KR100506072B1 - Fabrication method of Liquid Crystal Display - Google Patents

Fabrication method of Liquid Crystal Display Download PDF

Info

Publication number
KR100506072B1
KR100506072B1 KR10-1998-0038689A KR19980038689A KR100506072B1 KR 100506072 B1 KR100506072 B1 KR 100506072B1 KR 19980038689 A KR19980038689 A KR 19980038689A KR 100506072 B1 KR100506072 B1 KR 100506072B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
crystal display
intermediate layer
display device
alignment
Prior art date
Application number
KR10-1998-0038689A
Other languages
Korean (ko)
Other versions
KR20000020198A (en
Inventor
박관선
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR10-1998-0038689A priority Critical patent/KR100506072B1/en
Publication of KR20000020198A publication Critical patent/KR20000020198A/en
Application granted granted Critical
Publication of KR100506072B1 publication Critical patent/KR100506072B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Abstract

액정표시소자의 제조 방법에 관해 기술된다. 개시된 액정표시소자의 제조방법은, 전면판과 배면판의 각 내면에 소정 패턴의 전극을 형성하는 단계; 상기 전면판과 배면판 중 적어도 어느 일측의 전극 위에 광개시제를 포함하는 광경화성 모노머와 바인더 고분자를 포함하는 광중합수지로 매개층을 형성하는 단계; 상기 매개층에 국부적으로 다른 강도의 광을 조사하여 상기 매개층이 국부적으로 다른 두께를 가지도록 하는 매개층의 경화단계; 상기 전면판과 배면판의 내면 최상층에 형성되는 배향막을 형성하는 단계; 상기 배향막을 일방향으로 러빙하는 러빙단계;를 포함한다. 이러한 방법에 의해 제조된 액정표시소자는, 종래 TN LCD의 문제점인 좁은 시야각의 문제점이 개선된다. 또한 수직 배향시에 배향막의 모양이 굴곡진 예를 들어 볼록렌즈형으로 되어 있어서 액정디스플레이의 최대의 과제인 완전 멀티도메인의 형성이 가능하고 따라서, 빠른 응답성의 구현이 가능하게 된다.The manufacturing method of a liquid crystal display element is described. The disclosed method of manufacturing a liquid crystal display device includes the steps of forming an electrode of a predetermined pattern on each inner surface of a front plate and a back plate; Forming an intermediate layer of a photopolymerizable resin including a photocurable monomer and a binder polymer on an electrode of at least one of the front and back plates; Curing the intermediate layer to irradiate the intermediate layer with light of different intensity locally so that the intermediate layer has a locally different thickness; Forming an alignment layer formed on uppermost layers of inner surfaces of the front plate and the back plate; And a rubbing step of rubbing the alignment layer in one direction. The liquid crystal display device manufactured by this method improves the problem of narrow viewing angle, which is a problem of the conventional TN LCD. In addition, since the alignment film is curved, for example, a convex lens type in the vertical alignment, it is possible to form a fully multidomain, which is the biggest problem of the liquid crystal display, and therefore, it is possible to implement fast response.

Description

액정 표시 소자의 제조 방법{Fabrication method of Liquid Crystal Display}Manufacturing method of liquid crystal display device {Fabrication method of Liquid Crystal Display}

본 발명은 액정 표시 소자의 제조 방법에 관한 것으로서, 특히 시야각이 확대되고 응답성이 향상된 액정 표시 소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly, to a method for manufacturing a liquid crystal display device having a wider viewing angle and improved response.

도 1은 종래 부(負)의 유전율을 가진 액정을 이용한 TN LCD(Twisted Neumatic Liquid Crystal Display)의 개략적 구성의 보인 단면도이다.1 is a cross-sectional view of a schematic configuration of a TN LCD (Twisted Neumatic Liquid Crystal Display) using a liquid crystal having a negative dielectric constant.

도 1을 참조하면, 전면판(1)과 배면판(2)의 각 내면에 전극(1a, 2a)이 형성되고, 전극(1a, 2a) 위에는 배향막(3a, 3b)이 형성되고, 이들의 사이에는 부의 유전율을 가진 액정(4)이 개입되어 있다. 도시된 바와 같이 전기장이 걸리지 않은 영역(OFF)에서의 액정 분자(4a)는 전면판(1)과 배면판(2)의 평면에 수직인 방향으로 정렬되어 있고, 전기장이 걸린 영역(ON)에서는 액정분자(4a)가 전면판(1)과 배면판(2)의 평면에 나란한 방향으로 정렬되어 있다.Referring to FIG. 1, electrodes 1a and 2a are formed on each of the inner surfaces of the front plate 1 and the back plate 2, and alignment layers 3a and 3b are formed on the electrodes 1a and 2a. The liquid crystal 4 which has a negative dielectric constant intervenes in between. As shown, the liquid crystal molecules 4a in the region where no electric field is applied are aligned in a direction perpendicular to the plane of the front plate 1 and the back plate 2, and in the region ON where the electric field is applied. The liquid crystal molecules 4a are aligned in a direction parallel to the plane of the front plate 1 and the back plate 2.

이러한 종래의 TN LCD(Twisted Neumatic Liquid Crystal Display)는 시야각, 즉, 사용자가 LCD 의 정면에서 화면을 인식할 수 있는 각도 범위가 좁다. 이러한 좁은 시야각의 문제를 개선하기 위한 기술이 미국특허 3,914,022호에 개시되었다. 여기에 개시된 종래 LCD는 액정의 수직배향에 의해 시야각이 어느 정도 확대되기는 하지만, 전기장이 인가되어 기판의 평면에 대해 수직인 방향으로 배향된 상태에서 액정의 플리틸트(pretilt) 각도의 조절이 어렵기 때문에 전기장 인가 여부에 따른 액정의 동작(응답) 속도가 느린 결점이 있고, 소위 멀티 도메인(multi domain)의 형성이 어려워서 시야각 확대의 효과가 적다. The conventional twisted neutral liquid crystal display (TN LCD) has a narrow viewing angle, that is, an angle range in which the user can recognize the screen from the front of the LCD. Techniques for ameliorating this narrow viewing angle problem are disclosed in US Pat. No. 3,914,022. In the conventional LCD disclosed herein, although the viewing angle is enlarged to some extent by the vertical alignment of the liquid crystal, it is difficult to control the pretilt angle of the liquid crystal in a state in which an electric field is applied and oriented in a direction perpendicular to the plane of the substrate. Therefore, there is a drawback in that the operation (response) of the liquid crystal is slow depending on whether an electric field is applied, and so-called multi-domain formation is difficult, so that the effect of expanding the viewing angle is small.

또한, 프리틸트각을 조절하기 위하여 약간의 경사각을 갖는 배향막을 쓸 경우는 전기장이 인가되어 액정이 수직으로 배향될 때에 액정이 한쪽 방향으로 넘어지게 되고, 따라서, 시야각의 개선효과가 크지 않고 또한 시야각의 특성인 수직배향의 특성의 충분한 효과를 거두지 못한다.In addition, in the case of using an alignment film having a slight inclination angle to adjust the pretilt angle, the liquid crystal falls in one direction when an electric field is applied and the liquid crystal is vertically aligned. It does not have sufficient effect of the characteristic of vertical alignment which is the characteristic of.

본 발명은 시야각이 넓고 응답성이 향상된 액정 표시 소자의 제조방법을 제공함에 그 목적이 있다.An object of the present invention is to provide a method of manufacturing a liquid crystal display device having a wide viewing angle and improved response.

상기 목적을 달성하기 위하여 본 발명에 따르면, 전면판과 배면판의 각 내면에 소정 패턴의 전극을 형성하는 단계; 상기 전면판과 배면판 중 적어도 어느 일측의 전극 위에 광개시제를 포함하는 광경화성 모노머와 바인더 고분자를 포함하는 광중합수지로 매개층을 형성하는 단계; 상기 매개층에 국부적으로 다른 강도의 광을 조사하여 상기 매개층이 국부적으로 다른 두께를 가지도록 하는 매개층의 경화단계; 상기 전면판과 배면판의 내면 최상층에 형성되는 배향막을 형성하는 단계; 상기 배향막의 일방향으로 러빙하는 러빙단계;를 포함하는 액정 표시 소자의 제조방법이 제공된다.According to the present invention to achieve the above object, the step of forming a predetermined pattern of electrodes on each inner surface of the front plate and the back plate; Forming an intermediate layer of a photopolymerizable resin including a photocurable monomer and a binder polymer on an electrode of at least one of the front and back plates; Curing the intermediate layer to irradiate the intermediate layer with light of different intensity locally so that the intermediate layer has a locally different thickness; Forming an alignment layer formed on uppermost layers of inner surfaces of the front plate and the back plate; A rubbing step of rubbing in one direction of the alignment layer is provided.

이하, 첨부된 도면을 참조하면서, 본 발명에 따른 액정 표시 소자의 제조방법의 바람직한 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of a method for manufacturing a liquid crystal display device according to the present invention will be described in detail.

도 2는 본 발명에 제조방법에 의해 제조된 액정 표시 소자의 개략적 단면도이다.2 is a schematic cross-sectional view of a liquid crystal display device manufactured by the manufacturing method of the present invention.

도 2를 참조하면, 전면판(10)과 배면판(20)의 각 내면에 전극(10a, 20a)이 형성되고, 전극(10a, 20a) 위에는 본 발명을 특징지우는 매개층(50a, 50b) 및 배향막(30a, 30b)이 형성되고, 상기 배향막(30a, 30b)의 사이에는 음의 유전율을 가진 액정(40)이 개입되어 있다. 도시된 바와 같이 전기장이 걸리지 않은 영역(OFF)에서의 액정 분자(40a)는 전면판(10)과 배면판(20)의 평면에 수직인 방향으로 정렬되어 있고, 전기장이 걸린 영역(ON)에서는 액정분자(40a)가 전면판(10)과 배면판(20)의 평면에 나란한 방향으로 정렬되어 있다.Referring to FIG. 2, electrodes 10a and 20a are formed on respective inner surfaces of the front plate 10 and the back plate 20, and the intermediate layers 50a and 50b characterizing the present invention on the electrodes 10a and 20a. And alignment layers 30a and 30b, and a liquid crystal 40 having a negative dielectric constant is interposed between the alignment layers 30a and 30b. As shown, the liquid crystal molecules 40a in the region where the electric field is not applied are aligned in a direction perpendicular to the plane of the front plate 10 and the back plate 20, and in the region where the electric field is applied. The liquid crystal molecules 40a are aligned in a direction parallel to the plane of the front plate 10 and the back plate 20.

상기와 같은 본 발명에 따른 액정 표시 소자에 매개층(50a, 50b)은 원형 또는 사각형의 볼록렌즈 형태를 가지는 것으로서, 그 위에 형성된 배향막(30a, 30b)의 표면의 굴곡을 유도하는 층이다. 이러한 구조에 있어서, 상기 매개층은 전면판(10)과 배면판(20)의 각각에 공히 마련되는 것이 바람직하며, 경우에 따라서는 어느 하나에만 형성도 가능하다. 또한 본 실시예에서는 상기 매개층이 볼록형으로 되어 있으나, 반대로 오목형으로 형성될 수 도 있다.In the liquid crystal display device according to the present invention as described above, the intermediate layers 50a and 50b have a circular or rectangular convex lens shape and induce bending of the surfaces of the alignment layers 30a and 30b formed thereon. In such a structure, the intermediate layer is preferably provided on each of the front plate 10 and the back plate 20, and may be formed only in any case. In addition, in the present embodiment, the intermediate layer is convex, but may also be concave.

이러한 구조에 의하면, 도 3에 도시된 바와 같이 전기장이 인가될 때에 전면판(10)과 배면판(20)의 평면에 수직인 방향으로 정렬되어 있던 액정분자(40a)가 배향막의 굴곡에 따라서 서로 다른 방향으로 넘어지면서 전면판(10)과 배면판(20)의 평면에 나란한 방향으로 정렬되게 된다. According to this structure, as shown in FIG. 3, when the electric field is applied, the liquid crystal molecules 40a aligned in the direction perpendicular to the plane of the front plate 10 and the back plate 20 are mutually aligned in accordance with the bending of the alignment layer. Falling in the other direction is aligned in a direction parallel to the plane of the front plate 10 and the back plate 20.

이러한 본발명의 액정 표시소자는 수직배향을 적용하고, 유전율 이방성이 부(負)인 액정을 갖고 있어서 전장을 인가하지 않은 상태에서는 액정분자가 수직방향으로 배향을 하고 있어서 크로스니콜의 상태의 편광판을 갖는 셀에서는 블랙(어두운) 상태를 보인다. 그리고 전기장이 인가된면 액정분자의 장축은 전면판과 배면판의 전극의 평면에 나란한 쓰러지면서 입사광에 대하여 굴절율 이방성의 효과가 나타나게 되고, 결과적으로 빛의 통과가 이루어져 화이트(밝은) 상태를 나타내게 된다. The liquid crystal display device of the present invention has a liquid crystal having a vertical liquid crystal having a negative dielectric constant anisotropy, and the liquid crystal molecules are oriented in the vertical direction in a state in which no electric field is applied. Cells with black show black (dark) state. When the electric field is applied, the long axis of the liquid crystal molecules falls side by side on the planes of the electrodes of the front plate and the back plate, and the effect of refractive index anisotropy on the incident light appears. As a result, light passes through the white state. .

한편, 종래의 구조의 액정 디스플레이 패널의 경우, 액정분자의 배향이 90도에 가까운 수직배향인 경우 액정분자의 장축의 방향에서 보면 유전률이방성이 없는 효과로 인하여 전기장 인가시 응답속도가 느린 경향을 나타내며 특히, 인접한 액정 분자의 넘어지는 방향이 같을 경우 상호 충돌된 확률이 높고, 따라서, 이 경우 디스크리네이션의 발생에 의해서 콘트라스트가 저하되고 색도가 저하되게 되며, 액정분자의 장축의 방향에서 보면 유전율이방성이 없는 것과 효과로 인해 전기장에 대하여 액정분자의 장축이 수직한 경우 응답속도가 떨어 지게 된다. 그러나 본 발명에 따른 액정 표시 소자에서 처럼, 굴곡진 배향막에 의해 모든액정 분자가 전기장 하에서 그 장축이 전면판과 배면판의 평면방향에 수직인 방향에 대해 약간 기울어지게 되어 응답속도를 그 만큼 빠르게된다. 또한 액정분자가 이 넘어지는 방향이 기존의 멀티도메인 방식의 4개방향에 비하여 거의 무한대에 가까움으로 인한 시야각의 극대화가 가능하게 된다.On the other hand, in the case of the liquid crystal display panel having a conventional structure, when the orientation of the liquid crystal molecules is vertically close to 90 degrees, the response speed tends to be slow when applying an electric field due to the effect of no dielectric anisotropy in the direction of the long axis of the liquid crystal molecules. In particular, when the falling directions of adjacent liquid crystal molecules are the same, the probability of collision with each other is high. Therefore, in this case, the contrast decreases and the chromaticity decreases due to the occurrence of the discrimination. Due to this absence and effect, the response speed decreases when the long axis of the liquid crystal molecules is perpendicular to the electric field. However, as in the liquid crystal display device according to the present invention, the curved alignment film causes all liquid crystal molecules to be slightly inclined with respect to the direction perpendicular to the plane direction of the front and back plates under the electric field, thereby increasing the response speed. . In addition, it is possible to maximize the viewing angle because the liquid crystal molecules fall in this direction is almost infinite compared to the four directions of the conventional multi-domain method.

이하 본 발명의 액정 표시 소자의 제조방법의 실시예를 상세히 설명한다. 이하의 설명에서는 배면판(20)에 대한 공정에 대해서만 설명된다. 그리고, 본 발명에 따르면, 전술한 바와 같이 상기 매개층이 볼록형 또는 오목형이 될 수 있는데, 이하의 제조방법의 설명에서는 볼록형에 대해서만 설명된다.Hereinafter, an embodiment of the manufacturing method of the liquid crystal display device of the present invention will be described in detail. In the following description, only the process for the back plate 20 is demonstrated. In addition, according to the present invention, the intermediate layer may be convex or concave, as described above. In the following description of the manufacturing method, only the convex shape will be described.

도 4에 도시된 바와 같이, 배면판(10)의 내면에 ITO(Indium Tin Oxide) 등의 소재로 전극(20a)를 형성한다.As shown in FIG. 4, an electrode 20a is formed on an inner surface of the back plate 10 using a material such as indium tin oxide (ITO).

도 5에 도시된 바와 같이 상기 전극(20a)위에 광개시제를 포함하는 광경화성 모노머와 바인더 고분자를 포함하는 광중합수지로 매개층(50b)을 형성한다. 이때에는 스핀 코팅법 또는 인쇄법이 적용된다.As shown in FIG. 5, the intermediate layer 50b is formed on the electrode 20a using a photocurable monomer including a photoinitiator and a photopolymer resin including a binder polymer. At this time, a spin coating method or a printing method is applied.

도 6에 도시된 바와 같이 국부적다른 강도의 광, 예를 들어 자외선을 조사하여 상기 매개층이 국부적으로 다른 두께를 가지도록 하는 매개층의 경화한다. 이때에 입사된 광의 강도가 큰 부분에 광경화성 모노머가 집중되게 되어 이 부분이 볼록하게 된다. 이때에 볼록한 부분의 곡률은 광중합수지의 두께, 광경화시의 광의 강도와 온도 그리고 개시제의 양과 종류를 변화시킴으로서 자유롭게 조절할 수 있다.As shown in FIG. 6, the media layer is cured by irradiating locally different intensity light, for example ultraviolet rays, so that the media layer has a locally different thickness. At this time, the photocurable monomer is concentrated in a portion where the intensity of incident light is large, and this portion is convex. At this time, the curvature of the convex portion can be freely adjusted by changing the thickness of the photopolymer, the intensity and temperature of the light during photocuring, and the amount and type of the initiator.

도 7에 도시된 바와 같이, 상기 매개층(50b) 위에 수직배향제 고분자를 코팅한 다음 러빙에 의해서 배향막(30b)를 형성한다. 이때 배향제의 코팅은 매개층의 곡면이 변형되지 않도록 스핀코팅법에 의하는 것이 바람직하며, 경우에 따라서는 일반적인 인쇄법에 의존할 수 도 있다.As shown in FIG. 7, the alignment agent polymer 30 is coated on the intermediate layer 50b to form an alignment layer 30b by rubbing. At this time, the coating of the alignment agent is preferably by spin coating so that the curved surface of the intermediate layer is not deformed, and in some cases, may be dependent on the general printing method.

제조 방법의 실시예 1Example 1 of the manufacturing method

상기 매개체의 소재로서 디펜타에리스리올 펜타아크릴레이트(dipentaerythriol pentaacrylate)와 1,6 헥사네디올 디아크릴레이트(1, 6-Hexanediol diacrylate)와 아크릴아미드(acrylamide)를 임의의 적당량을 배합한 광중합폴리머(photopolymer)를 사용하였고, 광개시제로서 다로큐어(darocure) 1173을 2wt% 첨가한 다음 ITO 전극 위에 두께 1.5??m의 두께로 코팅을 하였다. 여기에 반경 30??m의 직경의 원을 기본패턴으로하는 마스크를 사용하여 광중합폴리머에 의한 매개층에 자외선을 국부적으로 다른 강도로 조사하여 경화시켰다. 이렇게 하여 만들어진 표면위에 수직 배향제로서 일본합성고무의 폴리이미드계의 JALS-204-R48 수직배향제를 스핀코팅법에 코팅한 후, 90??에서 소성을 한 다음 러빙 처리를 하고, 그리고 180??에서 재 소성을 하여 배향막을 완성하였다. 그리고 액정은 유전율이방성이 부(負)인 메르크사의 MJ96723을 적용하였다.As the material of the medium, a photopolymerizable polymer in which any suitable amount of dipentaerythriol pentaacrylate, 1,6 hexanediol diacrylate (1, 6-Hexanediol diacrylate) and acrylamide are mixed photopolymer) was used, and 2 wt% of darocure 1173 was added as a photoinitiator and then coated on the ITO electrode to a thickness of 1.5 ?? m. Here, using a mask having a radius of 30 占 m diameter as a basic pattern, ultraviolet rays were irradiated locally at different intensity with the photopolymerized polymer and cured. After coating the JALS-204-R48 vertical alignment agent of Japanese synthetic rubber polyimide-based vertical alignment agent on the surface thus produced by spin coating method, it was baked at 90 ° and then subjected to rubbing treatment. It was refired at? To complete the alignment film. As liquid crystal, MJ96723 made by Merck, whose dielectric anisotropy is negative, is used.

완성된 액정 표시 소자의 전기광학 특성을 측정한 결과 응답시간이 30ms로서 종래의 액정 표시 소자의 50ms에 비하여 빠르게 나타났으며, 시야각의 경우는 상하, 좌우를 포함하는 모든방향에서 각각 140도 이상으로서 종래의 액정 표시 소자의 좌우 110도 상하 90도, 종래의 수직배향셀의 120-130도 에 비하여 넓게 나타났다. 특히 기존의 수직배향에서 나타나는 시야각의 비대칭이 나타나지 않았다.As a result of measuring the electro-optical characteristics of the completed liquid crystal display device, the response time was 30ms, which was faster than that of the conventional liquid crystal display device, and the viewing angle was 140 degrees or more in all directions including up, down, left and right. The width of the conventional liquid crystal display device is wider than the left and right 110 degrees and the top and bottom 90 degrees, and 120-130 degrees of the conventional vertical alignment cell. In particular, there was no asymmetry of the viewing angle in the existing vertical orientation.

제조 방법의 실시예 1Example 1 of the manufacturing method

상기 실시예1에서 광중합폴리머의 점도조절에 의한 코팅의 공정을 쉽게하기 위하여 같은 종류의 모노머에 바인더 고분자로서 트리에타놀라민(Triethanolamine)을 포함하는 폴리비닐알콜(polyvinylacohol)을 20wt%첨가하여 사용하였다. 실시예1의 경우와 같은 실험을 하여 만들어진 액정 표시 소자의 전기광학 특성을 측정한 결과 응답시간이 25ms로서 종래의 액정 표시 소자의 50ms에 비하여 빠르게 나타났으며. 시야각의 경우는 상하,좌우를 포함하는 모든방향에서 140도 이상으로서 종래 액정 표시 소자의 좌우120, 상하 90도에 비하여 넓게 나타났다. In Example 1, in order to facilitate the coating process by controlling the viscosity of the photopolymer, 20 wt% of polyvinyl alcohol including triethanolamine (triethanolamine) was added to the same monomer. As a result of measuring the electro-optical characteristics of the liquid crystal display device produced by the same experiment as in Example 1, the response time was 25 ms, which was faster than that of the conventional liquid crystal display device 50 ms. The viewing angle is more than 140 degrees in all directions including up, down, left and right, and is wider than the left, right, and right and left 120 degrees of the conventional liquid crystal display device.

비교예1Comparative Example 1

종래 구조의 액정 표시 소자에서와 같이 매개층이 없이, 그리고 배향막의 평탄한 상태로 종래 구조의 액정 표시 소자를 제작하였다. 이 경우, 시야각은 120정도, 응답시간이 70ms로서 길었으며 좌우의 시야각 비대칭현상이 나타났다.As in the liquid crystal display element of the conventional structure, the liquid crystal display element of the conventional structure was produced without the intermediate | middle layer and in the flat state of the oriented film. In this case, the viewing angle was about 120ms and the response time was 70ms.

본 발명에 의해서 제조된 액정 표시 소자는 제작시 액정분자의 수직배향에서 전장인가에 의해서 넘어지는 액정분자의 방향을 완전한 멀티도메인으로 조절함으로서 셀의 응답시간을 빠르게 함과 동시에 시야각이 기존의 TN셀의 좌우 110도 상하 90도 정도 보다 넓은 좌우,좌우를 포함하는 모든방향에서 140도이상의 시야각이 확보된다. The liquid crystal display device manufactured according to the present invention adjusts the direction of the liquid crystal molecules falling by the application of the electric field in the vertical orientation of the liquid crystal molecules in manufacturing to a fully multi-domain to speed up the response time of the cell and at the same time the viewing angle of the conventional TN cell. The viewing angle of more than 140 degrees in all directions, including left and right, left and right, wider than about 110 degrees up and down 90 degrees.

액정의 배향을 기존의 TN(twested nematic)의 수평배향과는 달리 액정재료로서 유전율이방성이 부(負)인 액정을 수직배향을 함으로서 종래 TN LCD의 문제점인 좁은 시야각의 문제를 개선된다. 또한 수직 배향시에 배향막의 모양이 굴곡진 예를 들어 볼록렌즈형으로 되어 있어서 액정디스플레이의 최대의 과제인 완전 멀티도메인의 형성이 가능하다. 이를 통하여 일반적인 음극선관 수준의 시야각과 수직배향에서의 빠른 응답성의 구현이 가능하게 된다.Unlike the conventional horizontal alignment of TN (twested nematic), the alignment of the liquid crystal improves the problem of the narrow viewing angle, which is a problem of the conventional TN LCD, by vertically aligning the liquid crystal having a dielectric anisotropy as a liquid crystal material. In addition, the shape of the alignment film is curved, for example, convex in the vertical orientation, thereby making it possible to form a fully multi-domain which is the biggest problem of the liquid crystal display. Through this, it is possible to implement a fast response in the normal viewing angle and the vertical alignment of the cathode ray tube level.

도 1은 종래 일반적인 TN LCD의 개략적인 구조를 보인 단면도,1 is a cross-sectional view showing a schematic structure of a conventional general TN LCD;

도 2는 본 발명에 따른 액정 표시 소자의 개략적인 구조를 보인 단면도,2 is a cross-sectional view showing a schematic structure of a liquid crystal display device according to the present invention;

도 3은 도 2에 도시된 본 발명에 따른 액정 표시 소자에 있어서, 전기장 유무에 따른 액정 분자의 동작을 보인 단면도,3 is a cross-sectional view showing the operation of the liquid crystal molecules with or without an electric field in the liquid crystal display device according to the present invention shown in FIG.

도 4 내지 도 7은 본 발명의 제조 방법의 공정도이다.4 to 7 are process charts of the manufacturing method of the present invention.

Claims (4)

전면판과 배면판의 각 내면에 소정 패턴의 전극을 형성하는 단계; Forming electrodes of a predetermined pattern on each inner surface of the front plate and the back plate; 상기 전면판과 배면판 중 적어도 어느 일측의 전극 위에 광개시제를 포함하는 광경화성 모노머와 바인더 고분자를 포함하는 광중합수지로 매개층을 형성하는 단계; Forming an intermediate layer of a photopolymerizable resin including a photocurable monomer and a binder polymer on an electrode of at least one of the front and back plates; 상기 매개층에 국부적으로 다른 강도의 광을 조사하여 상기 매개층이 국부적으로 다른 두께를 가지도록 하는 매개층의 경화단계; Curing the intermediate layer to irradiate the intermediate layer with light of different intensity locally so that the intermediate layer has a locally different thickness; 상기 전면판과 배면판의 내면 최상층에 형성되는 배향막을 형성하는 단계; 상기 배향막을 일방향으로 러빙하는 러빙단계;를 포함하는 것을 특징으로 하는 액정 표시 소자의 제조방법.Forming an alignment layer formed on uppermost layers of inner surfaces of the front plate and the back plate; And a rubbing step of rubbing the alignment layer in one direction. 제1항에 있어서, The method of claim 1, 상기 매개체의 소재로서 디펜타에리스리올 펜타아크릴레이트(dipentaerythriol pentaacrylate)와 1,6 헥사네디올 디아크릴레이트(1, 6-Hexanediol diacrylate)와 아크릴아미드(acrylamide)를 임의의 적당량을 배합한 광중합폴리머(photopolymer)를 사용하는 것을 특징으로 하는 액정 표시 소자의 제조 방법.As the material of the medium, a photopolymerizable polymer in which any suitable amount of dipentaerythriol pentaacrylate, 1,6 hexanediol diacrylate (1, 6-Hexanediol diacrylate) and acrylamide are mixed photopolymer), a method for producing a liquid crystal display device. 제1항 또는 제2항에 있어서, 상기 광은 자외선인 것을 특징으로 하는 액정표시소자의 제조방법.The method of manufacturing a liquid crystal display device according to claim 1 or 2, wherein the light is ultraviolet light. 제1항 또는 제2항에 있어서, 상기 매개층은 액정 표시 소자의 전면판과 배면판 모두에 마련하는 것을 특징으로 하는 액정 표시 소자의 제조 방법.The method for manufacturing a liquid crystal display device according to claim 1 or 2, wherein the intermediate layer is provided on both the front plate and the back plate of the liquid crystal display device.
KR10-1998-0038689A 1998-09-18 1998-09-18 Fabrication method of Liquid Crystal Display KR100506072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038689A KR100506072B1 (en) 1998-09-18 1998-09-18 Fabrication method of Liquid Crystal Display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038689A KR100506072B1 (en) 1998-09-18 1998-09-18 Fabrication method of Liquid Crystal Display

Publications (2)

Publication Number Publication Date
KR20000020198A KR20000020198A (en) 2000-04-15
KR100506072B1 true KR100506072B1 (en) 2005-09-26

Family

ID=19551098

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0038689A KR100506072B1 (en) 1998-09-18 1998-09-18 Fabrication method of Liquid Crystal Display

Country Status (1)

Country Link
KR (1) KR100506072B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431052B1 (en) * 2001-10-08 2004-05-12 주식회사 네오텍리서치 Liquid Crystal Displays with Multi-Domains Effect Formed by Surface Gratings
KR20060112451A (en) * 2005-04-27 2006-11-01 삼성전자주식회사 Plastic substrate for display panel and manufacturing process thereof
KR101661234B1 (en) * 2009-12-01 2016-09-29 한양대학교 산학협력단 Liquid crsytal display
KR101701403B1 (en) * 2010-03-22 2017-02-01 한양대학교 산학협력단 Liquid crsytal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797519A (en) * 1980-12-11 1982-06-17 Toshiba Corp Positive type g. h color liquid-crystal display device
JPH05297339A (en) * 1992-04-21 1993-11-12 Toyota Motor Corp Liquid crystal light refracting element
WO1996010774A1 (en) * 1994-09-30 1996-04-11 Rockwell International Corporation Viewing angle enhancement for vertically aligned cholesteric liquid crystal displays
KR960015004A (en) * 1994-10-14 1996-05-22 쯔지 하루오 Liquid crystal device and its manufacturing method
JPH09171194A (en) * 1995-12-20 1997-06-30 Semiconductor Energy Lab Co Ltd Liquid crystal electro-optic device
KR19980031931A (en) * 1996-10-31 1998-07-25 김광호 LCD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797519A (en) * 1980-12-11 1982-06-17 Toshiba Corp Positive type g. h color liquid-crystal display device
JPH05297339A (en) * 1992-04-21 1993-11-12 Toyota Motor Corp Liquid crystal light refracting element
WO1996010774A1 (en) * 1994-09-30 1996-04-11 Rockwell International Corporation Viewing angle enhancement for vertically aligned cholesteric liquid crystal displays
KR960015004A (en) * 1994-10-14 1996-05-22 쯔지 하루오 Liquid crystal device and its manufacturing method
JPH09171194A (en) * 1995-12-20 1997-06-30 Semiconductor Energy Lab Co Ltd Liquid crystal electro-optic device
KR19980031931A (en) * 1996-10-31 1998-07-25 김광호 LCD

Also Published As

Publication number Publication date
KR20000020198A (en) 2000-04-15

Similar Documents

Publication Publication Date Title
JP4496159B2 (en) Liquid crystal display device and manufacturing method thereof
JP2004318077A (en) Liquid crystal display device and manufacturing method therefor
US9091886B2 (en) Liquid crystal display apparatus wherein alignment control layers and bumps are made of a polymerizable compound included in and mixed with a liquid crystal layer
JP2976948B2 (en) Liquid crystal display device, its manufacturing method and its driving method
KR100732025B1 (en) Substrate for liquid crystal display and liquid crystal display utilizing the same
US6256082B1 (en) Liquid crystal display with a liquid crystal orientation controlling electrode and processes for manufacturing and driving thereof
US5882238A (en) Method for manufacturing bend-aligned liquid crystal cell using light
JP2003149647A (en) Liquid crystal display device and manufacturing method therefor
WO2003032067A1 (en) Liquid crystal display device and method of fabricating the same
US20130314620A1 (en) Illumination unit and display
CN101206329B (en) Method of manufacturing liquid crystal display
US5638194A (en) Polymer dispersed ferroelectric liquid crystal display device and a method for producing the same
JP2988465B2 (en) Liquid crystal display device, its manufacturing method and its driving method
US7400368B2 (en) Liquid crystal displays with liquid crystal molecules and polymers in which the polymers adhere to the substrates and capsulate the molecules
KR101134238B1 (en) Fabrication method of Liquid Crystal Display Element and Liquid Crystal Display Device thereof
KR100506072B1 (en) Fabrication method of Liquid Crystal Display
EP1164411A1 (en) Liquid crystal display
JP2988466B2 (en) Liquid crystal display device, its manufacturing method and its driving method
JP3714796B2 (en) Liquid crystal display device
CN212364761U (en) Liquid crystal display panel, liquid crystal display device and mask plate
KR100813512B1 (en) Liquid crystal display
JP3059030B2 (en) Liquid crystal display device and method of manufacturing the same
JP2004302291A (en) Liquid crystal display device and its manufacturing method
JP2000131700A (en) Liquid crystal display device
KR100658081B1 (en) Method for fabricating thin film transistor -liquid crystal display

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J121 Written withdrawal of request for trial
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120713

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee