KR100513165B1 - Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma - Google Patents

Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma Download PDF

Info

Publication number
KR100513165B1
KR100513165B1 KR10-2002-0053115A KR20020053115A KR100513165B1 KR 100513165 B1 KR100513165 B1 KR 100513165B1 KR 20020053115 A KR20020053115 A KR 20020053115A KR 100513165 B1 KR100513165 B1 KR 100513165B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
plasma
nitrogen oxides
cluster
nitrogen
Prior art date
Application number
KR10-2002-0053115A
Other languages
Korean (ko)
Other versions
KR20040021770A (en
Inventor
목영선
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to KR10-2002-0053115A priority Critical patent/KR100513165B1/en
Publication of KR20040021770A publication Critical patent/KR20040021770A/en
Application granted granted Critical
Publication of KR100513165B1 publication Critical patent/KR100513165B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2441Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes characterised by the physical-chemical properties of the dielectric, e.g. porous dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은 송이와 플라즈마를 이용한 배기가스 중의 질소산화물 처리방법에 관한 것으로, 고전압을 이용하여 배기가스에 플라즈마 상태를 형성시킴에 있어서 송이를 플라즈마 반응기의 충진물로 사용하여 유전체 역할과 동시에 촉매역할을 하도록 함으로써 다양한 산업공정에서 배출되는 배기가스 내의 질소산화물을 효과적으로 제거시킬 수 있다.The present invention relates to a method for treating nitrogen oxides in exhaust gas using a cluster and a plasma, wherein the cluster is used as a filler of a plasma reactor in forming a plasma state in the exhaust gas using a high voltage to act as a dielectric and a catalyst. By doing so, it is possible to effectively remove nitrogen oxides in the exhaust gas emitted from various industrial processes.

Description

송이와 플라즈마를 이용한 배기가스 중의 질소산화물 처리방법{Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma}Reduction of nitrogen oxides in exhaust gas using scoria and non-thermal plasma}

본 발명은 질소산화물 처리방법에 관한 것으로, 더욱 상세하게는 화력발전소, 제철소, 중·소형 보일러, 소각로 등의 배기가스에 함유되어 있는 질소산화물을 플라즈마 방전과 송이를 이용하여 제거시킴으로써 종래 플라즈마 배기가스 처리공정의 문제점을 획기적으로 개선시킬 수 있는 방법에 관한 것이다.The present invention relates to a method for treating nitrogen oxides, and more particularly, to remove nitrogen oxides contained in exhaust gases such as thermal power plants, steel mills, small and medium-sized boilers, and incinerators by using plasma discharge and clusters. The present invention relates to a method that can significantly improve the problem of the treatment process.

화력발전소, 제철소, 자동차, 제지공장 등 다양한 산업공정에서 배출되는 배기가스는 유해한 질소산화물(NOx)을 다량으로 포함하고 있기 때문에 질소산화물 처리설비가 설치되어야 한다.Emissions from various industrial processes, such as thermal power plants, steel mills, automobiles, and paper mills, contain large amounts of harmful nitrogen oxides (NO x ).

질소산화물 제거방법의 하나는 고전압 방전에 의해 유도되는 플라즈마를 이용하는 것이다(A. Mizuno and J.S. Clements, Method of removing SO2, NOx and particles from gas mixtures using streamer corona, US Patent Number 4,695,358, 1987). 종래에 알려진 플라즈마 기술은 다음과 같다.One method for removing nitrogen oxides is to use plasma induced by high voltage discharge (A. Mizuno and JS Clements, Method of removing SO 2 , NO x and particles from gas mixtures using streamer corona, US Patent Number 4,695,358, 1987). Conventionally known plasma techniques are as follows.

플라즈마 반응기는 방전극과 접지극으로 구성되어 있고 방전극과 접지극 사이에는 유전체가 충진되어 있다. 방전극에 펄스 또는 교류 고전압을 인가하면 배기가스가 플라즈마 상태로 되어 O, OH, HO2와 같은 다량의 산화성 라디칼 및 오존이 발생된다. 일반적으로 배기가스에 포함되어 있는 NOx는 대부분 산화질소(NO)이고 이산화질소(NO2) 농도는 5% 미만으로 매우 적다. NO는 플라즈마 상태에서 발생되는 O, OH, HO2와 같은 산화성 라디칼과 반응하여 다음 반응식 1에서 5와 같이 NO2로 산화된다(Mok, Y.S., Kim, J.H., Ham, S.W. and Nam, I., Removal of NO and formation of byproducts in a positive pulsed corona discharge reactor, Ind. Eng. Chem., Res. 39(10), 3938, 2000).The plasma reactor is composed of a discharge electrode and a ground electrode, and a dielectric is filled between the discharge electrode and the ground electrode. When a pulse or an alternating current high voltage is applied to the discharge electrode, the exhaust gas is in a plasma state, and a large amount of oxidative radicals and ozone such as O, OH, and HO 2 are generated. In general, NO x contained in the exhaust gas is mostly nitrogen oxide (NO) and nitrogen dioxide (NO 2 ) concentration is very low, less than 5%. NO is reacted with oxidative radicals such as O, OH, and HO 2 generated in a plasma state and oxidized to NO 2 as shown in Scheme 1 below (Mok, YS, Kim, JH, Ham, SW and Nam, I., Removal of NO and formation of by products in a positive pulsed corona discharge reactor, Ind. Eng. Chem., Res. 39 (10), 3938, 2000).

NO + O → NO2 NO + O → NO 2

NO + HO2 → NO2 + OHNO + HO 2 → NO 2 + OH

NO + OH → HNO2 NO + OH → HNO 2

HNO2 + OH → NO2 + H2OHNO 2 + OH → NO 2 + H 2 O

NO + O3 → NO2 + O2 NO + O 3 → NO 2 + O 2

생성된 이산화질소(NO2)의 극히 일부는 다음 반응식 6과 같이 질산(HNO3)으로 전환되기도 한다.Very little of the produced nitrogen dioxide (NO 2 ) is also converted to nitric acid (HNO 3 ), as shown in Scheme 6 below.

NO2 + OH → HNO3 NO 2 + OH → HNO 3

종래의 플라즈마 공정에서는 통상적으로 NO2 및 질산을 암모니아와 반응시켜 다음 반응식 7 및 8과 같이 질산암모늄(NH4NO3)을 생성시킨 후, 입자상 물질인 질산암모늄을 집진장치를 사용하여 제거하였다.In a conventional plasma process, NO 2 and nitric acid are generally reacted with ammonia to produce ammonium nitrate (NH 4 NO 3 ), as shown in the following Reactions 7 and 8, and then ammonium nitrate, which is a particulate matter, is removed using a dust collector.

2NO2 + 2NH3 → N2 + H2O + NH4NO3(s) 2NO 2 + 2NH 3 → N 2 + H 2 O + NH 4 NO 3 (s)

HNO3 + NH3 → NH4NO3(s)HNO 3 + NH 3 → NH 4 NO 3 (s)

이와 같은 종래의 플라즈마 기술은 NO의 산화반응 효율은 매우 높은 반면에, NO2를 암모니아와 반응시켜 입자상 물질로 전환시키기가 어려워 NO2 제거효율이 낮은 단점이 있다. 또한, 생성되는 암모늄염의 흡습성, 미세함과 같은 독특한 특성으로 인해 상용화된 집진기술에 의한 포집에 많은 어려움이 있고, 집진설비에서 포집되지 않은 질산암모늄의 배출도 종래 플라즈마 공정의 큰 문제점으로 지적되고 있다.Such a conventional plasma technology has a disadvantage in that the oxidation efficiency of NO is very high, whereas NO 2 is difficult to convert into particulate matter by reacting NO 2 with ammonia, resulting in low NO 2 removal efficiency. In addition, due to unique characteristics such as hygroscopicity and fineness of the generated ammonium salt, there are many difficulties in collecting by commercialized dust collecting technology, and discharge of ammonium nitrate which is not collected in the dust collecting facility is also pointed out as a big problem of the conventional plasma process.

또 다른 종래의 질소산화물 저감기술인 선택적 촉매환원법은 설치의 용이성, 적은 설치면적, 높은 NOx 제거효율, 건식이라는 많은 장점들을 가지고 있기는 하나, 고온(300-350℃)에서 최적 활성을 나타내고 있어 선택적 촉매환원법을 적용하기 위해서는 배기가스 온도를 상승시켜야 하는 문제점이 있다.Another conventional nitrogen oxide reduction technique, selective catalytic reduction, has many advantages such as ease of installation, small footprint, high NO x removal efficiency, and dryness, but it shows optimum activity at high temperatures (300-350 ℃). In order to apply the catalytic reduction method, there is a problem of increasing the exhaust gas temperature.

상기한 종래의 플라즈마 공정과 관련된 문제는 질소산화물을 질소(N2)로 환원시키지 못하고 집진장치에서 반드시 포집되어야 하는 입자상 물질을 생성시키기 때문에 발생된다. 따라서, 배기가스 중의 질소산화물을 질소로 환원시킨다면 상기한 문제는 해결될 수 있다.The problem associated with the conventional plasma process described above occurs because it does not reduce nitrogen oxides to nitrogen (N 2 ) but produces particulate matter that must be collected in the dust collector. Therefore, the above problem can be solved by reducing nitrogen oxide in the exhaust gas to nitrogen.

그리고 종래의 촉매공정(선택적 촉매환원법)이 가지고 있는 촉매의 활성온도 문제는 배기가스의 NOx가 주로 NO로 구성되어 있기 때문에 발생한다. 따라서, NO를 NO2로 산화시키면 흡착성능이 증가되어 촉매 표면에서 쉽게 반응할 수 있으므로 촉매의 활성온도가 크게 낮아진다.In addition, the active temperature problem of the catalyst in the conventional catalytic process (selective catalytic reduction method) occurs because the NO x of the exhaust gas is mainly composed of NO. Therefore, when NO is oxidized to NO 2 , the adsorption performance is increased and the reaction temperature can be easily reacted at the surface of the catalyst, thereby lowering the temperature of the catalyst.

본 발명의 목적은 종래에 플라즈마 반응기의 충진물로 사용되어 왔던 유전체인 유리, 알루미나, 세라믹을 대체하면서 상기한 해결방안에 적합하도록 유전체 작용과 동시에 질소산화물 환원촉매로 작용하는 신규한 충진물을 채택한 질소산화물의 처리방법을 제공하는 것이다.An object of the present invention is to replace the glass, alumina, and ceramics, which are conventionally used as fillers in plasma reactors, and to adopt a novel filler that acts as a nitrogen oxide reduction catalyst at the same time as the dielectric action to meet the above solution. It is to provide a treatment method.

본 발명의 다른 목적은 질산암모늄과 같은 입자상 물질을 생성하는 대신 NOx를 질소로 환원시킴으로써 입자상 물질의 집진에 따르는 문제들을 원천적으로 제거하고 집진설비의 설치에 소요되는 설비비 및 운전비를 절감할 수 있는 질소산화물의 처리방법을 제공하는 것이다.Another object of the present invention is to reduce NO x to nitrogen instead of generating particulate matter such as ammonium nitrate, thereby eliminating problems caused by particulate matter collection and reducing equipment and operating costs required for the installation of the dust collector. It is to provide a method for treating nitrogen oxides.

본 발명의 또 다른 목적은 저온(100-200℃)에서도 유전체가 촉매의 역할을 하도록 함으로써 종래의 선택적 촉매환원법에서 배기가스 온도상승에 필요한 에너지 비용을 절감할 수 있는 질소산화물의 처리방법을 제공하는 것이다.Still another object of the present invention is to provide a method for treating nitrogen oxide, which can reduce the energy cost required to increase exhaust gas temperature in the conventional selective catalytic reduction method by allowing the dielectric to act as a catalyst even at low temperatures (100-200 ° C.). will be.

상기한 목적을 달성하기 위하여, 본 발명은 플라즈마 반응기의 충진물로서 천연 암석인 송이를 사용하여 NO를 NO2로 산화시킨 후 질소로 환원시키는 것을 특징으로 한다. 상기 송이는 플라즈마 반응기에서 유전체이자 동시에 촉매로서도 작용한다.In order to achieve the above object, the present invention is characterized in that the NO is oxidized to NO 2 and reduced to nitrogen using a cluster of natural rock as a filler of the plasma reactor. The cluster acts both as a dielectric and as a catalyst in the plasma reactor.

송이(scoria)는 제주지역에 매장량이 많은(약 200억톤) 천연 암석으로, 다공성이고 표면적이 매우 크며(기공의 부피와 고체의 부피가 유사), 주성분이 Al2O3-SiO2로 구성되어 비유전율이 매우 크고 흡착성능이 우수하다. 플라즈마 공정에 충진되는 유전체가 갖추어야 할 특성은 높은 비유전율, 큰 비표면적(단위질량당 표면적), 물질의 흡착능력인데, 송이는 이러한 조건을 모두 만족하고 있고 매장량이 많아 가격이 매우 저렴한 장점도 가지고 있다.Scoria is a natural rock with abundant reserves (about 20 billion tons) in Jeju, which is porous and has a very large surface area (similar to that of pores and solids), and consists mainly of Al 2 O 3 -SiO 2 . The dielectric constant is very large and the adsorption performance is excellent. The characteristics of the dielectrics filled in the plasma process are high dielectric constant, large specific surface area (surface area per unit mass), and adsorption capacity of the material. have.

본 발명은 플라즈마 반응기에 송이를 충진하여 유전체의 역할 및 촉매의 역할을 동시에 하도록 함으로써 플라즈마 방전에 의한 NO→NO2 산화반응을 유도하고, NO2 함량이 커짐에 따라 저온에서도 송이 표면에서 촉매반응이 일어나도록 하여 궁극적으로 낮은 온도에서 NOx를 질소로 환원시키는 방법을 제공하는 것이다.The present invention induces NO → NO 2 oxidation by plasma discharge by filling clusters in a plasma reactor to simultaneously play a role of a dielectric and a catalyst, and catalyze reaction at the surface of the cluster even at low temperatures as the NO 2 content increases. To ultimately reduce NO x to nitrogen at low temperatures.

본 발명의 다른 특징은 반응촉진제로서 에틸렌을 첨가함으로써 고온에서 매우 느린 NO→NO2 산화반응을 촉진하는 것이며, 또한 질소산화물의 환원제로서 암모니아를 첨가함으로써 질소로의 환원반응을 촉진하는 것이다.Another feature of the present invention is that the addition of ethylene as a reaction accelerator promotes a very slow NO → NO 2 oxidation reaction at high temperature, and also promotes a reduction reaction to nitrogen by adding ammonia as a reducing agent of nitrogen oxides.

본 발명의 바람직한 질소산화물의 처리방법은 구체적으로 플라즈마 반응기에서 고전압 방전에 의해 배기가스 중의 NO를 NO2로 산화시키는 1단계; 1단계 후 NO2를 송이의 표면에 흡착시키는 2단계; 흡착된 NO2, 기상의 NO 및 암모니아를 반응시켜 NOx(NO + NO2)를 질소로 환원시키는 3단계로 구성된다.Preferred method for the treatment of nitrogen oxides of the present invention is specifically one step of oxidizing NO in the exhaust gas to NO 2 by a high voltage discharge in the plasma reactor; Step 2 of adsorbing NO 2 to the surface of the cluster after step 1; It is composed of three steps to reduce NO x (NO + NO 2 ) to nitrogen by reacting the adsorbed NO 2 , gaseous NO and ammonia.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에서 사용된 플라즈마 반응기의 구조이다. 상기 플라즈마 반응기는 오븐, 상기 오븐 내부에 설치된 유리관, 상기 유리관의 중심에 위치한 방전극, 상기 방전극과 유리관 내부에 충진된 충진물로 구성된다. 유리관의 내경은 25.8mm, 외경은 30.2 ㎜이며, 고전압이 인가되어 플라즈마 방전이 시작되는 방전극으로 직경 9.1 ㎜의 구리봉을 사용하였다. 방전극과 유리관 사이에는 4.75-6.7 ㎜의 입경을 가진 송이를 충진하였다. 본 발명에서 플라즈마 반응기의 충진물로 사용된 송이의 조성은 다음의 표 1과 같다.1 is a structure of a plasma reactor used in the present invention. The plasma reactor is composed of an oven, a glass tube installed inside the oven, a discharge electrode positioned at the center of the glass tube, and a filling material filled in the discharge electrode and the glass tube. The inner diameter of the glass tube was 25.8 mm, the outer diameter was 30.2 mm, and a copper rod having a diameter of 9.1 mm was used as a discharge electrode at which a high voltage was applied to start plasma discharge. A cluster having a particle diameter of 4.75-6.7 mm was filled between the discharge electrode and the glass tube. Composition of the cluster used as the filler of the plasma reactor in the present invention is shown in Table 1 below.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 CaOCaO MgOMgO Fe2O3 Fe 2 O 3 TiO2 TiO 2 P2O5 P 2 O 5 BiBi MnOMnO 함량(%)content(%) 48.1048.10 13.8913.89 7.767.76 7.927.92 12.1512.15 2.382.38 0.430.43 1.251.25 0.150.15

표 1에서 보는 바와 같이, 송이는 SiO2와 Al2O3의 함량이 전체 조성의 62%를 차지하고 있어 제올라이트 촉매와 유사한 특성을 나타낼 수 있으며, 그 밖에 촉매 성능을 나타낼 수 있는 MgO, TiO2, MnO 등 금속산화물이 다량 존재한다. 본 발명에 사용된 송이의 비표면적은 약 90m㎡/g으로 분석되었다.As shown in Table 1, the cluster contains 62% of the total composition of SiO 2 and Al 2 O 3 , which may exhibit characteristics similar to those of zeolite catalysts. In addition, MgO, TiO 2 , A large amount of metal oxides such as MnO is present. The specific surface area of the clusters used in the present invention was analyzed to be about 90 m 2 / g.

유리관 외벽은 310 ㎜ 만큼 알루미늄 포일로 둘러싸여 있고 알루미늄 포일은 접지되어 있다. 방전극에 인가되는 고전압으로는 교류 또는 펄스 고전압이 모두 가능하나 본 발명에서는 교류 고전압을 사용하였다. 플라즈마 반응기에 공급되는 전력은 전압의 세기에 의존하며 전압은 4-15 ㎸로 가변하였다.The outer wall of the glass tube is surrounded by aluminum foil by 310 mm and the aluminum foil is grounded. As the high voltage applied to the discharge electrode, both AC and pulse high voltages can be used, but in the present invention, an AC high voltage is used. The power supplied to the plasma reactor depends on the strength of the voltage and the voltage varied from 4-15 kV.

본 발명에서 사용된 배기가스의 조성은 질소 90%, 산소 10%, NOx 300 ppm이었다. 배기가스의 유량은 상온 기준으로 5 L/min으로 하였다. 반응온도를 일정하게 하기 위한 방법으로 플라즈마 반응기를 오븐내에 설치하였고, 반응온도를 100-200℃ 범위로 변화시키며 실시하였다.The composition of the exhaust gas used in the present invention was 90% nitrogen, 10% oxygen, NO x 300 ppm. The flow rate of the exhaust gas was 5 L / min based on room temperature. Plasma reactors were installed in the oven as a method for keeping the reaction temperature constant, and the reaction temperature was varied in the range of 100-200 ° C.

도 2는 종래의 유전체와 송이의 특성을 비교하기 위해 송이 대신 입경 5 ㎜의 유리구슬을 플라즈마 반응기에 충진했을 때의 NO 및 NO2 농도를 나타낸다. 도 2에 나타난 바와 같이 고온(100-200℃)에서는 NO의 산화반응이 매우 느리게 진행되었고, 특히 입력 전력이 약 5 W를 넘어서면 더 이상 NO의 농도가 저감되지 않았다. NO2의 경우는 NO의 산화반응에 따라 농도가 조금씩 증가하나 입력 전력이 약 5 W를 넘어서면 NO의 산화반응이 더 이상 진행되지 않아 NO2의 농도 또한 거의 변화가 없었다.FIG. 2 shows the concentrations of NO and NO 2 when glass beads having a particle diameter of 5 mm are filled in a plasma reactor instead of clusters in order to compare characteristics of a conventional dielectric and clusters. As shown in FIG. 2, the oxidation of NO proceeded very slowly at high temperature (100-200 ° C.), and especially when the input power exceeded about 5 W, the concentration of NO no longer decreased. In the case of NO 2 , the concentration increased little by little depending on the oxidation of NO. However, when the input power exceeded about 5 W, the oxidation of NO did not proceed any more, so the concentration of NO 2 was almost unchanged.

이와 같이 높은 온도에서는 상온에서와 달리 NO의 산화반응이 매우 느렸고, 반응속도를 빠르게 하기 위하여 에틸렌을 반응첨가제로 주입하였다. 에틸렌과 같은 탄화수소는 NO의 산화반응을 촉진하는 역할을 하며, 실제 디젤 배기가스에도 750 ppm 정도의 탄화수소가 포함되어 있다. 본 발명에서는 에틸렌 주입농도를 750 ppm으로 하여 실제 배기가스를 모사하였는데, 그 결과가 도 3에 도시되어 있다. 도 3에서 보는 바와 같이, 100-150℃ 온도에서는 약 6 W의 입력전력에서 대부분의 NO가 NO2로 산화될 수 있었고, 200℃에서도 높은 산화효율을 보여주었다. 그러나 저감된 NO는 거의 대부분 NO2로 산화되기만 하여 에틸렌이 첨가하지 않을 때와 마찬가지로 NOx(NO+NO2)의 저감은 없었다.In this high temperature, unlike the normal temperature, the oxidation of NO was very slow, and ethylene was injected into the reaction additive to increase the reaction rate. Hydrocarbons such as ethylene catalyze the oxidation of NO and actually contain about 750 ppm of hydrocarbons in diesel exhaust. In the present invention, the actual exhaust gas was simulated with the ethylene injection concentration of 750 ppm, the result is shown in FIG. As shown in FIG. 3, at 100-150 ° C., most of NO could be oxidized to NO 2 at an input power of about 6 W, and high oxidation efficiency was shown even at 200 ° C. FIG. However, reduction of NO was not nearly as long as most of the oxidation to NO 2 as with when no ethylene is added to the reduction of NO x (NO + NO 2) .

도 4는 본 발명에 따라 송이를 플라즈마 반응기에 충진하고 반응첨가제로 에틸렌을 주입했을 때의 NO 및 NO2 농도를 나타낸다. 여기서 에틸렌은 반응첨가제로 작용하고 촉매에서 환원작용을 나타내기도 한다. 전력은 공급하지 않았을 때는 NOx(NO+NO2의 합)가 거의 저감되지 않았는데, 이는 NO가 주성분일 경우 이와 같이 낮은 온도에서 촉매가 활성을 나타낼 수 없기 때문이다. 그러나 전력을 증가시킴에 따라 종래의 유전체를 충진했을 때와 달리 NOx(NO+NO2의 합)가 저감될 수 있었는데, 이 결과는 흡착성이 큰 NO2 함량이 증가함에 따라 송이 표면에서 환원반응이 일어나 NOx가 질소로 환원되기 때문이다. NOx 저감율은 다음과 같이 계산된다.Figure 4 shows the concentration of NO and NO 2 when filling the cluster in the plasma reactor according to the present invention and ethylene injected into the reaction additive. Ethylene here acts as a reaction additive and also exhibits a reduction in the catalyst. When power was not supplied, NO x (sum of NO + NO 2 ) was hardly reduced because the catalyst could not be active at such low temperatures when NO was the main component. However, by increasing the power was able to be reduced NO x (the sum of the NO + NO 2), unlike when filled with a conventional dielectric material, the result is a reduction reaction in the cluster surface as the adsorbent is greater NO 2 content is increased This occurs because NO x is reduced to nitrogen. The NO x reduction rate is calculated as follows.

여기서, 잔류 NOx 농도는 잔류 NO와 NO2의 합이며, 본 발명에서 사용한 초기 NOx 농도가 300 ppm이므로 에틸렌이 사용되었을 때는 약 40%의 NOx(NO+NO2)가 저감될 수 있었다.Here, the residual NO x concentration is the sum of residual NO and NO 2 , and since the initial NO x concentration used in the present invention is 300 ppm, about 40% of NO x (NO + NO 2 ) could be reduced when ethylene was used. .

도 5는 송이를 플라즈마 반응기에 충진하고 질소산화물 환원제로서 암모니아(300 ppm)를 사용했을 때의 NO 및 NO2 농도를 나타낸다. 도 4에 나타낸 결과와 도 5의 결과를 비교해보면 NO의 경우는 서로 큰 차이가 없었으나, NO2의 경우는 에틸렌만 사용했을 때보다 암모니아가 주입되었을 때 훨씬 낮은 농도를 나타내었다. 이러한 본 발명의 조건에서 NOx를 60% 이상까지 제거할 수 있었다.FIG. 5 shows the concentrations of NO and NO 2 when the cluster is packed into a plasma reactor and ammonia (300 ppm) is used as the nitrogen oxide reducing agent. When comparing the results shown in FIG. 4 and the results of FIG. 5, NO was not significantly different from each other. However, NO 2 showed a much lower concentration when ammonia was injected than when only ethylene was used. Under the conditions of the present invention, NO x could be removed up to 60% or more.

본 발명은 천연 암석인 송이를 플라즈마 반응기 충진물로 사용함으로써 쉽게 이용 가능한 질소산화물 처리방법을 제공한다. 송이는 플라즈마 반응기에서 유전체의 역할 및 촉매의 역할을 동시에 하므로 플라즈마 방전에 의한 NO→NO2 산화반응을 쉽게 유도할 수 있고, 산화반응에 의해 NO2 함량이 커짐에 따라 100-200℃의 저온에서도 송이 표면에서 촉매반응이 일어나도록 하여 궁극적으로 배기가스의 온도를 상승할 필요 없이 NOx를 제거할 수 있는 효과가 있다. 또한 질소산화물을 입자상 물질인 질산암모늄으로 전환시키는 종래의 플라즈마 공정과 달리 질소산화물을 질소로 환원시킴으로써 입자상 물질의 집진에 따르는 문제점들을 원천적으로 제거하였고 집진설비의 설치에 소요되는 설비비 및 운전비를 절감하는 효과가 있다.The present invention provides a nitrogen oxide treatment method that can be easily used by using a cluster of natural rock as a filler in the plasma reactor. Cluster because the role of the role of the dielectric, and a catalyst in a plasma reactor at the same time it is easy to induce the NO → NO 2 oxidation reaction by the plasma discharge, even at a low temperature of 100-200 ℃ according to the NO 2 content increases by oxidation Catalytic reactions occur on the surface of the cluster, ultimately removing NO x without raising the temperature of the exhaust gases. In addition, unlike the conventional plasma process of converting nitrogen oxide into ammonium nitrate, which is a particulate matter, reducing nitrogen oxide to nitrogen eliminates the problems caused by particulate matter collection and reduces equipment and operating costs required for the installation of dust collection equipment. It works.

도 1은 본 발명에서 사용된 플라즈마 반응기의 구조도(여기서, HVAC는 교류 고전압),1 is a structural diagram of a plasma reactor used in the present invention (where HVAC is an alternating current high voltage),

도 2는 종래의 유전체를 플라즈마 반응기에 충진하였을 때의 NO 및 NO2 농도를 나타낸 그래프,2 is a graph showing NO and NO 2 concentrations when a conventional dielectric is filled into a plasma reactor,

도 3은 종래의 유전체를 플라즈마 반응기에 충진하고 반응첨가제로 에틸렌을 주입하였을 때의 NO 및 NO2 농도를 나타낸 그래프,3 is a graph showing NO and NO 2 concentrations when a conventional dielectric is filled into a plasma reactor and ethylene is injected into the reaction additive;

도 4는 송이를 플라즈마 반응기에 충진하고 반응첨가제로 에틸렌을 주입하였을 때의 NO 및 NO2 농도를 나타낸 그래프,4 is a graph showing NO and NO 2 concentrations when a cluster is filled with a plasma reactor and ethylene is injected into the reaction additive;

도 5는 송이를 플라즈마 반응기에 충진하고 질소산화물 환원제로 암모니아를 사용하였을 때의 NO 및 NO2 농도를 나타낸 그래프이다.FIG. 5 is a graph showing NO and NO 2 concentrations when the cluster is filled with a plasma reactor and ammonia is used as a nitrogen oxide reducing agent.

Claims (4)

플라즈마를 이용한 배기가스의 처리방법에 있어서, 플라즈마 반응기의 충진물로서 천연 암석인 송이를 사용하여 NO를 NO2로 산화시키는 단계; 및CLAIMS What is claimed is: 1. A method for treating exhaust gas using plasma, comprising: oxidizing NO to NO 2 using a cluster of natural rocks as a filler of a plasma reactor; And 상기 NO2를 질소로 환원시키는 단계를 포함하며,Reducing the NO 2 to nitrogen; 상기 송이는 유전체 및 촉매인 것을 특징으로 하는 질소산화물의 처리방법.The cluster is a method of treating nitrogen oxides, characterized in that the dielectric and catalyst. 삭제delete 제 1항에 있어서, 에틸렌을 첨가하여 고온에서 NO2로의 산화반응을 촉진하는 것을 특징으로 하는 질소산화물의 처리방법.The method of treating nitrogen oxides according to claim 1, wherein ethylene is added to promote an oxidation reaction to NO 2 at a high temperature. 제 1항에 있어서, 암모니아를 첨가하여 질소로의 환원반응을 촉진하는 것을 특징으로 하는 질소산화물의 처리방법.The method for treating nitrogen oxides according to claim 1, wherein ammonia is added to promote a reduction reaction to nitrogen.
KR10-2002-0053115A 2002-09-04 2002-09-04 Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma KR100513165B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0053115A KR100513165B1 (en) 2002-09-04 2002-09-04 Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0053115A KR100513165B1 (en) 2002-09-04 2002-09-04 Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma

Publications (2)

Publication Number Publication Date
KR20040021770A KR20040021770A (en) 2004-03-11
KR100513165B1 true KR100513165B1 (en) 2005-09-09

Family

ID=37325760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0053115A KR100513165B1 (en) 2002-09-04 2002-09-04 Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma

Country Status (1)

Country Link
KR (1) KR100513165B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999862A (en) * 2019-04-10 2019-07-12 西安交通大学 It is a kind of using hydroxyapatite as the catalyst of carrier, preparation method and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548163A (en) * 1977-06-21 1979-01-22 Toshiba Corp Method and apparatus for denitrating exhaust gas
JPS55137040A (en) * 1979-04-14 1980-10-25 Nichicon Capacitor Ltd Purifying carrier for gas and purifying device for gas
US4954320A (en) * 1988-04-22 1990-09-04 The United States Of America As Represented By The Secretary Of The Army Reactive bed plasma air purification
JPH0615143A (en) * 1992-07-03 1994-01-25 Mitsui Eng & Shipbuild Co Ltd Plasma reaction vessel for nitrogen oxide decomposition device
JPH1119642A (en) * 1997-06-30 1999-01-26 Shogo Nasu Purifying material for water and air
KR20000055972A (en) * 1999-02-09 2000-09-15 박광열 Aaaaa
KR20000073874A (en) * 1999-05-11 2000-12-05 박광준 Aaaaa
KR20010000210A (en) * 2000-08-18 2001-01-05 이병헌 Biological filter for deodorizing and removing volatile organic components
KR20030030278A (en) * 2001-10-09 2003-04-18 재단법인 포항산업과학연구원 Method for simultaneous removal of air pollutants from flue gas by using non-thermal plasma techniques

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548163A (en) * 1977-06-21 1979-01-22 Toshiba Corp Method and apparatus for denitrating exhaust gas
JPS55137040A (en) * 1979-04-14 1980-10-25 Nichicon Capacitor Ltd Purifying carrier for gas and purifying device for gas
US4954320A (en) * 1988-04-22 1990-09-04 The United States Of America As Represented By The Secretary Of The Army Reactive bed plasma air purification
JPH0615143A (en) * 1992-07-03 1994-01-25 Mitsui Eng & Shipbuild Co Ltd Plasma reaction vessel for nitrogen oxide decomposition device
JPH1119642A (en) * 1997-06-30 1999-01-26 Shogo Nasu Purifying material for water and air
KR20000055972A (en) * 1999-02-09 2000-09-15 박광열 Aaaaa
KR20000073874A (en) * 1999-05-11 2000-12-05 박광준 Aaaaa
KR20010000210A (en) * 2000-08-18 2001-01-05 이병헌 Biological filter for deodorizing and removing volatile organic components
KR20030030278A (en) * 2001-10-09 2003-04-18 재단법인 포항산업과학연구원 Method for simultaneous removal of air pollutants from flue gas by using non-thermal plasma techniques

Also Published As

Publication number Publication date
KR20040021770A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
CN102049257B (en) Catalyst for simultaneously reducing SO2 and NO with CO as well as preparation and application of catalyst
CN102423688B (en) Preparation method for walnut shell active carbon adsorbent for purifying low concentration phosphine
US20030108466A1 (en) Removing NOx, SO2, and Hg from a gas stream using limestone regeneration
CN104474890B (en) A kind of method of Engineering of Supported Metal Oxide Catalysts catalysis Direct Resolution NO denitration
JPH09103646A (en) Method and apparatus for treating combustion exhaust gas
CN103055694A (en) Method for flue gas denitrification by organic waste gas
WO1997001388A1 (en) Flue-gas treatment system
US6517794B2 (en) Method for removing nitrogen oxides from an oxygen-containing flue gas stream
CN103071386A (en) Plasma-promoted nitrogen oxide storing reducing and removing method
WO2000043102A2 (en) Process and reactor for plasma assisted gas processing
CN102489152A (en) Denitration method by microwave catalytic reaction for direct decomposition of NO
EP0643991A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
KR100513165B1 (en) Removal methood of nitrogen oxides in exhaust gas using scoria and non-thermal plasma
Penetrante Removal of NO/sub x/from diesel generator exhaust by pulsed electron beams
CN112547117B (en) Normal temperature NH for plasma driving condition 3 Catalyst for selective catalytic reduction of NO and preparation method thereof
CN109174097B (en) Catalyst for desulfurization and denitrification of metallurgical sintering flue gas and preparation method thereof
US6814948B1 (en) Exhaust gas treating systems
KR101137469B1 (en) THE METHOD FOR THE SIMULTANEOUS REMOVAL OF Sox AND NOx IN FLUE GAS AND THE CATALYST THEREFOR
Roh et al. Superior decomposition of NO over plasma-assisted catalytic system induced by microwave
EP2979753A1 (en) Denitration catalyst and method for producing same
CA2045128A1 (en) A catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
CN1712108A (en) Smoke desulfurization and denitration
Lau et al. Effect of operating conditions towards simultaneous removal of SO2 and NO using copper modified rice husk ash: Role as sorbent and catalyst
KR100467800B1 (en) Method for Simultaneous Removal of Air Pollutants from Flue Gas by Using Non-thermal Plasma Techniques

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee