20%20% 5-8㎛5-8㎛ 실시예 6Example 6 -- 0.61g0.61 g -- 7g7 g 63g63 g 280g280 g 20%20% 8-10㎛8-10㎛ 비교예 5Comparative Example 5 -- -- 0.24g0.24 g 7g7 g 63g63 g 280g280 g 20%20% 300-327nm300-327 nm 참고예 7Reference Example 7 0.23g0.23 g -- -- 5.25g5.25 g 47.25g47.25 g 297.5g297.5 g 15%15% 500-800nm500-800nm 실시예 7Example 7 -- 0.61g0.61 g -- 5.25g5.25 g 47.25g47.25 g 297.5g297.5 g 15%15% 1.5-2㎛1.5-2㎛ 비교예 6Comparative Example 6 -- -- 0.24g0.24 g 5.25g5.25 g 47.25g47.25 g 297.5g297.5 g 15%15% 10-12nm10-12nm

*개시제 1: 참고예 1에서 제조된 구조식(II)의 개시제Initiator * 1: initiator of the formula (II) prepared in Reference Example 1

*개시제 2: 실시예 1에서 제조된 본 발명의 구조식(I)의 개시제Initiator * 2: [initiator of formula (I) of the present invention prepared in Example 1

*개시제 3: 종래의 개시제로서의 과황산칼륨(K2S2O8)Initiator * 3: potassium persulfate as the conventional initiator (K2S2O8)

*가교제: 디비닐벤젠 * Crosslinking agent: divinylbenzene

*단량체: 메틸메타크릴레이트 * Monomer: Methyl methacrylate

*입자의 크기는 주사전자현미경(scanning electron microscope)으로 측정하였다. The particle size was measured by a scanning electron microscope.

실시예 2~4와 참고예 2~4와 비교예 1~3에서의 입자크기 또는 입자분포는 고형분의 함량을 17%로 고정하고 개시제의 농도가 에서 로 변할 때 각 개시제의 종류에 따른 값이다.The particle size or particle distribution in Examples 2 to 4 and Reference Examples 2 to 4 and Comparative Examples 1 to 3 fixed the solids content to 17% and the concentration of the initiator was in It is a value according to the type of each initiator when changed to.

개시제 1은 관능성기가 하나인 반면, 개시제 2는 관능성기가 두 개이므로 같은 농도의 개시제를 첨가하여도 입자의 크기가 보다 크게 관찰되었으나, 관능성기에 대해 입자의 크기가 선형적으로 증가하지는 않는다는 것을 확인할 수 있었다. Initiator 1 had one functional group, while initiator 2 had two functional groups, so that even when the same concentration of initiator was added, the particle size was observed to be larger, but the particle size did not increase linearly with respect to the functional group. I could confirm that.

개시제 3의 경우에는 열에 의한 중합으로 반응시간이 개시제 1,2에 비해 두 세배 정도 소요되었으며, 입자의 크기가 작게 나타나고, 입자의 분포 또한 2차적인 핵 생성이 일어나 입자의 분포가 광범위하게 나타났다.In the case of the initiator 3, the reaction time was about two to three times higher than the initiators 1 and 2 due to the polymerization by heat, the size of the particles appeared small, and the distribution of the particles was also secondary, so that the distribution of the particles was wide.

실시예 5~7과 참고예 5~7 및 비교예 4,5에서의 입자크기 또는 입자분포는 고형분의 함량을 25%로 증가시키고 개시제의 농도를 로 고정하였을 때 각 개시제의 종류에 따른 값이며, 실시예 7과 비교예 7 및 비교예 6은 고형분의 함량을 15%로 감소시키고 개시제의 농도를 로 고정하였을 때 각 개시제의 종류에 따른 값이다.The particle size or particle distribution in Examples 5-7 and Reference Examples 5-7 and Comparative Examples 4, 5 increased the solids content to 25% and increased the concentration of the initiator. It is a value according to the type of each initiator when fixed to, Example 7, Comparative Example 7 and Comparative Example 6 reduces the content of solids to 15% and the concentration of the initiator When fixed to the value according to the type of each initiator.

상기한 표 1의 결과로부터, 고형분의 함량이 25% 이상일 때는 입자들의 응집현상에 의해 입자의 크기는 급격하게 커지나 입도 분포가 나빠지는 경향을 보이고, 고형분의 함량이 15% 이하로 낮을 때에는 입자의 크기가 너무 작고 중합시간 또한 길어지는 경향을 나타냄을 확인할 수 있었다. 특히, 종래의 개시제 3을 사용한 경우에는 고형분의 함량이 25%일 때 입자들 간의 응집에 의해 입자의 크기가 급격히 증가하여, 입자의 분포가 광범위하게 나타나게 되는 것으로 판명되었다.From the results of Table 1, when the content of the solid content is 25% or more, the size of the particles rapidly increases due to the agglomeration of the particles, but the particle size distribution tends to deteriorate, and when the content of the solid content is lower than 15%, It was confirmed that the size was too small and the polymerization time also tended to be long. In particular, in the case of using the conventional initiator 3, it has been found that when the solid content is 25%, the size of the particles rapidly increases due to the aggregation between the particles, so that the distribution of the particles appears widely.

상술한 바와 같이, 본 발명에 따른 신규한 개시제를 이용하여 254nm 또는 365nm의 자외선을 사용하는 리빙라디칼 중합방법에 의하여 보다 균일한 입도 분포를 갖는 폴리메틸메타크릴레이트 분말의 제조가 간단하고도 효과적으로 수행될 수가 있으며, 종래의 니트록사이드법이나 RAFT법에 비해 반응시간이 두 배 내지 세 배 정도 단축 가능하며 종래의 ATRP법에서와 같이 고분자 정제과정에서 전이금속을 분리하는 등의 복잡한 과정을 수행할 필요가 없음과 아울러, 개시제 함량의 조절만으로도 입자의 크기를 조절하여 원하는 크기의 입자들을 얻을 수 있다. 본 발명의제조방법에 의하여 제조되는 입자들은 색조화장품의 사용감 개선용 원료 또는 토너바인더나 자외선 차단용 크림, 기능성화장품의 분체로 사용이 가능하다.As described above, the production of polymethyl methacrylate powder having a more uniform particle size distribution is performed simply and effectively by a living radical polymerization method using ultraviolet rays of 254 nm or 365 nm using the novel initiator according to the present invention. The reaction time can be reduced by two to three times compared with the conventional nitroxide method or RAFT method, and the complex process of separating transition metals in the polymer purification process as in the conventional ATRP method can be performed. In addition to the needlessness, only by controlling the initiator content, the size of the particles can be adjusted to obtain particles of a desired size. Particles produced by the manufacturing method of the present invention can be used as a raw material for improving the usability of color cosmetics or powder of toner binder or sunscreen cream, functional cosmetics.

Claims (4)

하기의 구조식(I)로 표시되는 고분자 중합용 리빙라디칼 개시제:Living radical initiator for polymer polymerization represented by the following structural formula (I): (구조식(I)) (Structure Formula (I)) 상기한 제1항에 따른 리빙라디칼 개시제를 이용하여 유화중합법 또는 현탁중합법에 의해 수행되는 것을 특징으로 하는 폴리메틸메타크릴레이트 분말의 제조방법.Method for producing a polymethyl methacrylate powder, characterized in that carried out by the emulsion polymerization method or suspension polymerization method using the living radical initiator according to claim 1. 제2항에 있어서, 상기한 제조방법이 250~380nm 파장의 광선을 이용하는 것을 특징으로 하는 폴리메틸메타크릴레이트 분말의 제조방법.The method for producing a polymethyl methacrylate powder according to claim 2, wherein the manufacturing method uses light having a wavelength of 250 to 380 nm. (삭제)(delete)
KR10-2002-0079153A 2002-12-12 2002-12-12 Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof KR100521144B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079153A KR100521144B1 (en) 2002-12-12 2002-12-12 Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079153A KR100521144B1 (en) 2002-12-12 2002-12-12 Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof

Publications (2)

Publication Number Publication Date
KR20040051254A KR20040051254A (en) 2004-06-18
KR100521144B1 true KR100521144B1 (en) 2005-10-12

Family

ID=37345241

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0079153A KR100521144B1 (en) 2002-12-12 2002-12-12 Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof

Country Status (1)

Country Link
KR (1) KR100521144B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133755A (en) * 1976-07-26 1979-01-09 Chisso Corporation Agent for removing heavy metals
US5783579A (en) * 1996-12-20 1998-07-21 Schering Corporation Spiro-substituted azacyclic-substituted piperazino derivatives as neurokinin antagonists
US5986026A (en) * 1997-05-05 1999-11-16 The Goodyear Tire & Rubber Company Syndiotactic 1,2-polybutadiene synthesis
KR20020031741A (en) * 2000-10-23 2002-05-03 유응렬 A Novel Radical Initiator for Heterogeneous Phase Polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133755A (en) * 1976-07-26 1979-01-09 Chisso Corporation Agent for removing heavy metals
US5783579A (en) * 1996-12-20 1998-07-21 Schering Corporation Spiro-substituted azacyclic-substituted piperazino derivatives as neurokinin antagonists
US5986026A (en) * 1997-05-05 1999-11-16 The Goodyear Tire & Rubber Company Syndiotactic 1,2-polybutadiene synthesis
KR20020031741A (en) * 2000-10-23 2002-05-03 유응렬 A Novel Radical Initiator for Heterogeneous Phase Polymerization

Also Published As

Publication number Publication date
KR20040051254A (en) 2004-06-18

Similar Documents

Publication Publication Date Title
DE60124747T2 (en) CONTROL METHOD FOR POLYMERIZATION OF LIVING FREE RADICAL TYPES, METHOD OF POLYMERIZATION, EMULSIONS AND POLYMERS THROUGH THESE
JP2002514667A (en) Microgel preparation process
EP1807457A1 (en) Vinyl chloride resin composition and method for preparation thereof
EP3438194A1 (en) Method for producing carboxyl-group-containing polymer composition
US20230076982A1 (en) Cellulose nanocrystal powder and preparation method and use thereof
KR100521144B1 (en) Living Radical Initiator for polymerization and Method for manufacturing polymethylmethacrylate powder using thereof
EP0590988B1 (en) Process for producing crosslinked polymer containing carboxyl group
US11110037B2 (en) Methods and compositions to stabilize a nanogel and dental compositions therefrom
CN114163592B (en) Application of Lewis acid-base pair in polymerization-induced self-assembly, fibrous-morphology amphiphilic block polymer and preparation method and application thereof
KR20190130507A (en) Matrix copolymer, graft copolymer, and thermoplastic resin composition
JPH09504329A (en) Polymerization of linear polyvinyl pyridine under H 2 under O 2 under
US4072640A (en) Copolymerization of vinyl monomers with cellulose and starch in copper ammonium solutions
KR100348866B1 (en) Method of making emulsion for hydrophilic ink consisting of hydrophilic polymer and hydrophobic polymer
KR20090084334A (en) Acrylic impact modifiers, method of preparing the same and polyvinyl chloride composition including the same
US5162417A (en) Gelled acidizer composition
JP2001335603A (en) Method for producing water-soluble polymer
KR100767960B1 (en) Method for preparing of polyvinylchloride with increased productivity
KR102235035B1 (en) Method for preparing polyvinylchloride
JP3407814B2 (en) Polymer production method
KR100404881B1 (en) Method for preparing nitrile-based thermoplastic resin
JPS60255813A (en) Production of vinyl chloride resin
JP2005536626A (en) Dispersion containing living radicals
US20050182164A1 (en) Dispersions containing living radicals
KR20200025493A (en) Method for preparation of a hollow magnesium fluoride particle
KR100530381B1 (en) Preparation of spherical vinyl-derived polymer beads using a nitroxide radical

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee