KR100505942B1 - Reaction system for wastewater treatment and wastewater treatment using same - Google Patents
Reaction system for wastewater treatment and wastewater treatment using same Download PDFInfo
- Publication number
- KR100505942B1 KR100505942B1 KR10-2003-0018804A KR20030018804A KR100505942B1 KR 100505942 B1 KR100505942 B1 KR 100505942B1 KR 20030018804 A KR20030018804 A KR 20030018804A KR 100505942 B1 KR100505942 B1 KR 100505942B1
- Authority
- KR
- South Korea
- Prior art keywords
- reactor
- wastewater
- wastewater treatment
- inner diameter
- turbulence
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 29
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 26
- 239000002351 wastewater Substances 0.000 claims abstract description 54
- 230000001590 oxidative effect Effects 0.000 claims abstract description 29
- 230000006698 induction Effects 0.000 claims abstract description 23
- 239000007800 oxidant agent Substances 0.000 claims abstract description 23
- 239000011941 photocatalyst Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000010453 quartz Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- 230000005587 bubbling Effects 0.000 abstract description 3
- -1 oxidizing aids Substances 0.000 abstract description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000007539 photo-oxidation reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
본 발명은 폐수처리용 반응시스템에 관한 것으로, 본 발명에 따라, 애눌러형(annualr) 반응기의 동심원 내부에 기하학적 구조의 난류유도링을 삽입하고 그들 사이의 간격 및 각 단 사이의 간격 조절을 통해 애눌러형의 두 동심원 사이로 폐수를 유동시키면서 반응기 하부로부터 산화성 가스를 버블링시킴으로써, 폐수를 산화제, 산화보조제, 광촉매, UV광 등과 효과적으로 접촉시켜 적은 운전비용으로 단시간 내에 고효율로 폐수의 색도 및 난분해성 물질 등을 제거할 수 있다.The present invention relates to a reaction system for wastewater treatment, in accordance with the present invention, by inserting a geometric turbulent induction ring inside a concentric circle of an annular reactor and adjusting the spacing between them and the spacing between stages. By bubbling oxidizing gas from the bottom of the reactor while flowing the wastewater between the two concentric circles, the wastewater is effectively contacted with oxidizing agents, oxidizing aids, photocatalysts, UV light, etc., so that the wastewater can be colored and hardly decomposed with high efficiency in a short time with high efficiency. Material and the like can be removed.
Description
본 발명은 폐수처리용 반응시스템 및 이를 이용한 폐수처리방법에 관한 것으로서, 구체적으로 기하학적 구조의 난류유도수단을 애눌러형 반응기의 동심원 내부에 장착하고 반응기 하부로부터 산화성 가스를 버블링하기 위한 버블링 장치를 포함하는 폐수처리용 반응시스템 및 방법에 관한 것으로, 이를 이용하여 폐수의 색도 및 난분해성 물질을 효과적으로 제거할 수 있다.The present invention relates to a wastewater treatment system and a wastewater treatment method using the same, and more particularly, a bubbling apparatus for mounting a turbulent flow guide having a geometric structure inside a concentric circle of a reactor to bubble an oxidizing gas from the bottom of the reactor. It relates to a reaction system and method for wastewater treatment comprising a, it is possible to effectively remove the color and hardly decomposable substances of the wastewater.
광산화법에 의한 폐수처리 방법은 이산화티탄(TiO2)과 같은 광촉매가 활성을 갖도록 자외선램프를 사용하여 자외선(UV)을 조사하고 과산화수소와 같은 산화제를 사용하는데 반응후 이산화티탄(TiO2)을 제거하고 그 슬러지를 처리해야 하는 것과 단순한 물리화학적인 반응을 시킴으로써 수행되는데, 이 방법은 산화제 및 광촉매, 자외선램프를 과도하게 사용해야 하는 문제점이 있다.Waste water treatment method of titanium dioxide by the mine speech (TiO 2) and the photocatalyst is irradiated with ultraviolet light (UV) using a UV lamp so as to have an active and after the reaction uses an oxidizing agent such as hydrogen peroxide of titanium dioxide to remove the (TiO 2), such as It is carried out by a simple physicochemical reaction with the sludge to be treated, this method has the problem of excessive use of oxidizing agent, photocatalyst, ultraviolet lamp.
상기 광촉매 사용 광산화 방법을 좀 더 효율적으로 처리하기 위해 전기분해와 광촉매를 조합하여 폐수처리를 하는 방법이 한국 특허출원 제97-46135에 개시되어 있다. 이 방법은 물의 전기분해를 통해 얻어지는 수산화이온(OH-)을 이산화티탄(TiO2) 광촉매를 통하여 수산화(-OH) 라디칼로 변환시켜 폐수를 처리하고 폐수 내에 함유되어 있는 중금속 이온성분을 흡착 제거할 수 있도록 하는 방법으로서, 수산화(-OH) 라디칼을 발생시키기 위하여 자외선램프를 사용하여 자외선(UV)을 조사한다. 하지만 이 방법 역시 반응후 이산화티탄(TiO2)을 제거하고 그 슬러지를 처리해야 하는 문제점과 전극판 표면의 스케일 발생으로 자주 세척을 해야 하는 단점이 있다.Korean Patent Application No. 97-46135 discloses a method of treating wastewater by combining electrolysis and photocatalyst in order to more efficiently process the photocatalyst-using photooxidation method. The method hydroxide ions (OH -) is obtained through the electrolysis of water to the titanium dioxide (TiO 2) removed by the photocatalyst was converted to the hydroxide (-OH) radical treatment of waste water and adsorption of heavy metal ions contained in the waste water In this way, the ultraviolet (UV) is irradiated using an ultraviolet lamp to generate hydroxyl (-OH) radicals. However, this method also has a problem in that titanium dioxide (TiO 2 ) is removed after the reaction and the sludge is treated, and the cleaning is frequently performed due to the scale of the electrode plate surface.
또한, 도 1에 나타낸 바와 같이, 효율적으로 폐수의 색도 및 독성, 난분해성물질을 처리하기 위한 선행기술로서(참고문헌: Treatment Peroxidation Systems Inc. Perox-Pure Chemical Oxidation, EPA 540MR93501, 1993년) 미국에서 사용되고 있는 광산화 방법이 있다. 이 방법은 최적운전을 위해 폐수의 산도를 조절해야 하므로 산을 먼저 넣고 과산화수소를 투여한 뒤 자외선램프를 이용하여 광산화반응을 유발하는 것으로서, 이 방법에 사용된 장치의 특성은 여러 개의 자외선램프를 직렬로 설치하고 자외선 램프 사이사이마다 방해판을 설치하여 폐수와 자외선램프가 접촉하는 면적을 단순히 넓게 하였다는데 있다. 그러나, 이러한 장치에서는 난류를 효율적으로 발생시키지 못하고 단순히 폐수가 관로를 따라 지나가는 형태이므로 폐수 및 과산화수소, 자외선램프에 의해 발생한 수산화(-OH) 라디칼이 이상적으로 혼합을 하지 못하며, 자외선램프로부터 멀리 떨어져 있는 폐수는 그 조사량이 미약하여 효율이 높지 못하다. 따라서 원하는 효율을 내기 위해서는 많은 자외선램프를 직렬로 배열하는 단점과 이로 인해 운전비 및 장치의 규모가 커지는 단점이 있다.In addition, as shown in Figure 1, as a prior art for efficiently treating the color, toxicity, and hardly decomposable material of the waste water (Reference: Treatment Peroxidation Systems Inc. Perox-Pure Chemical Oxidation, EPA 540MR93501, 1993) There is a photooxidation method being used. This method requires the acidity of the wastewater to be adjusted for optimal operation, so acid is added first, hydrogen peroxide is administered, and then the photoacid reaction is induced by using an ultraviolet lamp. The characteristics of the device used in this method are a series of multiple UV lamps. The area between the wastewater and the UV lamp was simply widened by installing a baffle between each UV lamp. However, these devices do not generate turbulence efficiently and simply pass the wastewater along the pipeline, so the wastewater, hydrogen peroxide, and hydroxide (-OH) radicals generated by the UV lamp are not ideally mixed, and are far from the UV lamp. Wastewater is not very efficient due to its low dose. Therefore, in order to achieve the desired efficiency, there are disadvantages of arranging many ultraviolet lamps in series, which leads to an increase in operating cost and device size.
따라서, 본 발명의 목적은 상술한 선행기술의 문제점을 해결하고자 연구를 거듭한 결과, 본 발명자들은 애뉼러형 반응기의 동심원 내부에 한 쌍의 난류유도링을 포함하는 구조의 난류유도수단을 삽입하고 링들 사이의 간격 및 각 단 사이의 간격 조절을 통해 애눌러형의 두 동심원 사이로 반응유체를 유동시키면서 반응기 하부로는 버블러를 통해 산화성 가스를 도입하여 유체의 물질전달의 효과를 극대화 할 뿐만 아니라 자외선램프 표면에 직각인 방향으로 이상적으로 접촉하게 하여 물리화학적 반응효율과 반응확율을 극대화시키도록 하여 빠른 시간에 고효율로 폐수를 처리할 수 있는 폐수처리용 반응시스템을 개발하게 되었다. Therefore, the object of the present invention has been studied to solve the above-mentioned problems of the prior art, the present inventors insert a turbulent guide means of the structure including a pair of turbulent guide ring inside the concentric circle of the annular type reactor and the ring By adjusting the space between each stage and the space between each stage, the reaction fluid flows between the two concentric circles of the annular type while introducing oxidizing gas through the bubbler at the bottom of the reactor to maximize the effect of material transfer of the fluid as well as the ultraviolet lamp. The reaction system for wastewater treatment was developed to maximize the physicochemical reaction efficiency and reaction probability by ideally contacting the surface in the direction perpendicular to the surface and to treat the wastewater with high efficiency in a short time.
본 발명에 따른 새로운 폐수처리용 반응시스템은 폐수처리시간을 단축하여 운전비용을 절감할 수 있고 같은 양의 폐수를 처리하는데 필요한 반응기 용량이 작아 장치 설치비용이 적게 들며 유지보수가 용이하고 운전의 안전성과 운전 효율이 높으며 산화제의 사용량이 획기적으로 적게 들어가는 새로운 폐수처리용 반응시스템이다. The new wastewater treatment reaction system according to the present invention can reduce the operating cost by shortening the wastewater treatment time, and the reactor capacity required for treating the same amount of wastewater is small, the installation cost of the device is low, the maintenance is easy, and the safety of operation It is a new wastewater treatment system with high operating efficiency and low use of oxidant.
본 발명의 목적을 달성하기 위해, 본 발명에서는 In order to achieve the object of the present invention, in the present invention
하부의 유체 유입구 및 상부의 유체 유출구를 구비한 애눌러형(annular) 반응기 및 상기 반응기 하부에서 반응기 내부로 산화성 가스를 공급하기 위한 버블러(bubbler)를 포함하고, An annular reactor having a lower fluid inlet and an upper fluid outlet, and a bubbler for supplying an oxidizing gas from the reactor bottom into the reactor,
상기 반응기에는, 내부 중앙에 자외선 램프를 내부에 포함하는 석영(quartz)관이 수직으로 배치되며, 상기 석영관 주위에, 석영관 외경과 동일한 내경 및 반응기 내경보다 작은 외경을 갖는 제1 난류유도링 및 제1 난류유도링의 외경보다는 작은 내경과 반응기 내경과 동일한 외경을 갖는 제2 난류유도링이 상하로 이격되게 배치된 난류유도수단 (이때 상기 제1 및 제2 난류유도링은 수직방향으로 볼 때 중첩되고 제1 난류유도링의 내경은 석영관에 접하고 제2 난류유도링의 외경은 반응기 내벽에 접하는 구조를 나타낸다)을 1단 이상 포함함을 특징으로 하는, 폐수처리용 반응시스템을 제공한다.In the reactor, a quartz tube including an ultraviolet lamp therein is vertically disposed at an inner center thereof, and around the quartz tube, a first turbulence guide ring having an inner diameter equal to an outer diameter of the quartz tube and an outer diameter smaller than the inner diameter of the reactor. And a turbulent flow guide unit having a smaller inner diameter than the outer diameter of the first turbulence guide ring and a second turbulence guide ring spaced vertically apart from each other, wherein the first and second turbulence guide rings are vertically viewed. And overlapped with each other, the inner diameter of the first turbulent induction ring is in contact with a quartz tube, and the outer diameter of the second turbulent induction ring is in contact with a reactor inner wall). .
또한, 본 발명에서는 상기 본 발명의 폐수처리용 반응시스템을 이용한, 광산화법에 의한 폐수처리방법을 제공한다.In addition, the present invention provides a wastewater treatment method by the photooxidation method using the reaction system for wastewater treatment of the present invention.
이하, 본 발명에 대해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따르는 폐수처리용 반응시스템는 유입되는 폐수가 난류로 흐를 수 있도록 하는 특정의 구조로 배치된 난류유도링 단을 포함하고, 폐수 유입시 공기 또는 산화성 가스를 함께 도입하는 것을 특징으로 한다.The reaction system for wastewater treatment according to the present invention includes a turbulent induction ring stage arranged in a specific structure to allow incoming wastewater to flow into turbulent flow, and is characterized in that air or oxidizing gas is introduced together with the wastewater inflow.
본 발명에 따르는 폐수처리용 반응시스템에 있어서, 반응기 내로 폐수를 유입하는 방식은 하부에서 상부로 폐수가 이동하도록 하는 방식이다. 따라서, 반응기는 수직 실린더형이 바람직하다. In the reaction system for wastewater treatment according to the present invention, the manner of introducing wastewater into the reactor is such that the wastewater moves from the bottom to the top. Thus, the reactor is preferably vertical cylindrical.
이때, 폐수가 하부에서 상부로 유입할 때 난류를 유발하기 위해 공기 또는 산화력을 증강시키기 위한 산화제 가스를 반응기 하부의 버블링 장치를 통하여 폐수와 함께 공급하며, 사용된 공기 또는 산화제 가스는 반응기 상부에서 유출된다.At this time, the oxidant gas for enhancing air or oxidizing power is supplied together with the wastewater through a bubbling device at the bottom of the reactor to induce turbulence when the wastewater flows from the bottom to the top, and the used air or the oxidant gas is provided at the top of the reactor. Spills.
본 발명에 따라 광산화법에 의해 폐수를 처리하기 위해서는 산화제 뿐 아니라 산화보조제 및 광촉매 중에는 선택된 하나 이상의 성분을 선택하여 사용할 수 있으며, 이들 성분은 유입 폐수에 혼입시켜 함께 도입하거나 폐수와 별도로 유입시킬 수 있다. 상기 산화제 및 광촉매는 당업계에 알려진 모든 것을 사용할 수 있으며, 산화제의 예로는 과산화수소, 오존 등이 있고, 산화보조제의 예로는 2가 철염, 2가 구리염 등이 있으며, 광촉매의 예로는 이산화티탄(TiO2), 산화아연(ZnO) 등이 있다.In order to treat the wastewater by the photooxidation method according to the present invention, one or more components selected from the oxidizing agent and the oxidizing aid and the photocatalyst may be selected and used, and these components may be introduced into the influent wastewater and introduced together or separately introduced into the wastewater. . The oxidizing agent and the photocatalyst may be any one known in the art, and examples of the oxidizing agent include hydrogen peroxide, ozone, and the like, and examples of the oxidizing aid include divalent iron salts and divalent copper salts, and examples of the photocatalyst include titanium dioxide ( TiO 2 ) and zinc oxide (ZnO).
상기 산화제는 필요에 따라 산화보조제 및 광촉매와 함께, 자외선 램프에서 조사되고 석영(quartz)에 의해 필터링된 자외선에 의해 보다 강력한 산화력을 가지고 폐수와 접촉하게 된다.The oxidant is brought into contact with the wastewater with stronger oxidizing power by ultraviolet light irradiated in an ultraviolet lamp and filtered by quartz, together with an oxidizing aid and a photocatalyst as necessary.
도 2는 본 발명에 따른 기하학적으로 설계된 구조를 갖는 애눌러형 폐수처리용 반응기의 개략도이다. 통상의 애눌러형 반응기는 자외선 광원과 평행한 방향으로 반응유체가 유동하게 되므로 반응물을 적절히 혼합하는데 어려움이 따르고, UV 조사층에 근접한 부분의 폐수 만이 분해하게 된다. 또한 빛의 조사량을 극대화하기 위하여 가능한 촉매층과 자외선 광원이 인접되도록 설계하게 되는데, 이로 인해 조사면적이 줄어들게 되고 처리량에 한계가 발생한다.2 is a schematic view of an reactor for wastewater treatment having an engineered geometry according to the present invention. In the conventional reactor type reactor, the reaction fluid flows in a direction parallel to the ultraviolet light source, so that it is difficult to properly mix the reactants, and only the wastewater near the UV irradiation layer is decomposed. In addition, in order to maximize the amount of light irradiation, the catalyst layer and the ultraviolet light source are designed to be adjacent to each other, which reduces the irradiation area and causes a limit in throughput.
도 3은 유입 폐수 및 산화제가 본 발명에 따른 난류유도수단에 의해 유발된 난류에 의해 이상적으로 혼합되고 동시에 자외선램프 표면에 접촉하는 횟수가 극대화되는 것을 보여주는 모식도이고, 또한 본 발명의 한 태양에 따른 난류유도수단의 사진을 도 4에 나타내었다.FIG. 3 is a schematic diagram showing that the inflow wastewater and the oxidant are ideally mixed by turbulence induced by the turbulence-inducing means according to the present invention and at the same time the number of times of contact with the UV lamp surface is maximized, and according to one aspect of the present invention. A photograph of the turbulence inducing means is shown in FIG. 4.
본 발명에 따른 난류유도수단에 있어서 한 쌍의 난류유도링은 각 링이 서로 내경 및 외경에 있어서 차이가 있고 수직방향으로 볼 때 일부 중첩되며, 바람직하게는 한 쌍의 링에서 가장 안쪽 가장자리 부분은 석영관에 접하고 가장 바깥쪽 가장자리 부분은 반응기 측벽에 접하는 구조로 되어 있으며, 수직방향으로 소정 간격으로 서로 이격되어 있어 서로 간의 좁은 간격(h)을 통해 폐수가 빠른 속도로 자외선램프가 설치되어진 자외선 램프 쪽으로 분사되어져 난류를 형성하며, 폐수와 산화제(임의의 광촉매 및 산화보조제), 미세기포, 자외선램프에 의해 발생되어진 수산화 라디칼(-OH)의 혼합이 이상적으로 일어난다.In the turbulent guide means according to the present invention, a pair of turbulent guide rings are partially overlapped in the vertical direction when each ring differs from each other in inner and outer diameters, and preferably, the innermost edge portion of the pair of rings is Ultraviolet lamps in which the outermost edges are in contact with the side walls of the reactor and in contact with the reactor sidewalls are spaced apart from each other at a predetermined interval in the vertical direction. It is sprayed toward to form a turbulent flow, ideally mixing the wastewater with oxidizing radicals (-OH) generated by oxidants (optional photocatalysts and oxidizing aids), microbubbles, and UV lamps.
이와 동시에 난류유도링을 빠져 나온 혼합 폐수는 난류유도수단 각 단의 간격(H) 사이에서 난류를 형성하게 된다. 이를 통해 물리적, 화학적 반응이 동시에 진행되어져 결국 기존의 고급산화방법에 비해 산화제의 사용량이 최소화되고 물질전달의 효율, 물리화학적 반응효율과 반응확률이 극대화되어 폐수의 처리 시간을 단축할 수 있어 폐수처리비용을 절감할 수 있다.At the same time, the mixed wastewater exiting the turbulence induction ring forms turbulence between the intervals H of each stage of the turbulence induction means. This results in simultaneous physical and chemical reactions, which minimizes the use of oxidizing agents and maximizes the efficiency of material transfer, physicochemical reaction efficiency and reaction probability compared to the existing advanced oxidation methods. You can save money.
본 발명에 있어서, 반응기 내부의 폐수는 유동 레이놀즈수(Reynolds number)가 4,000 내지 10,000 범위 정도이고, 폐수의 유동을 위해 반응기 하부에서 버블러에 의해 분사되는 공기의 경우 공급 유속은 1 내지 5 L/min, 바람직하게는 1 내지 3 L/min 범위 인 것이 처리 효율 면에서 바람직하다.In the present invention, the wastewater inside the reactor has a flow Reynolds number in the range of 4,000 to 10,000, and in the case of the air injected by the bubbler at the bottom of the reactor for the flow of the wastewater, the feed flow rate is 1 to 5 L / min, preferably in the range of 1 to 3 L / min, is preferred in terms of treatment efficiency.
본 발명에 따르면, 상기 한 쌍의 난류유도링의 각 링간의 간격(h) 및 난류유도수단 각 단의 간격(H)은 원칙적으로 폐수 속에 함유되어진 이물질로 막힘 현상이 발생되지 않는 간격으로 반응기의 크기 및 형태에 따라 달라질 수 있으며, 각각 대략 1 내지 500 mm 범위일 수 있다.According to the present invention, the spacing (h) between each ring of the pair of turbulence guide ring and the spacing (H) of each stage of the turbulence guide means are in principle a blockage of the foreign matter contained in the wastewater at intervals where clogging does not occur. Depending on size and shape, they may each range from approximately 1 to 500 mm.
본 발명에 따르면, 폐수 및 산화제가 이상적으로 혼합되고 동시에 자외선 램프 표면에 접촉하는 횟수가 극대화되어 빠른 시간에 고효율로 폐수를 처리하여 산화제의 사용량이 최소화되고 폐수의 색도 및 난분해성 물질 처리 시간이 크게 단축될 수 있다.According to the present invention, the waste water and the oxidant are ideally mixed and at the same time the number of contact with the surface of the ultraviolet lamp is maximized to treat the waste water with high efficiency in a short time to minimize the use of oxidant and to greatly reduce the color and hardly decomposable treatment time of the waste water Can be shortened.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
실시예Example
도 2에 나타낸 바와 같은 반응기를 가진 폐수처리 장치에서 폐수의 유기물질 및 색도 처리를 수행하였다. 폐수 시료는 경기도에 소재한 S 염색단지에서 발생되는 염색폐수를 이용하였으며, 폐수 시료를 저장 탱크로부터 반응기와 석영관 사이로 펌핑함으로써 반응기로 유입시켰다.In the wastewater treatment apparatus having a reactor as shown in FIG. 2, organic matter and color treatment of the wastewater were performed. The wastewater sample was used for dyeing wastewater generated at S dyeing complex in Gyeonggi-do, and the wastewater sample was introduced into the reactor by pumping the wastewater sample from the storage tank between the reactor and the quartz tube.
폐수처리 시스템에 사용된 반응기는 애눌러(annular) 형태의 스테인레스강 재질의 60mm(D)X460mm(H) 크기의 반응기이고 반응기 중앙에는 내부에 UV 램프가 설치된 외경 25.4 mm 인 석영관을 설치하였다. 상기 석영관 외부에 도 4에 나타낸 바와 같은 난류유도링 단을 설치하였다(한 쌍의 링에서 상부링의 외경 52mm, 내경 40mm, 상하부 링간 간격(h) 3mm, 하부링의 외경 59mm, 내경 47mm, 난류유도링의 각단의 간격(H) 50mm, 재질 스테인레스강). 반응기는 2 개를 연결하여 사용하였으며, UV 램프는 주도파장이 254nm 인 Lamp(15W, 45cm, Sankyou Denki 사)를 필요에 따라 선택하여 사용하였다. 산화제(30% H2O2; Junsei chemical) 및 pH 조정제(NaOH 또는 HCl)는 사용시 폐수시료 저장탱크에 주입하여 사용하였다.The reactor used in the wastewater treatment system was an annular 60 mm (D) X 460 mm (H) reactor made of stainless steel, and a quartz tube with an outer diameter of 25.4 mm was installed at the center of the reactor with a UV lamp inside. The turbulent induction ring stage as shown in FIG. 4 was installed outside the quartz tube (in a pair of rings, the outer diameter of the upper ring was 52 mm, the inner diameter was 40 mm, the upper and lower ring spacings (h) 3 mm, the outer ring was 59 mm, the inner diameter was 47 mm, Spacing of each end of turbulent guide ring (H) 50mm, material stainless steel). Two reactors were used in combination, and UV lamps were selected using a lamp having a wavelength of 254 nm (15W, 45 cm, Sankyou Denki) as needed. An oxidant (30% H 2 O 2 ; Junsei chemical) and a pH adjuster (NaOH or HCl) were used when injected into the wastewater sample storage tank.
실험은 H2O2/UV공정의 경우, pH는 3.5로 유지하였으며 H2O2농도는 250mg/L로 주입하였으며 5mg/L 이하로 감소될 때 재주입하였다. 폐수시료의 유입 유량은 유량계를 이용하여 20 L/min으로 일정하게 유지하였다.In the case of the H 2 O 2 / UV process, the pH was maintained at 3.5 and the H 2 O 2 concentration was injected at 250 mg / L and re-injected when the concentration was reduced to 5 mg / L or less. The flow rate of wastewater sample was kept constant at 20 L / min using a flow meter.
상기 공정 조건을 하기 표 1에 정리하여 나타내었다.The process conditions are summarized in Table 1 below.
상기 공정 조건에서 반응기에 난류유도링이 설치되어 있지 않은 경우(기존 AOP)에 대해 별도로 실험을 수행하여 (비교예), 난류유도링 설치 경우(본 발명에 따른 AOP)와 비교하여 각 각에서 유기물질과 색도 처리를 수행한 결과를 하기 표 2 및 표 3에 나타내었으며, 난류유도링이 설치된 경우에 유속을 변화시키어 레이놀즈수(Reynolds number)의 변화에 따른 처리 효율을 비교한 결과, 표 4에 나타난 바와 같이 일정한 범위까지는 처리 효율이 크게 증가하였다.When the turbulent induction ring is not installed in the reactor under the above process conditions (existing AOP), the experiment is performed separately (comparative example), and compared to the case of the turbulence induction ring installation (AOP according to the present invention) The results of the material and chromaticity treatment are shown in Tables 2 and 3 below, and the treatment efficiency according to the change of Reynolds number was compared by changing the flow rate when the turbulence induction ring was installed. As shown, the treatment efficiency was greatly increased up to a certain range.
상기 표에서 알 수 있듯이, 본 발명에 따라 난류유도링을 갖춘 반응기를 이용하여 폐수를 여러 가지 광산화법으로 처리하는 경우 기존의 난류유도링 없는 반응기 사용 경우에 비해 고효율로 폐수의 색도 및 난분해성 물질 등을 제거할 수 있다. 상기 실험에서 유기물질의 농도는 과황산염-자외선 산화법에 의해 총유기탄소 (TOC; Total organic carbon) 농도를 분석(Rosemount, DC-180 model)하여 평가하였으며, 색도는 공정시험법(KS 시험법)에 준하여 분석하였다.As can be seen from the above table, when the wastewater is treated by various photooxidation methods using the reactor with turbulence induction ring according to the present invention, color and hardly decomposable material of the wastewater with high efficiency compared to the case of using a reactor without conventional turbulence induction ring. Etc. can be removed. In the experiment, the concentration of organic material was evaluated by analyzing total organic carbon (TOC) concentration by persulfate-ultraviolet oxidation method (Rosemount, DC-180 model), and chromaticity was measured by process test method (KS test method). Based on the analysis.
한편, 난류유도링을 설치한 경우와 난류유도링을 설치하지 않은 경우에 대하여 유기물질과 색도 처리의 처리 관점에서 최적의 반응기 운전 조건을 비교할 때도 유사한 결과를 보여주어, 난류유도링을 설치한 경우도 반응기 부피가 커져도 최적의 조건이 유사하여 본 발명에서의 폐수처리용 반응기는 스케일-업(scale-up)이 매우 용이하다는 결과를 얻었다.On the other hand, when the turbulent induction ring is installed and the turbulent induction ring is not installed, similar results are obtained when comparing the optimum reactor operating conditions from the viewpoint of organic material and color treatment, and the turbulent induction ring is installed. Even when the reactor volume is increased, the optimum conditions are similar, and thus, the reactor for wastewater treatment in the present invention has a very easy scale-up.
또한, 본 발명에 따라 기하학적으로 설계된 구조를 갖는 폐수처리용 반응시스템에서, 반응시스템 하단에 버블러를 설치하여 공기를 주입한 경우, 단순 액-액 혼합형 반응기(liquid-liquid mixing type) 보다 추가의 운전비 상승없이도 반응시스템의 효율을 크게 높일 수 있었으나, 너무 과도한 공기 주입 속도는 오히려 처리 효율을 저하시켰다. 이 결과를 하기 표 5에 나타내었다.In addition, in the reaction system for wastewater treatment having a geometrically designed structure according to the present invention, in the case of injecting air by installing a bubbler at the bottom of the reaction system, it is further added to the liquid-liquid mixing type. The efficiency of the reaction system could be greatly increased without an increase in operating costs, but too much air injection rate rather reduced the treatment efficiency. The results are shown in Table 5 below.
본 발명에 따라 기하학적으로 설계된 구조의 난류유도링을 애눌러형 반응기의 동심원 내부에 장착한 반응기를 이용하여 폐수를 처리하는 경우, 반응기내로 유입되는 반응 유체인 폐수 및 산화제를 유동시키고 자외선 램프에 직각인 방향으로 접촉하게 이상적으로 혼합시키어 물질전달의 효율을 극대화할 뿐만 아니라 물리화학적 반응효율과 반응확율을 극대화시키도록 하여 빠른 시간에 고효율로 폐수를 처리하여 폐수처리시간을 단축하고 산화제의 사용량을 최소화하여 운전비용을 최소화하고 운전의 안정성과 운전효율을 극대화할 수 있다. 이러한 새로운 폐수처리용 반응시스템은 기하학적으로 특수하게 설계되어 물질전달이 용이하게 설계되었으며 자외선 광원을 반응유체에 효율적으로 조사할 수 있어 고효율로 폐수의 색도 및 난분해성 물질 등의 분해효율이 뛰어날 뿐만 아니라, 유지 및 보수가 특히 간편한 것을 특징으로 하여 장기간 사용할 수 있다.In the case of treating wastewater using a reactor equipped with a turbulent induction ring having a geometrically designed structure according to the present invention, a wastewater and an oxidant, which are reaction fluids introduced into the reactor, are flown into an ultraviolet lamp. Ideally in contact with each other in an ideal direction, it not only maximizes the efficiency of material transfer, but also maximizes the physicochemical reaction efficiency and reaction probability, thereby treating wastewater with high efficiency in a short time, reducing wastewater treatment time and reducing the amount of oxidant used. Minimize operation cost and maximize the stability and efficiency of operation. This new wastewater treatment reaction system is designed with a special geometric design to facilitate mass transfer, and can efficiently irradiate a UV light source to the reaction fluid, resulting in high efficiency and high efficiency in degrading wastewater color and hardly decomposable materials. It can be used for a long time because it is especially easy to maintain and repair.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
도 1은 선행기술에 따른 폐수처리 시스템의 개략도이고,1 is a schematic diagram of a wastewater treatment system according to the prior art,
도 2는 본 발명에 이용되는 기하학적 구조의 애눌러형 폐수처리용 반응시스템의 개략도이고,Figure 2 is a schematic diagram of the reaction system for treatment of the annular type wastewater treatment of the geometry used in the present invention,
도 3은 본 발명에 따른 난류유도수단 구조와 각 단의 난류유발 원리를 보여주는 모식도이고, 3 is a schematic diagram showing the turbulence inducing means structure and turbulence induction principle of each stage according to the present invention,
도 4는 본 발명의 실시예에 따른 난류유도수단 구조를 보여주는 사진이다.Figure 4 is a photograph showing the turbulence inducing means structure according to an embodiment of the present invention.
* 도면의 부호에 대한 간단한 설명* Brief description of the symbols in the drawing
1: UV 램프 2: 석영 유리관1: UV lamp 2: Quartz glass tube
3: 난류유도링 4: 산기관3: turbulence guide ring 4: diffuser
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0018804A KR100505942B1 (en) | 2003-03-26 | 2003-03-26 | Reaction system for wastewater treatment and wastewater treatment using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0018804A KR100505942B1 (en) | 2003-03-26 | 2003-03-26 | Reaction system for wastewater treatment and wastewater treatment using same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040084026A KR20040084026A (en) | 2004-10-06 |
KR100505942B1 true KR100505942B1 (en) | 2005-08-04 |
Family
ID=37367653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0018804A KR100505942B1 (en) | 2003-03-26 | 2003-03-26 | Reaction system for wastewater treatment and wastewater treatment using same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100505942B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010785A (en) * | 2014-06-30 | 2016-01-21 | 株式会社リコー | Fluid treatment apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107746135A (en) * | 2017-11-04 | 2018-03-02 | 张瑁珈 | A kind of Waste Water Treatment |
CN111320233A (en) * | 2020-03-18 | 2020-06-23 | 东南大学 | Coupling light and particle response water treatment equipment, photoreactor and treatment method |
CN113929175A (en) * | 2021-11-26 | 2022-01-14 | 齐鲁工业大学 | Photocatalytic device and method for degrading organic pollutants in wastewater by using same |
-
2003
- 2003-03-26 KR KR10-2003-0018804A patent/KR100505942B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010785A (en) * | 2014-06-30 | 2016-01-21 | 株式会社リコー | Fluid treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20040084026A (en) | 2004-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101786756B (en) | Process method for treating hardly-biodegradable organic wastewater | |
CN102730906B (en) | Combined apparatus for advanced treatment of high concentration organic waste water | |
KR101634774B1 (en) | Jet loop fluidized bed fenton reactor for improving fenton reaction performance and waste water treatment system and the method thereof | |
CN212222685U (en) | Organic wastewater treatment device | |
CN217780957U (en) | Ultraviolet and ozone catalytic oxidation water treatment device based on quality-divided treatment | |
KR102452662B1 (en) | Wastewater treatment apparatus having the circulation guide unit of penton oxidation and treated water | |
CN107140775A (en) | A kind for the treatment of method of printing and dying wastewater and device | |
JP2006255596A (en) | Apparatus and method for purifying water | |
KR100505942B1 (en) | Reaction system for wastewater treatment and wastewater treatment using same | |
KR200461827Y1 (en) | Apparatus for cleaning waste water | |
CN212504185U (en) | Advanced oxidation treatment device with photocatalytic ozone and hydrogen peroxide synergistic effect | |
CN112520923A (en) | Wastewater treatment method for urea-formaldehyde resin and phenolic resin production enterprises | |
KR200434724Y1 (en) | waste water sterilization and purification apparatus | |
KR100486775B1 (en) | Method of treating live-stock waste water using advanced oxidation process and apparatus for performing the same | |
KR100454260B1 (en) | Advanced water and wastewater treatment apparatus and method | |
KR100435002B1 (en) | Treating Equipment of Waste Water and the Operation Method of therof | |
CN111732183B (en) | Device and method for treating sewage by catalytic oxidation of ozone | |
CN212425737U (en) | Electrolytic coupling oxidation wastewater treatment device | |
KR200291073Y1 (en) | Rapid-turbulence-type wastewater treatment equipment | |
KR101206905B1 (en) | Water treatment systme with plasma discharging apparatus and dissolved air injection type flotation tank | |
KR100473651B1 (en) | Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material | |
KR101554479B1 (en) | System for treating organic materials | |
KR20030093802A (en) | Rapid-turbulence-type wastewater treatment equipment | |
KR102452659B1 (en) | Wastewater treatment apparatus having the circulation guide part of the treated water | |
KR102452661B1 (en) | Wastewater treatment apparatus which is controllable the inflow of the treated water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130712 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140715 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150714 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160706 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170706 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |