KR100506811B1 - Method of analyzing photooresist for manufacturing semiconductor device - Google Patents

Method of analyzing photooresist for manufacturing semiconductor device Download PDF

Info

Publication number
KR100506811B1
KR100506811B1 KR1019980003253A KR19980003253A KR100506811B1 KR 100506811 B1 KR100506811 B1 KR 100506811B1 KR 1019980003253 A KR1019980003253 A KR 1019980003253A KR 19980003253 A KR19980003253 A KR 19980003253A KR 100506811 B1 KR100506811 B1 KR 100506811B1
Authority
KR
South Korea
Prior art keywords
photoresist
sample
impurities
semiconductor device
analyzing
Prior art date
Application number
KR1019980003253A
Other languages
Korean (ko)
Other versions
KR19990069175A (en
Inventor
김영호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019980003253A priority Critical patent/KR100506811B1/en
Publication of KR19990069175A publication Critical patent/KR19990069175A/en
Application granted granted Critical
Publication of KR100506811B1 publication Critical patent/KR100506811B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Abstract

본 발명은 포토레지스트에 포함된 불순물을 용이하게 분석할 수 있는 반도체장치 제조용 포토레지스트 분석방법에 관한 것이다.The present invention relates to a photoresist analysis method for manufacturing a semiconductor device that can easily analyze impurities contained in the photoresist.

본 발명은, 포토레지스트 제조용 레진용액에서 일정량의 시료를 샘플링하는 단계, 상기 샘플링된 시료를 원심분리하는 단계, 상기 원심분리된 시료에서 불순물을 채취하는 단계 및 상기 불순물을 분석하는 단계를 구비하여 이루어지는 것을 특징으로 한다.The present invention comprises the steps of sampling a predetermined amount of sample in a resin solution for preparing a photoresist, centrifuging the sampled sample, collecting impurities from the centrifuged sample and analyzing the impurities It is characterized by.

따라서, 포토레지스트 자체의 불순물에 대해서 용이하게 분석할 수 있는 효과가 있다.Therefore, there is an effect that can be easily analyzed for impurities in the photoresist itself.

Description

반도체장치 제조용 포토레지스트 분석방법{Method of analyzing photooresist for manufacturing semiconductor device}Method of analyzing photooresist for manufacturing semiconductor device

본 발명은 반도체장치 제조용 포토레지스트 분석방법에 관한 것으로서, 보다 상세하게는 포토레지스트에 포함된 불순물을 용이하게 분석할 수 있는 반도체장치 제조용 포토레지스트 분석방법에 관한 것이다.The present invention relates to a photoresist analysis method for manufacturing a semiconductor device, and more particularly, to a photoresist analysis method for manufacturing a semiconductor device that can easily analyze impurities contained in the photoresist.

통상, 사진식각공정에서는 먼저 반도체기판 상에 포토레지스트(Photoresist)를 전면도포한 후 노광 및 현상공정을 진행하여 포토레지스트 패턴을 형성한다. 그리고, 상기 포토레지스트 패턴을 마스크로 사용하여 식각공정을 진행한다. In general, in a photolithography process, a photoresist is first coated on a semiconductor substrate, followed by an exposure and development process to form a photoresist pattern. Then, the etching process is performed using the photoresist pattern as a mask.

그리고, 이온주입공정에서도 먼저 반도체기판 상에 포토레지스트를 전면도포한 후 노광 및 현상공정을 진행하여 포토레지스트 패턴을 형성한다. 그리고, 상기 포토레지스트 패턴을 마스크로 사용하여 반도체기판의 소정영역에 불순물을 주입한다. In the ion implantation process, the photoresist is first coated on the semiconductor substrate, followed by exposure and development processes to form a photoresist pattern. The impurity is implanted into a predetermined region of the semiconductor substrate using the photoresist pattern as a mask.

그런데, 포토레지스트 내부에 불순물이 포함되어 있으면 상기 불순물이 마스크로 작용하여 노광불량이 발생하고, 상기 노광불량에 의해서 포토레지스트 패턴의 이상이 발생하고, 이에 따라 식각공정 및 이온주입공정의 이상이 발생하여 완성된 반도체장치의 동작불량이 발생하였다.However, when impurities are contained in the photoresist, the impurities act as a mask, resulting in poor exposure, and abnormalities in the photoresist pattern occur due to the poor exposure, thereby causing abnormalities in the etching process and the ion implantation process. As a result, malfunction of the completed semiconductor device occurred.

따라서, 상기 포토레지스트에 대한 분석공정을 통해서 포토레지스트 패턴의 이상을 미연에 방지하고 있다.Therefore, the abnormality of the photoresist pattern is prevented through the analysis process with respect to the said photoresist.

도1을 참조하면, 종래의 반도체장치 제조용 포토레지스트 분석방법은, 먼저 포토레지스트의 주성분인 레진(Resin)용액을 제조한다. 상기 레진용액은 반도체기판과 포토레지스트의 점착력을 향상시키는 역할을 수행하고, 식각공정을 진행할 때 식각 저항성분으로 작용한다. Referring to FIG. 1, a conventional photoresist analysis method for manufacturing a semiconductor device first prepares a resin solution, which is a main component of a photoresist. The resin solution serves to improve adhesion between the semiconductor substrate and the photoresist, and acts as an etching resistance component during the etching process.

이어서, 인히비터(Inhibitor)와 용제(Solvent)를 포함하는 첨가물을 상기 레진용액 내부에 첨가하여 포토레지스트를 제조한다. 상기 인히비터는 감응제(Sensitizer)라고도 하며 빛에 의해서 활성화되어 상기 레진용액에 에너지를 전달하여 상기 레진용액의 구조가 변화하도록 하는 역할을 수행하며, 포토레지스트의 현상 저항성과 광흡수 특성에 영향을 미친다. 그리고, 상기 용제는 반도체기판에 포토레지스트를 도포하기 전까지 포토레지스트가 액상으로 유지되도록 하는 역할을 수행한다.Subsequently, an additive including an inhibitor and a solvent is added to the inside of the resin solution to prepare a photoresist. The inhibitor is also called a sensitizer and is activated by light to transfer energy to the resin solution to change the structure of the resin solution, and affect the development resistance and light absorption characteristics of the photoresist. Crazy The solvent serves to maintain the photoresist in a liquid state until the photoresist is applied to the semiconductor substrate.

다음으로, 상기 포토레지스트를 필터를 통과하여 반도체기판 상에 전면도포한 후 베이트(Bake) 공정을 수행하여 포토레지트막을 형성한다. 상기 필터에 의해서 포토레지스트에 포함된 불순물은 제거된다.Next, after the photoresist is completely coated on the semiconductor substrate through a filter, a bait process is performed to form a photoresist film. Impurities contained in the photoresist are removed by the filter.

이어서, 상기 필터를 통과한 후 반도체기판 상에 형성된 포토레지스트막 상에 존재하는 불순물의 개수를 파티클 카운터(Particle counter)를 측정하는 분석공정을 진행한다.Subsequently, after passing through the filter, a particle counter is measured to determine the number of impurities existing on the photoresist film formed on the semiconductor substrate.

그러나, 전술한 바와 같은 종래의 포토레지스트 분석방법은, 반도체기판 상에 포토레지스트막을 형성한 후 포토레지스트막 상에 존재하는 불순물을 분석하는 공정이므로 포토레지스트 내부에 존재하는 불순물에 대한 근원적인 분석이 이루어지지 못하는 문제점이 있었다.However, the conventional photoresist analysis method as described above is a process of analyzing the impurities present on the photoresist film after forming the photoresist film on the semiconductor substrate, so the fundamental analysis of the impurities present in the photoresist is difficult. There was a problem that could not be achieved.

본 발명의 목적은, 포토레지스트의 주성분인 레진에 포함된 불순물을 근원적으로 분석할 수 있는 반도체장치 제조용 포토레지스트 분석방법을 제공하는 데 있다.An object of the present invention is to provide a photoresist analysis method for manufacturing a semiconductor device capable of fundamentally analyzing impurities contained in a resin which is a main component of a photoresist.

상기 목적을 달성하기 위한 본 발명에 따른 반도체장치 제조용 포토레지스트 분석방법은, 포토레지스트 제조용 레진용액에서 일정량의 시료를 샘플링하는 단계; 상기 샘플링된 시료를 원심분리하는 단계; 상기 원심분리된 시료에서 불순물을 채취하는 단계; 및 상기 불순물을 분석하는 단계;를 구비하여 이루어지는 것을 특징으로 한다.A photoresist analysis method for manufacturing a semiconductor device according to the present invention for achieving the above object comprises the steps of: sampling a sample of a predetermined amount in a resin solution for manufacturing a photoresist; Centrifuging the sampled sample; Collecting impurities from the centrifuged sample; And analyzing the impurities.

상기 샘플링된 시료에 포함된 불순물의 채취는 상기 원심분리된 시료를 필터링하는 단계와 필터링된 상기 시료를 건조하는 단계로 이루어질 수 있다.The collection of impurities contained in the sampled sample may include filtering the centrifuged sample and drying the filtered sample.

그리고, 상기 불순물의 분석은 유도결합 플라즈마(Inductively Coupled Plasma)형 원자방출분석기(Atomic Emission Spectroscopy)를 사용하여 이루어질 수 있다.The impurities may be analyzed using an inductively coupled plasma type atomic emission spectrometer.

이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도2를 참조하면, 먼저 포토레지스트 제조에 사용되는 레진용액에서 40 ㎖의 시료를 샘플링한다.Referring to FIG. 2, first, a 40 ml sample is sampled from a resin solution used for preparing a photoresist.

이어서, 통상의 원심분리기 내부에 상기 시료를 투입한 후, 4500rpm 정도의 속도로 약 5분동안 상기 시료를 회전시킨다. 이에 따라 시료에 포함된 불순물은 원심분리된다.Subsequently, after the sample is introduced into a conventional centrifuge, the sample is rotated for about 5 minutes at a speed of about 4500 rpm. As a result, the impurities contained in the sample are centrifuged.

다음으로, 불순물이 원심분리된 시료를 필터를 사용하여 필터링한다. 이에 따라, 시료에 포함된 불순물은 필터 내부에 존재하게 된다. 이후, 필터에 존재하는 불순물을 건조시킴으로서 불순물은 채취된다.Next, the sample centrifuged with impurities is filtered using a filter. Accordingly, impurities contained in the sample are present in the filter. Thereafter, impurities are collected by drying the impurities present in the filter.

마지막으로, 유도결합 플라즈마형 원자방출분석기를 사용하여 상기 불순물을 정성 및 정량적으로 분석한다. 이에 따라, 포토레지스트 제조용 전체 레진용액에 포함된 불순물의 양을 알수 있고, 이에 따라 포토레지스트의 제조여부도 판단할 수 있다. 상기 원자방출분석기는 아르곤(Ar) 기체를 공정챔버 내부에 공급하면서 상기 공정챔버 외부에 구비되는 유도코일에 고주파전력을 공급함으로서 플라즈마를 생성시킨 후, 플라즈마가 안정화된 다음 플라즈마 내부에 시료용액을 공급하면, 측정 대상 원소의 원자나 이온이 들떠서 복사선을 방출한다. 그리고, 이 복사선을 검출기에서 분석함으로서 상기 시료에 포함된 불순물의 종류 및 양을 정성·정량분석할 수 있다. Finally, the impurities are qualitatively and quantitatively analyzed using an inductively coupled plasma type atomic emission analyzer. Accordingly, it is possible to know the amount of impurities contained in the entire resin solution for preparing the photoresist, thereby determining whether the photoresist is manufactured. The atomic emission analyzer generates a plasma by supplying high frequency power to an induction coil provided outside the process chamber while supplying argon (Ar) gas into the process chamber, and then stabilizes the plasma and then supplies a sample solution into the plasma. Then, the atoms and ions of the element to be measured are excited to emit radiation. And by analyzing this radiation with a detector, qualitative and quantitative analysis of the kind and quantity of impurities contained in the said sample can be carried out.

따라서, 본 발명에 의하면 포토레지스트 주성분인 레진용액에 포함된 불순물을 근원적으로 용이하게 분석함으로서 포토레지스트의 제조여부 등을 판단할 수 있는 효과가 있다.Therefore, according to the present invention, it is possible to easily determine whether the photoresist is manufactured by easily analyzing the impurities contained in the resin solution as the main component of the photoresist.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.

도1은 종래의 반도체장치 제조용 포토레지스트 분석방법을 설명하기 위한 공정순서도이다.1 is a process flowchart for explaining a conventional photoresist analysis method for manufacturing a semiconductor device.

도2는 본 발명에 따른 반도체장치 제조용 포토레지스트 분석방법의 일 실시예를 설명하기 위한 공정순서도이다.2 is a process flowchart for explaining an embodiment of a photoresist analysis method for manufacturing a semiconductor device according to the present invention.

Claims (2)

포토레지스트 제조용 레진 용액에서 일정량의 시료를 샘플링하는 단계;Sampling a predetermined amount of sample in a resin solution for preparing a photoresist; 상기 샘플링된 시료를 원심분리 하는 단계;Centrifuging the sampled sample; 상기 원심분리된 시료를 필터링하는 단계;Filtering the centrifuged sample; 상기 필터링된 시료를 건조함으로서 불순물을 채취하는 단계; 및Collecting impurities by drying the filtered sample; And 상기 불순물의 종류 및 양을 정성, 정량 분석하는 단계;Qualitatively and quantitatively analyzing the type and amount of the impurities; 를 구비하여 이루어지는 것을 특징으로 하는 반도체장치 제조용 포토레지스트 분석방법.The photoresist analysis method for manufacturing a semiconductor device, characterized in that it comprises a. 제1항에 있어서,The method of claim 1, 상기 불순물의 분석은 유도결합 플라즈마(Inductively Coupled Plasma)형 원자방출분석기(Atomic Emission Spectroscopy)를 사용하여 이루어지는 것을 특징으로 하는 반도체장치 제조용 포토레지스트 분석방법.The impurity analysis is performed using an inductively coupled plasma type atomic emission spectrometer (Atomic Emission Spectroscopy).
KR1019980003253A 1998-02-05 1998-02-05 Method of analyzing photooresist for manufacturing semiconductor device KR100506811B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980003253A KR100506811B1 (en) 1998-02-05 1998-02-05 Method of analyzing photooresist for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980003253A KR100506811B1 (en) 1998-02-05 1998-02-05 Method of analyzing photooresist for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR19990069175A KR19990069175A (en) 1999-09-06
KR100506811B1 true KR100506811B1 (en) 2005-10-14

Family

ID=37305401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980003253A KR100506811B1 (en) 1998-02-05 1998-02-05 Method of analyzing photooresist for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100506811B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255850A (en) * 1986-04-30 1987-11-07 Hitachi Ltd Measuring instrument for density of fine grain in liquid
JPH05251328A (en) * 1992-03-05 1993-09-28 Nec Yamagata Ltd Coating apparatus with photoresist film
US5509375A (en) * 1992-06-22 1996-04-23 Vlsi Technology, Inc. Apparatus and method for detecting contaminants carried by a fluid
KR970076081A (en) * 1996-05-03 1997-12-10 김광호 Photoresist analysis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255850A (en) * 1986-04-30 1987-11-07 Hitachi Ltd Measuring instrument for density of fine grain in liquid
JPH05251328A (en) * 1992-03-05 1993-09-28 Nec Yamagata Ltd Coating apparatus with photoresist film
US5509375A (en) * 1992-06-22 1996-04-23 Vlsi Technology, Inc. Apparatus and method for detecting contaminants carried by a fluid
KR970076081A (en) * 1996-05-03 1997-12-10 김광호 Photoresist analysis method

Also Published As

Publication number Publication date
KR19990069175A (en) 1999-09-06

Similar Documents

Publication Publication Date Title
JP5910974B2 (en) System for calibrating instrument response, particularly in the medical field, and quantitative chemical analysis of samples, and corresponding method
Krauss et al. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns
JP2019082481A (en) Method for detecting reverse triiodothyronine through mass analysis
WO2009100077A2 (en) Method and apparatus for response and tune locking of a mass spectrometer
US20160042937A1 (en) Methods for Predictive Automatic Gain Control for Hybrid Mass Spectrometers
KR100506811B1 (en) Method of analyzing photooresist for manufacturing semiconductor device
CN113711030A (en) Methods and systems for detection of 11-oxoandrogens by LC-MS/MS
JP5412246B2 (en) Spectral signal correction method in quadrupole mass spectrometer
Harris et al. Design of a high-resolution mass spectrometer for studying the photodissociation of organic ions in the gas phase
US6995091B2 (en) Process for chemically mechanically polishing wafers
KR100513427B1 (en) Photoresist analysis method for semiconductor device manufacturing
US9202681B2 (en) Methods for predictive automatic gain control for hybrid mass spectrometers
KR100835379B1 (en) Method for chamber condition monitoring using quadrupole mass spectrometry
JP3977761B2 (en) Quality control method for electronic component materials
JP2004265674A (en) Mass spectrometer utilizing ion adhesion and mass spectrometry
US20230128672A1 (en) Methods and Systems for Measuring Progesterone Metabolites
US20230032804A1 (en) Photostability Prediction Method of Organic Material Using La-Dart-MS
JPH11214363A (en) Semiconductor manufacture and its device, and semiconductor element
Thulasidas et al. Determination of uranium isotopic ratio (235U/238U) using ICP-AES
CN117178188A (en) Identification and quantification of insulin-like growth factor-I variants by mass spectrometry
JPH10253557A (en) Method and equipment for analysis with electron beam
JPH0886724A (en) Impurity analyzer
Velasco‐Arjona et al. Robotic sample pretreatment coupled with flow‐injection on‐line sorption preconcentration—Electrothermal atomic absorption spectrometry for the determination of copper in environmental and biological materials
WO2023154148A1 (en) Characterization of photosensitive materials
JPH11101723A (en) Substrate surface analysis method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee