KR100505531B1 - Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same - Google Patents

Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same Download PDF

Info

Publication number
KR100505531B1
KR100505531B1 KR10-2003-0019039A KR20030019039A KR100505531B1 KR 100505531 B1 KR100505531 B1 KR 100505531B1 KR 20030019039 A KR20030019039 A KR 20030019039A KR 100505531 B1 KR100505531 B1 KR 100505531B1
Authority
KR
South Korea
Prior art keywords
catalyst
palladium
lanthanum
acetylene
carrier
Prior art date
Application number
KR10-2003-0019039A
Other languages
Korean (ko)
Other versions
KR20040084171A (en
Inventor
문상흡
김우재
강정화
안인영
Original Assignee
문상흡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR10-2003-0019039A priority Critical patent/KR100505531B1/en
Application filed by 문상흡 filed Critical 문상흡
Priority to ES04723597T priority patent/ES2294487T3/en
Priority to AT06115610T priority patent/ATE458711T1/en
Priority to PL04723597T priority patent/PL1611072T3/en
Priority to US10/549,774 priority patent/US7453017B2/en
Priority to KR1020107010847A priority patent/KR100985309B1/en
Priority to EP06115610A priority patent/EP1700836B1/en
Priority to KR1020057017963A priority patent/KR100951206B1/en
Priority to JP2006504885A priority patent/JP4346642B2/en
Priority to DE602004025740T priority patent/DE602004025740D1/en
Priority to CN2009101738568A priority patent/CN101676025B/en
Priority to CA2730846A priority patent/CA2730846C/en
Priority to PCT/EP2004/003263 priority patent/WO2004085353A2/en
Priority to EP04723597A priority patent/EP1611072B1/en
Priority to MXPA05008643A priority patent/MXPA05008643A/en
Priority to CNB2004800081200A priority patent/CN100558684C/en
Priority to DE602004010242T priority patent/DE602004010242T2/en
Priority to CA2519994A priority patent/CA2519994C/en
Priority to KR1020097026227A priority patent/KR100971585B1/en
Publication of KR20040084171A publication Critical patent/KR20040084171A/en
Application granted granted Critical
Publication of KR100505531B1 publication Critical patent/KR100505531B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/63Platinum group metals with rare earths or actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 아세틸렌이 함유된 에틸렌 중에서 아세틸렌을 선택적으로 수소화시켜 고순도의 에틸렌을 얻기 위한 팔라듐-란탄-실리콘(Pd-La-Si) 촉매와 이의 제조방법에 관한 것으로, 촉매를 제조하거나 재생한 후, 저온에서 환원시켜도 높은 에틸렌 선택도와 반응활성을 가지게 되는 아세틸렌의 선택적 수소화 촉매 및 그 제조방법을 제공하는 것이 목적이다.The present invention relates to a palladium-lanthanum-silicon (Pd-La-Si) catalyst for producing hydrogen with high purity by selectively hydrogenating acetylene in ethylene containing acetylene, and after preparing or regenerating the catalyst, An object of the present invention is to provide a selective hydrogenation catalyst of acetylene which has high ethylene selectivity and reaction activity even at a low temperature, and a method for producing the same.

본 발명의 아세틸렌 선택적 수소화 촉매는 팔라듐 0.05∼2.0중량%, 란타늄 0.07∼2.6중량%, 실리콘 0.0001∼0.065중량% (잔여 부분은 담체) 를 함유하고, (1) 담체를 테트라아민팔라듐하이드록사이드 수용액에 함침한 후, 건조 및 소성하여 팔라듐을 담지시키는 공정; (2) 상기 팔라듐이 담지된 담체(Pd 촉매)를 란타늄 화합물 수용액에 함침한 후, 건조 및 소성하여 란타늄을 담지시키는 공정; (3) 상기 팔라듐과 란타늄이 담지된 담체(Pd-La 촉매)를 350∼700℃의 수소 기류 하에서 환원시킨 후, 200∼300℃에서 실리콘 화합물을 증착시키는 공정; 및 (4) 상기 실리콘 화합물이 증착된 팔라듐과 란타늄이 담지된 담체를 300∼600℃에서 1∼5시간 동안 환원하는 공정을 포함하는 과정을 통하여 제조된다.The acetylene selective hydrogenation catalyst of the present invention contains 0.05 to 2.0% by weight of palladium, 0.07 to 2.6% by weight of lanthanum, and 0.0001 to 0.065% by weight of silicon (the remaining portion is a carrier), and (1) the carrier is an aqueous tetraaminepalladium hydroxide solution. After impregnating with it, drying and firing to support palladium; (2) impregnating the palladium-supported carrier (Pd catalyst) into the lanthanum aqueous solution, followed by drying and calcining to support the lanthanum; (3) reducing the palladium and lanthanum-supported carrier (Pd-La catalyst) under a stream of hydrogen at 350 to 700 ° C., and then depositing a silicon compound at 200 to 300 ° C .; And (4) reducing the carrier on which palladium and lanthanum on which the silicon compound is deposited is carried out at 300 to 600 ° C. for 1 to 5 hours.

Description

아세틸렌의 선택적 수소화 반응에 사용되는 Pd-La-Si 촉매 및 이의 제조방법{Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same}Pd-La-Si catalyst used for selective hydrogenation of acetylene and its preparation method {Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same}

본 발명은 아세틸렌이 함유된 에틸렌 중에서 아세틸렌을 선택적으로 수소화시켜 고순도의 에틸렌을 얻기 위한 팔라듐-란탄-실리콘(Pd-La-Si) 촉매와 이의 제조방법에 관한 것이다.The present invention relates to a palladium-lanthanum-silicon (Pd-La-Si) catalyst for selectively hydrogenating acetylene in ethylene containing acetylene to obtain high purity ethylene, and a method for preparing the same.

고분자 중합용 에틸렌은 주로 나프타를 열 분해하거나 에탄, 프로판, 부탄 등의 석유가스를 접촉 분해하여 제조하는데 상기 방법에 의해 제조된 에틸렌은 약 0.5∼2.0중량%의 아세틸렌을 함유한다. 그런데 에틸렌에 함유된 아세틸렌은 촉매의 활성을 저하시킬 뿐만 아니라 고분자의 물성도 저하시키기 때문에 아세틸렌의 함량을, 바람직하게는, 2ppm 이하로 낮추어야 한다. Ethylene for polymer polymerization is mainly produced by thermal decomposition of naphtha or catalytic cracking of petroleum gas such as ethane, propane, butane, etc. The ethylene produced by the above method contains about 0.5 to 2.0% by weight of acetylene. However, since acetylene contained in ethylene not only lowers the activity of the catalyst but also lowers the physical properties of the polymer, the acetylene content should be lowered to 2 ppm or less.

현재 고순도 에틸렌은 수소화 촉매를 사용하여 에틸렌에 함유된 아세틸렌을 선택적으로 수소화시켜 제조하고 있는데 수소화 촉매에서 가장 중요한 요소는 반응성(활성)과 함께 아세틸렌은 에틸렌으로 수소화시키면서 에틸렌은 에탄으로 수소화시키지 않는 선택도(selectivity)이다.Currently, high-purity ethylene is produced by selectively hydrogenating acetylene contained in ethylene using a hydrogenation catalyst. The most important factor in the hydrogenation catalyst is reactivity (activity), and selectivity in which acetylene is hydrogenated to ethylene and ethylene is not hydrogenated to ethane. (selectivity).

아세틸렌을 선택적으로 수소화시키는 반응에는 일반적으로 귀금속 촉매가 사용되고 있는데 특히, 팔라듐이 반응성과 선택도에 있어 우수한 것으로 알려져 있다. Bond 등에 의하면 ("Catalysis by metals" Academic Press, New York, 281-309, 1962), 전이금속 촉매의 선택도는 Pd > Rh, Pt > Ni ≫ Ir 의 순서로 낮아진다고 한다.In the reaction for selectively hydrogenating acetylene, noble metal catalysts are generally used. In particular, palladium is known to be excellent in reactivity and selectivity. According to Bond et al. ("Catalysis by metals" Academic Press, New York, 281-309, 1962), the selectivity of the transition metal catalyst is lowered in the order of Pd> Rh, Pt> Ni> Ir.

아세틸렌의 수소화 반응에서는 몰당 30-40 kcal의 열이 발생하는데 반응온도가 상승하면 아세틸렌의 전환율이 높아지지만 에틸렌 전환율도 함께 높아지고, 선택도도 변하게 되므로 반응온도를 적절한 범위에서 유지할 필요가 있다. 촉매와 반응기는 아세틸렌이 에틸렌으로 완전히 전환될 때, 15℃ 이내로 상승하도록 설계하는 것이 바람직하다.In the hydrogenation of acetylene, heat of 30-40 kcal per mole is generated. When the reaction temperature is increased, the conversion of acetylene is increased, but the ethylene conversion is also increased and the selectivity is changed. Therefore, it is necessary to maintain the reaction temperature in an appropriate range. The catalyst and reactor are preferably designed to rise to within 15 ° C. when acetylene is fully converted to ethylene.

미국특허 제4,387,258호에는 팔라듐을 실리카에 담지시켜 촉매를 제조하는 방법이 개시되어 있고, 미국 특허 제4,839,329호에는 팔라듐을 이산화티탄에 담지시켜 촉매를 제조하는 방법이 개시되어 있다. US Pat. No. 4,387,258 discloses a method for preparing a catalyst by supporting palladium on silica, and US Pat. No. 4,839,329 discloses a method for preparing a catalyst by supporting palladium on titanium dioxide.

담체로는 실리카와 이산화티탄 외에 상업적으로 알루미나를 담체로 많이 사용하고 있는데 이러한 담지 촉매는 담체에 의한 부반응으로 탄소수가 4개 이상인 소위, 그린 오일(green oil)이라고 불리는 올리고머가 생성되어 담체의 세공을 막거나 반응 활성점(active site)을 둘러쌈으로써 촉매의 재생주기와 수명을 단축시키는 문제가 있다.In addition to silica and titanium dioxide, alumina is commercially used as a carrier. The supported catalyst is a side reaction of the carrier, and thus, oligomers having 4 or more carbon atoms are formed to form pores of the carrier. There is a problem of reducing the regeneration cycle and life of the catalyst by blocking or surrounding the active site.

수소화 촉매에서 또 하나의 중요한 문제는 촉매의 재생주기와 수명 외에 촉매의 선택도를 높이는 것이다.Another important problem in hydrogenation catalysts is to increase the selectivity of the catalyst in addition to the regeneration cycle and lifetime of the catalyst.

에틸렌의 수소화 반응속도가 아세틸렌의 수소화 반응속도보다 10-100배 빠른데도 불구하고(Adv. in Catal., 15, 91-226(1964)) 아세틸렌이 선택적으로 수소화되는 것은 에틸렌보다 반응 활성점에 선택적으로 흡착되기 때문이다. 팔라듐에 대한 아세틸렌, 메틸아세틸렌, 프로파디엔, 에틸렌, 프로필렌 등의 흡착특성을 조사한 결과, 흡착속도는 아세틸렌 > 디올레핀 > 올레핀 > 파라핀의 순서이고, 탈착속도는 그 역순임이 밝혀졌다. (The Oil and Gas Journal, 27, 66(1972))Although the hydrogenation rate of ethylene is 10-100 times faster than the hydrogenation rate of acetylene ( Adv. In Catal ., 15, 91-226 (1964)), the selective hydrogenation of acetylene is more selective to the reaction site than ethylene. This is because it is adsorbed by. As a result of examining adsorption characteristics of acetylene, methylacetylene, propadiene, ethylene, and propylene to palladium, it was found that the adsorption rate was in the order of acetylene>diolefin>olefin> paraffin, and the desorption rate was in the reverse order. (The Oil and Gas Journal, 27, 66 (1972))

따라서 에틸렌에 함유된 아세틸렌을 수소화시킬 때 디올레핀을 첨가해주면 디올레핀이 에틸렌의 흡착을 방해하여 에틸렌은 수소화시키지 않고 아세틸렌을 선택적으로 수소화시킬 수 있다. 즉, 에틸렌의 흡착을 방해함으로써 아세틸렌의 선택도를 높이는 것인데 디올레핀과 같이 중간 정도의 흡착특성을 가지는 물질을 모더레이터(moderator)라 한다. 일산화탄소도 아세틸렌의 수소화 반응에서 디올레핀과 같이 모더레이터 역할을 하는데 디올레핀은 그 자체가 그린 오일이 되기도 하고, 반응 후 미반응 디올레핀을 분리해야 하는 문제가 있기 때문에 일산화탄소가 더 적합하다. Therefore, when diolefin is added when hydrogenating acetylene contained in ethylene, the diolefin interferes with the adsorption of ethylene, thereby selectively hydrogenating acetylene without hydrogenating ethylene. In other words, by interfering with the adsorption of ethylene to increase the selectivity of acetylene, a material having a moderate adsorption characteristics such as diolefin is called a modulator. Carbon monoxide also acts as a moderator in the hydrogenation of acetylene like diolefins. Carbon dioxide is more suitable because the diolefin itself becomes a green oil and there is a problem of separating the unreacted diolefin after the reaction.

미국특허 제3,325,556호 및 제4,906,800호에는 일산화탄소를 미량 첨가하여 아세틸렌 수소화 반응의 선택도를 높이는 방법이 개시되어 있다.U.S. Patent Nos. 3,325,556 and 4,906,800 disclose methods for increasing the selectivity of acetylene hydrogenation by adding trace amounts of carbon monoxide.

그러나 모더레이터로 일산화탄소를 사용하는 경우에도 일산화탄소가 카르보닐화 반응을 일으켜 그린 오일을 생성시키기 때문에 촉매의 재생주기와 수명이 단축되는 문제점은 그대로 남는다. However, even when carbon monoxide is used as a moderator, carbon monoxide generates a carbonylation reaction to generate green oil, thereby reducing the regeneration cycle and life of the catalyst.

그린오일이 생성되어 촉매의 재생주기와 수명이 단축되는 문제점을 해결하기 위한 촉매로, 한국공개특허 제2000-0059743호에는 팔라듐 촉매에 조촉매로 티타늄을 담지시킨 팔라듐 티타늄(Pd-Ti) 촉매가 개시되어 있다.As a catalyst to solve the problem that the regeneration cycle and life of the catalyst is shortened by the production of green oil, Korean Patent Laid-Open No. 2000-0059743 discloses a palladium titanium (Pd-Ti) catalyst in which titanium is supported by a palladium catalyst. Is disclosed.

상기 팔라듐 티타늄 촉매는 500℃정도의 고온 환원과정에서 나타나는 이산화티탄과 팔라듐간의 강한 금속-담체간 상호작용(strong metal support interaction, SMSI)을 이용한 것이다. SMSI현상이란 높은 온도의 환원 과정 시 담체가 부분적으로 환원되면서 금속 표면을 변형시키고 또한 지지체에서 금속으로 전자가 전달되어 금속의 전자 상태가 풍부해지는 것을 말한다. 이러한 SMSI 효과가 일어나면 Pd표면에 생성되는 그린오일의 양을 감소시키며, 결과적으로 촉매의 수명을 연장하고, 아세틸렌에서 에틸렌으로의 선택적 수소화를 향상시킬 수 있다.The palladium titanium catalyst utilizes a strong metal support interaction (SMI) between titanium dioxide and palladium, which occurs during a high temperature reduction process of about 500 ° C. SMSI phenomenon means that the carrier is partially reduced during the high temperature reduction process and the metal surface is modified and electrons are transferred from the support to the metal to enrich the electronic state of the metal. This SMSI effect can reduce the amount of green oil produced on the surface of Pd, consequently extending the lifetime of the catalyst and improving the selective hydrogenation of acetylene to ethylene.

이러한 강한 금속-담체간 상호작용(SMSI)을 갖는 물질을 이용한 수소화 촉매로, 본 발명의 발명자들의 선출원 특허 한국특허출원 2003-0018888에는 조촉매로 란타늄(La)을 담지시킨 팔라듐-란타늄 촉매가 개시되어 있다. As a hydrogenation catalyst using a material having such a strong metal-carrier interaction (SMSI), the prior application patent Korean Patent Application No. 2003-0018888 of the inventors of the present invention discloses a palladium-lanthanum catalyst carrying lanthanum (La) as a promoter It is.

그러나 이러한 강한 금속-담체간 상호작용은 촉매를 재생할 때 산화 분위기에 노출되면 금속표면의 변형효과도 동시에 없어지게 된다는 단점이 있다. 즉, 상용 공정에서는 촉매가 비활성화되면 고온의 공기를 사용하여 400℃ 정도에서 재생하는데 이 과정에서 SMSI 작용에 의한 금속표면의 변형효과가 사라지는 것이다. However, this strong metal-carrier interaction has a disadvantage in that when the catalyst is regenerated and exposed to an oxidizing atmosphere, the deformation effect of the metal surface is also lost. In other words, in a commercial process, when the catalyst is deactivated, it is regenerated at about 400 ° C. using hot air, and in this process, the deformation effect of the metal surface due to the SMSI action disappears.

따라서 촉매성능을 회복시키기 위해서는 촉매를 제조할 때와 마찬가지로 다시 500℃ 정도의 고온 환원공정이 필요한데 상업적인 수소화 반응기에서 올릴 수 있는 온도가 300℃ 정도에 불과하므로 실제 공정에서는 적용하기 어렵다. Therefore, in order to restore the catalytic performance, a high temperature reduction process of about 500 ° C. is required again as in the case of preparing a catalyst. However, since the temperature that can be raised in a commercial hydrogenation reactor is only about 300 ° C., it is difficult to apply the catalyst in an actual process.

본 발명의 목적은 촉매를 제조하거나 재생할 때, 저온에서 환원시켜도 높은 아세틸렌 선택도와 반응활성을 가지게 되는 아세틸렌의 선택적 수소화 촉매 및 그 제조방법을 제공하는 것이다.It is an object of the present invention to provide a selective hydrogenation catalyst of acetylene which has high acetylene selectivity and reaction activity even when the catalyst is reduced or reduced at low temperatures, and a method for producing the catalyst.

상기 목적을 달성하기 위한 본 발명의 촉매는 팔라듐 함량이 0.05∼2.0중량%이고, 란타늄 함량이 0.07∼2.6중량%이고, 실리콘 함량이 0.0001∼0.065중량%(잔여 부분은 담체)인 것을 특징으로 한다.The catalyst of the present invention for achieving the above object is characterized in that the palladium content of 0.05 to 2.0% by weight, the lanthanum content of 0.07 to 2.6% by weight, the silicon content of 0.0001 to 0.065% by weight (residue is a carrier) .

상기 아세틸렌의 선택적 수소화 촉매는, The selective hydrogenation catalyst of acetylene,

(1) 담체를 테트라아민팔라듐하이드록사이드 수용액에 함침한 후, 건조 및 소성하여 팔라듐을 담지시키는 공정;(1) a step of impregnating a carrier with an aqueous tetraamine palladium hydroxide solution, followed by drying and baking to support palladium;

(2) 상기 팔라듐이 담지된 담체(Pd 촉매)를 란타늄 화합물 수용액에 함침한 후, 건조 및 소성하여 란타늄을 담지시키는 공정;(2) impregnating the palladium-supported carrier (Pd catalyst) into the lanthanum aqueous solution, followed by drying and calcining to support the lanthanum;

(3) 상기 팔라듐과 란타늄이 담지된 담체(Pd-La 촉매)를 350∼700℃의 수소 기류 하에서 환원시킨 후, 200∼300℃에서 실리콘 화합물을 증착시키는 공정; 및(3) reducing the palladium and lanthanum-supported carrier (Pd-La catalyst) under a stream of hydrogen at 350 to 700 ° C., and then depositing a silicon compound at 200 to 300 ° C .; And

(4) 상기 실리콘 화합물이 증착된 팔라듐과 란타늄이 담지된 담체를 300∼600℃에서 1∼5시간 동안 환원하는 공정을 포함하는 과정을 통하여 제조된다.(4) The palladium and the lanthanum-supported carrier on which the silicon compound is deposited are prepared by a process including reducing the carrier on 300 to 600 ° C. for 1 to 5 hours.

이하, 각 단계별로 보다 상세하게 설명한다.Hereinafter, each step will be described in more detail.

(1)은 팔라듐 촉매(Pd 촉매)를 제조하는 공정으로, 팔라듐은 0.05∼2.0중량%가 담지되도록 한다.(1) is a process for producing a palladium catalyst (Pd catalyst), so that palladium is supported by 0.05 to 2.0% by weight.

상기 Pd 촉매를 제조하는 방법은 공지된 방법으로, 이를테면, 담체(실리카, 이산화티탄, 알루미나)를 테트라아민팔라듐하이드록사이드 수용액에 원하는 팔라듐 담지량에 맞춰 투입하고, 상온에서 12시간 정도 교반한 후, 증류수로 몇 차례 세척한다. 이어서 세척된 촉매를 상온에서 진공 건조 시키고, 50∼150℃에서 건조시킨 후, 400∼600℃에서 1∼5시간 공기 기류 하에서 소성하는 방법에 의해 제조된다.The method for preparing the Pd catalyst is a known method, for example, a carrier (silica, titanium dioxide, alumina) is added to the aqueous solution of tetraamine palladium hydroxide in accordance with the desired amount of palladium, and stirred at room temperature for about 12 hours, Wash several times with distilled water. Subsequently, the washed catalyst is dried by vacuum drying at room temperature, dried at 50 to 150 ° C., and then calcined at 400 to 600 ° C. under an air stream for 1 to 5 hours.

(2)는 (1)에서 제조된 Pd 촉매에 란타늄(La)을 담지시켜 팔라듐 란타늄 촉매(Pd-La 촉매)를 제조하는 공정으로, 란타늄은 0.07∼2.6중량%가 담지되도록 한다.(2) is a process for preparing a palladium lanthanum catalyst (Pd-La catalyst) by supporting lanthanum (La) on the Pd catalyst prepared in (1), so that the lanthanum is 0.07 to 2.6% by weight.

조촉매로 담지되는 란타늄은 500℃정도의 고온 환원 시 팔라듐과 강한 상호작용을 일으켜 촉매의 선택도를 높이는 역할을 하며, 란타늄을 담지시키는 방법은 (1)의 Pd 촉매를 제조하는 방법과 본질적으로 다르지 않다.The lanthanum supported as a cocatalyst has a strong interaction with palladium at a high temperature reduction of about 500 ° C. to increase the selectivity of the catalyst, and the lanthanum supported method is essentially the same as the method for preparing the Pd catalyst of (1). not different.

(3)은 Pd-La 촉매에 실리콘 화합물을 증착시키는 공정으로, 공지기술과 비교할 때 후술하는 (4) 단계와 함께 본 발명의 특징부를 구성한다. (3) is a process of depositing a silicon compound on a Pd-La catalyst, which constitutes a feature of the present invention with step (4) described below when compared with the known art.

실리콘은 0.0001∼0.065중량%가 담지되도록 하며, Pd-La촉매가 담긴 반응기에서 질소 기류로 산소를 제거한 뒤, 350∼700℃의 수소 기류 하에서 촉매를 환원시키는 공정이 선행된다. 환원 공정에서는 란타늄의 일부가 팔라듐 표면으로 이동하여 팔라듐 표면을 부분적으로 덮어 팔라듐을 개질하는 것으로 판단된다.Silicon is supported by 0.0001 to 0.065% by weight, and oxygen is removed from the reactor containing Pd-La catalyst by nitrogen stream, followed by a process of reducing the catalyst under a hydrogen stream at 350 to 700 ° C. In the reduction process, it is believed that some of the lanthanum migrates to the palladium surface and partially covers the palladium surface to modify the palladium.

실리콘 화합물은 테트라하이드로실란, 트리에틸실란, 트리프로필실란, 페닐실란 또는 이들의 혼합물을 사용할 수 있으며 운반가스(수소)에 실어 촉매와 200∼300℃에서 접촉시킨다. As the silicone compound, tetrahydrosilane, triethylsilane, tripropylsilane, phenylsilane or a mixture thereof can be used, which is placed in a carrier gas (hydrogen) and brought into contact with the catalyst at 200 to 300 ° C.

(4)는 상기 (3)의 공정에서 실리콘 화합물이 증착된 Pd-La 촉매를 환원하는 공정으로, 300∼600℃에서 1∼5시간 동안 수행된다.(4) is a step of reducing the Pd-La catalyst on which the silicon compound is deposited in the step (3), and is performed at 300 to 600 ° C. for 1 to 5 hours.

(3)과 (4) 단계를 통하여 담지되는 실리콘은 촉매를 재생한 후에 이를 낮은 온도에서 환원하여도 란타늄과 팔라듐의 상호작용을 유지하게 해주는 역할을 한다.Silicon supported through steps (3) and (4) maintains the interaction between lanthanum and palladium even after regenerating the catalyst and reducing it at low temperatures.

상기한 방법으로 제조된 본 발명의 수소화 촉매는 아세틸렌이 함유된 에틸렌에서 아세틸렌을 선택적으로 수소화시키는데, 아세틸렌을 0.5∼2.0중량% 함유하는 에틸렌의 경우에는, 30∼120℃에서 400∼2,400ml/(분)(그램 촉매)의 반응물 유속으로 접촉시킨다.The hydrogenation catalyst of the present invention prepared by the above method selectively hydrogenates acetylene from ethylene containing acetylene. In the case of ethylene containing 0.5 to 2.0 wt% of acetylene, 400 to 2,400 ml / ( Contact) at the reactant flow rate in minutes (gram catalyst).

본 발명의 구성은 후술하는 실시예에 의하여 더욱 명확해지고, 비교예에 의하여 그 효과가 입증될 것이다.The configuration of the present invention will become more apparent by the examples described below, and the effect will be proved by the comparative examples.

<실시예 1><Example 1>

A. 팔라듐 촉매의 제조A. Preparation of Palladium Catalyst

팔라듐 촉매는 공지된 방법에 의하여 제조하였다. 실리카 20g을 0.33중량%의 테트라아민팔라듐하이드록사이드 수용액 200ml에 넣고 12시간 동안 교반하여 팔라듐을 담지시킨 후, 진공 건조시켰다. 이어서, 100℃의 오븐에서 12시간 동안 건조시키고, 300℃의 공기 기류 하에서 2시간 동안 소성한 결과, 팔라듐 함량이 1중량%인 팔라듐 촉매가 제조되었다. Palladium catalysts were prepared by known methods. 20 g of silica was added to 200 ml of 0.33 wt% tetraamine palladium hydroxide aqueous solution, and stirred for 12 hours to carry palladium, followed by vacuum drying. Subsequently, it was dried in an oven at 100 ° C. for 12 hours and calcined for 2 hours under an air stream of 300 ° C., whereby a palladium catalyst having a palladium content of 1% by weight was prepared.

B. 란타늄의 담지B. Support of Lanthanum

위에서 제조된 팔라듐 촉매에 2중량%의 란타늄나이트레이트하이드레이트 수용액 3ml를 사용하여 초기함침법(incipient wetness impregnation)으로 란타늄을 담지시킨 후, 100℃의 오븐에서 6시간 동안 건조시키고, 300℃ 공기 기류 하에서 2시간 동안 소성한 결과, 란타늄/팔라듐 몰비가 1인 팔라듐-란타늄 촉매가 제조되었다. 3 ml of 2 wt% lanthanum nitrate hydrate aqueous solution was used to prepare lanthanum by incipient wetness impregnation in the palladium catalyst prepared above, followed by drying in an oven at 100 ° C. for 6 hours and under 300 ° C. air stream. After firing for 2 hours, a palladium-lanthanum catalyst having a lanthanum / palladium molar ratio of 1 was prepared.

C. 환원 및 실리콘의 증착C. Reduction and Deposition of Silicon

위에서 제조된 팔라듐-란타늄 촉매 3g을 고정층관에 채우고, 500℃ 수소를 1시간 동안 통과시켜 환원시킨 후, 질소를 통과시켜 온도를 250℃로 낮추고, 1% SiH4/Ar 기체(1% SiH4와 99% Ar의 혼합가스) 0.1ml를 샘플링 루프를 통하여 펄스로 주입하여 증착시켰으며, 증착시키는 Si의 양은 펄스 주입 횟수로 조절하였다. 운반가스로는 수소를 사용하였으며 수소의 유량은 분당 20ml이었다. 이어서, 25℃의 산소를 통과시켜 2시간 동안 산화시켰다.3 g of the palladium-lanthanum catalyst prepared above was charged into a fixed bed tube, reduced by passing hydrogen at 500 ° C. for 1 hour, and then passed through nitrogen to lower the temperature to 250 ° C., followed by 1% SiH 4 / Ar gas (1% SiH 4). And 99 ml of mixed gas of 99% Ar) were deposited by pulse injection through a sampling loop, and the amount of Si deposited was controlled by the number of pulse injections. Hydrogen was used as the carrier gas and the flow rate of hydrogen was 20 ml per minute. Subsequently, oxygen was passed through 25 ° C. for 2 hours.

D. 환원D. Reduction

위에서 제조된 실리콘이 증착된 팔라듐-란타늄 촉매에 300℃의 수소를 1시간 동안 통과시켜 환원시켰다. 이렇게 제조된 촉매의 실리콘/팔라듐 몰비는 0.012이다.The palladium-lanthanum catalyst on which the silicon deposited above was deposited was reduced by passing hydrogen at 300 ° C. for 1 hour. The silicon / palladium molar ratio of the catalyst thus prepared is 0.012.

<실시예 2><Example 2>

실리콘/팔라듐 몰비를 0.006으로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수소화 촉매를 제조하였다.A hydrogenation catalyst was prepared in the same manner as in Example 1, except that the silicon / palladium molar ratio was 0.006.

<실시예 3><Example 3>

실리콘/팔라듐 몰비를 0.12로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 수소화 촉매를 제조하였다.A hydrogenation catalyst was prepared in the same manner as in Example 1, except that the silicon / palladium molar ratio was 0.12.

<비교예 1>Comparative Example 1

란타늄의 담지 단계(B)와 환원 및 실리콘의 증착 단계(C)를 거치지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that the lanthanum supporting step (B) and the reducing and silicon deposition steps (C) were not performed.

즉, 실리카에 팔라듐을 담지시켜 팔라듐 함량이 1 중량%인 팔라듐 촉매를 제조한 후(A 단계), 300℃의 수소를 1시간 동안 통과시켜 환원하였다(D 단계).That is, palladium was supported on silica to prepare a palladium catalyst having a palladium content of 1% by weight (step A), and then reduced by passing hydrogen at 300 ° C. for 1 hour (step D).

<비교예 2>Comparative Example 2

환원공정을 500℃에서 실시한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Comparative Example 1 except that the reduction process was performed at 500 ° C.

<비교예 3>Comparative Example 3

환원 및 실리콘의 증착 단계(C)를 거치지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 1, except that the reduction and deposition of silicon (C) were not carried out.

즉, 실리카에 팔라듐을 담지시켜 팔라듐 함량이 1 중량%인 팔라듐 촉매를 제조한 후(A 단계), 란타늄을 담지시켜 란타늄/팔라듐 몰비가 1인 팔라듐-란타늄 촉매가 제조하고(B 단계), 300℃의 수소를 1시간 동안 통과시켜 환원하였다(D 단계).That is, palladium is supported on silica to prepare a palladium catalyst having a palladium content of 1% by weight (step A), and then a palladium-lanthanum catalyst having a lanthanum / palladium molar ratio of 1 is prepared (step B), 300 Hydrogen at 캜 was passed through for 1 hour to reduce (step D).

<비교예 4><Comparative Example 4>

환원공정을 500℃에서 실시한 것을 제외하고는 상기 비교예 3과 동일한 방법으로 수소화 촉매를 제조하였다.A hydrogenation catalyst was prepared in the same manner as in Comparative Example 3 except that the reduction process was performed at 500 ° C.

<실시예 4><Example 4>

실시예 1-3 및 비교예 1-4에서 제조된 촉매를 사용하여 아세틸렌의 수소화 반응을 실시하였다. Hydrogenation of acetylene was carried out using the catalysts prepared in Examples 1-3 and Comparative Examples 1-4.

A. 시료가스A. Sample Gas

아세틸렌 함량이 1.02 몰%인 에틸렌-아세틸렌 혼합가스를 사용하였다.An ethylene-acetylene mixed gas having an acetylene content of 1.02 mol% was used.

B. 실험B. Experiment

촉매를 각각 0.03g씩 1/4인치 유리로 된 관형 반응기에 채우고, 시료가스와 수소를 혼합하여 공간속도를 400, 800, 1200, 1600, 2000, 2400(ml/분·그람 촉매)으로 변화시키면서 통과시켰다. 수소는 몰 기준으로 아세틸렌의 2배를 공급하였고, 반응은 60℃에서 수행하였다.Fill the 1/4 inch glass tubular reactor with 0.03 g of catalyst each, and mix the sample gas and hydrogen, changing the space velocity to 400, 800, 1200, 1600, 2000, 2400 (ml / min / gram catalyst). Passed. Hydrogen was fed twice the acetylene on a molar basis and the reaction was carried out at 60 ° C.

C. 결과C. Results

아세틸렌 전환율과 에틸렌 선택도를 각각 하기 [수학식 1]과 [수학식 2]에 따라 계산하여 그 결과를 도 1에 나타내었다.Acetylene conversion and ethylene selectivity were calculated according to [Equation 1] and [Equation 2], respectively, and the results are shown in FIG. 1.

아세틸렌 전환율 = ΔA/A0 Acetylene conversion = ΔA / A 0

에틸렌 선택도 = ΔB/ΔA=ΔB/(ΔB+ΔC)Ethylene Selectivity = ΔB / ΔA = ΔB / (ΔB + ΔC)

상기 식에서 A0 = 아세틸렌의 초기 농도, ΔA = 아세틸렌의 변화량, ΔB = 에틸렌의 변화량, ΔC = 에탄의 변화량이다.Where A 0 = initial concentration of acetylene, ΔA = change in acetylene, ΔB = change in ethylene, and ΔC = change in ethane.

도 1에 의하면, 300℃에서 환원한 경우에는 란타늄이 담지된 Pd-La 촉매(비교예 3)가 란타늄이 담지되지 않은 Pd 촉매(비교예 1)에 비해 반응 선택도가 약간 높은데 비해, 500℃에서 환원한 경우에는 란타늄이 담지된 Pd-La 촉매(비교예 4)의 반응 선택도가 급격히 증가하여 300℃에서 환원한 란타늄이 담지된 Pd-La 촉매(비교예 3)나 담지되지 않은 Pd 촉매(비교예 1)에 비해 반응 선택도가 높음을 알 수 있다. 이와 반대로, 500℃에서 환원한 란타늄이 담지되지 않은 Pd 촉매(비교예 2)는 반응 선택도가 매우 낮다. 500℃에서 환원한 란타늄이 담지된 Pd-La 촉매(비교예 4)는 고온에서 환원시킬 때 강한 금속-지지체 상호작용(SMSI 현상)으로 인하여 란타늄에 의해 팔라듐 표면이 개질되며, 그 결과로 많은 흡착점을 필요로 하는 에틸리딘 생성이 억제되어 에탄 생성이 적어지고, 촉매를 비활성화시키는 전구체로 알려져 있는 1,3-부타디엔의 생성이 억제되어 에틸렌 선택도가 증가하는 것으로 해석된다. According to FIG. 1, when the reduction was performed at 300 ° C., the reaction selectivity was slightly higher than that of the Pd-La catalyst (Comparative Example 3) on which lanthanum was supported (Comparative Example 1). In the case of reducing at, the reaction selectivity of the lanthanum-supported Pd-La catalyst (Comparative Example 4) increased rapidly, and the lanthanum-supported Pd-La catalyst (Comparative Example 3) or unsupported Pd catalyst was reduced at 300 ° C. It can be seen that the reaction selectivity is higher than that of (Comparative Example 1). On the contrary, the lanthanum-free Pd catalyst reduced at 500 ° C. (Comparative Example 2) has a very low reaction selectivity. The lanthanum-supported Pd-La catalyst (Comparative Example 4) reduced at 500 ° C. is modified with palladium surface by lanthanum due to strong metal-supporting interaction (SMSI phenomenon) when reducing at high temperature. It is interpreted that the production of 1,3-butadiene, which is known as a precursor for deactivating the catalyst, is suppressed due to the suppression of the production of ethylidine, which requires a point, and the generation of ethane.

반면에, 300℃에서 환원한 란타늄이 담지된 Pd-La 촉매(비교예 3)의 반응 선택도가 500℃에서 환원한 Pd-La 촉매(비교예 4)보다 상대적으로 낮은 이유는 환원 온도가 낮아서 란타늄과 팔라듐사이에 SMSI 현상이 충분히 일어나지 못했기 때문으로 해석된다.On the other hand, the reaction selectivity of the lanthanum-supported Pd-La catalyst (Comparative Example 3) reduced at 300 ° C is relatively lower than that of the Pd-La catalyst (Comparative Example 4) reduced at 500 ° C. It is interpreted that SMSI phenomenon did not sufficiently occur between lanthanum and palladium.

란타늄과 실리콘이 담지되고 300℃에서 환원한 Pd-La-Si 촉매(실시예 1)는, 300℃ 정도의 비교적 낮은 온도에서 환원시켰음에도 불구하고 300℃에서 환원한 란타늄만 담지된 Pd-La 촉매(비교예 3)보다 높은 반응선택도를 보이고, 또한 500℃에서 환원한 란타늄만 담지된 Pd-La 촉매(비교예 4)와 거의 비슷한 수준의 반응 선택도를 나타냄을 알 수 있다. 이는 Pd-La 촉매에 실리콘을 담지시킬 경우, 촉매가 재생과정에서 산소에 노출된 후 비교적 낮은 300℃에서 환원되더라도(실시예 1), 고온(500℃)에서 환원된 Pd-La 촉매의 향상된 성능을 그대로 유지할 수 있음을 나타낸다. 이는 실리콘이 담지되면서 란타늄을 Pd 표면에 어느 정도 고정시키는 역할을 하기 때문이라고 해석된다. The Pd-La-Si catalyst supported on lanthanum and silicon and reduced at 300 ° C. (Example 1) was a Pd-La catalyst supported only on lanthanum reduced at 300 ° C., despite being reduced at a relatively low temperature of about 300 ° C. It can be seen that the reaction selectivity was higher than that of (Comparative Example 3), and the reaction selectivity was almost similar to that of the Pd-La catalyst (Comparative Example 4) loaded with only lanthanum reduced at 500 ° C. This is because when the silicon is supported on the Pd-La catalyst, although the catalyst is reduced at a relatively low 300 ° C after exposure to oxygen in the regeneration process (Example 1), the improved performance of the reduced Pd-La catalyst at a high temperature (500 ° C) It can be maintained as it is. It is interpreted that this is because the silicon is supported to fix lanthanum to the Pd surface to some extent.

한편, 500℃에서 환원한 란타늄이 담지되지 않은 Pd 촉매(비교예 2)는 환원과정에서 팔라듐이 뭉치는 현상이 발생하여 많은 흡착점을 필요로 하는 에틸리딘 생성이 상대적으로 촉진되고, 1,3-부타디엔의 생성이 촉진되어 에틸렌 선택도가 감소하는 것으로 해석된다. On the other hand, Pd catalyst (Comparative Example 2), which is not loaded with lanthanum reduced at 500 ° C., causes palladium to agglomerate in the reduction process, so that the production of ethylidine, which requires many adsorption points, is relatively accelerated. It is interpreted that the production of butadiene is promoted and the ethylene selectivity is reduced.

<실시예 5>Example 5

실리콘 함량을 달리한 촉매들 즉, 실시예 1, 실시예 2, 실시예 3 및 비교예 3과 비교예 4 (비교예는 실리콘 함량이 0임)에서 제조된 촉매에 대하여 실시예 4와 동일한 조건에서 아세틸렌의 수소화 반응을 실시하였으며, 그 결과를 도 2에 나타내었다. The same conditions as in Example 4 were applied to the catalysts having different silicon contents, that is, the catalysts prepared in Examples 1, 2, 3, and 3 and 4 (comparative example, the silicon content was 0). Hydrogenation of acetylene at was carried out, and the results are shown in FIG. 2.

몰 기준으로 Si/Pd이 0.006이고 300℃에서 환원한 Pd-La-Si 촉매(실시예 2)는 300℃에서 환원한 Pd-La 촉매(비교예 3)와 거의 비슷한 반응 선택도를 보이고, 몰 기준으로 Si/Pd이 0.012이고 300℃에서 환원한 Pd-La-Si 촉매(실시예 1)는 300℃에서 환원된 Pd-La촉매(비교예 3)보다 높고, 500℃에서 환원된 Pd-La 촉매(비교예 4)와 비슷한 반응 선택도를 보이며, 실리콘 함량을 높여 몰 기준으로 Si/Pd이 0.12이고 300℃에서 환원된 Pd-La-Si 촉매(실시예 3)는 300℃에서 환원된 Pd-La 촉매 (비교예 3)보다 낮은 반응 선택도를 보이며, 반응 활성도 급격히 감소한다. Pd-La-Si catalyst (Example 2) reduced at 300 ° C with Si / Pd of 0.006 on a molar basis showed almost the same reaction selectivity as Pd-La catalyst (Comparative Example 3) reduced at 300 ° C. As a reference, the Pd-La-Si catalyst (Example 1), which had a Si / Pd of 0.012 and was reduced at 300 ° C, was higher than the Pd-La catalyst (Comparative Example 3) reduced at 300 ° C, and reduced at 500 ° C. Pd-La-Si catalyst (Example 3), which has a reaction selectivity similar to that of the catalyst (Comparative Example 4) and has an increased silicon content of 0.12 Si / Pd on a molar basis and is reduced at 300 ° C. (Example 3), is reduced to Pd at 300 ° C. The reaction selectivity is lower than that of the -La catalyst (Comparative Example 3), and the reaction activity is also drastically reduced.

실시예 2의 경우에는 담지된 실리콘의 양이 적어서 란타늄을 효과적으로 고정시키지 못하므로 실리콘이 담지되지 않은 경우와 비슷한 결과를 보이고, 반대로 실시예 3의 경우에는 담지된 실리콘의 양이 너무 많아서 활성 금속인 팔라듐의 거의 모든 활성점을 덮어버리기 때문에 반응 선택도와 반응 활성이 동시에 급격히 감소하는 것으로 해석된다. 따라서 위의 결과로부터 최적의 반응 선택도를 보이는 실리콘 담지량이 존재함을 알 수 있다.In Example 2, since the amount of the supported silicon is small to effectively fix the lanthanum, the result is similar to that in which the silicon is not supported. On the contrary, in the case of Example 3, the amount of the supported silicon is too large to be the active metal. Since almost all active points of palladium are covered, it is interpreted that the reaction selectivity and the reaction activity decrease rapidly at the same time. Therefore, it can be seen from the above results that there is a silicon loading showing optimum reaction selectivity.

본 발명의 수소화 촉매는 에틸렌을 포화탄화수소인 에탄으로 수소화하지 않으면서 아세틸렌을 에틸렌으로 수소화시키는 선택도가 우수하고, 낮은 온도에서 환원시키더라도 고온에서 환원시킨 Pd-La 촉매와 거의 유사한 반응 활성과 선택도를 나타낸다. The hydrogenation catalyst of the present invention has excellent selectivity for hydrogenating acetylene to ethylene without hydrogenating ethylene to ethane, saturated hydrocarbon, and having similar reaction activity and selection as Pd-La catalyst reduced at high temperature even at low temperature. Shows a figure.

또한, 촉매 재생 시 낮은 온도에서 환원시키더라도 높은 성능을 회복하므로 촉매가 수소화 반응기에 담긴 채로 환원공정을 수행할 수 있어 실제적이다.In addition, since the high performance is recovered even when the catalyst is regenerated at a low temperature, the reduction process can be performed while the catalyst is contained in the hydrogenation reactor, which is practical.

도 1은 실시예와 비교예에서 제조된 팔라듐(Pd) 촉매, 팔라듐-란타늄(Pd-La)촉매 및 팔라듐-란타늄-실리콘(Pd-La-Si) 촉매의 아세틸렌 선택적 수소화 반응 결과를 나타낸 것이다. (각각의 실시예 또는 비교예에서 6개의 값은 좌측으로부터 시료가스와 수소를 혼합하여 공간속도를 400, 800, 1200, 1600, 2000, 2400(ml/분·그람 촉매)로 변화시킨 것임.)FIG. 1 shows the results of acetylene selective hydrogenation of the palladium (Pd) catalyst, the palladium-lanthanum (Pd-La) catalyst, and the palladium-lanthanum-silicon (Pd-La-Si) catalyst prepared in Examples and Comparative Examples. (The six values in each example or comparative example were obtained by mixing sample gas and hydrogen from the left side to change the space velocity to 400, 800, 1200, 1600, 2000, 2400 (ml / min.gram catalyst).)

도 2는 실리콘 함량을 달리하여 제조된 촉매의 아세틸렌 수소화 반응에 있어서의 선택도를 나타낸 것이다. (각각의 실시예 또는 비교예에서 6개의 값은 앞에서부터 시료가스와 수소를 혼합하여 공간속도를 400, 800, 1200, 1600, 2000, 2400 ml/(분)(그람 촉매)로 변화시킨 것임.)Figure 2 shows the selectivity in the acetylene hydrogenation of the catalyst prepared by varying the silicon content. (In each Example or Comparative Example, six values are obtained by mixing sample gas and hydrogen from the front and changing the space velocity to 400, 800, 1200, 1600, 2000, 2400 ml / (min) (gram catalyst). )

Claims (5)

팔라듐 함량이 0.05∼2.0중량%이고, 란타늄 함량이 0.07∼2.6중량%이고, 실리콘 함량이 0.0001∼0.065중량%(잔여 부분은 담체)인 아세틸렌을 함유하는 에틸렌에서 아세틸렌을 선택적으로 수소화시키는 수소화 촉매.A hydrogenation catalyst for selectively hydrogenating acetylene from ethylene containing acetylene having a palladium content of 0.05 to 2.0% by weight, a lanthanum content of 0.07 to 2.6% by weight, and a silicon content of 0.0001 to 0.065% by weight (the remainder being a carrier). (1) 담체를 테트라아민팔라듐하이드록사이드 수용액에 함침한 후, 건조 및 소성하여 팔라듐을 담지시키는 공정;(1) a step of impregnating a carrier with an aqueous tetraamine palladium hydroxide solution, followed by drying and baking to support palladium; (2) 상기 팔라듐이 담지된 담체(Pd 촉매)를 란타늄 화합물 수용액에 함침한 후, 건조 및 소성하여 란타늄을 담지시키는 공정;(2) impregnating the palladium-supported carrier (Pd catalyst) into the lanthanum aqueous solution, followed by drying and calcining to support the lanthanum; (3) 상기 팔라듐과 란타늄이 담지된 담체(Pd-La 촉매)를 350∼700℃의 수소 기류 하에서 환원시킨 후, 200∼300℃에서 실리콘 화합물을 증착시키는 공정; 및(3) reducing the palladium and lanthanum-supported carrier (Pd-La catalyst) under a stream of hydrogen at 350 to 700 ° C., and then depositing a silicon compound at 200 to 300 ° C .; And (4) 상기 실리콘 화합물이 증착된 팔라듐과 란타늄이 담지된 담체를 300∼600℃에서 1∼5시간 동안 환원하는 공정을 포함하는 아세틸렌을 에틸렌으로 선택적으로 수소화시키는 수소화 촉매의 제조 방법.(4) A method for producing a hydrogenation catalyst for selectively hydrogenating acetylene with ethylene, comprising the step of reducing the carrier on which palladium and lanthanum on which the silicon compound is deposited are carried out at 300 to 600 ° C. for 1 to 5 hours. 제2항에 있어서, 란타늄 화합물로 란타늄나이트레이트하이드레이트를 사용하는 것을 특징으로 하는 아세틸렌을 에틸렌으로 선택적으로 수소화시키는 수소화 촉매의 제조방법.The method for producing a hydrogenation catalyst according to claim 2, wherein lanthanum nitrate hydrate is used as the lanthanum compound. 제2항에 있어서, (3)단계에서 증착시키는 실리콘 화합물이 테트라하이드로실란, 트리에틸실란, 트리프로필실란, 또는 페닐실란에 선택되는 것을 특징으로 하는 아세틸렌을 선택적으로 수소화시키는 수소화 촉매의 제조방법.The method for producing a hydrogenation catalyst for selectively hydrogenating acetylene according to claim 2, wherein the silicon compound deposited in step (3) is selected from tetrahydrosilane, triethylsilane, tripropylsilane, or phenylsilane. 아세틸렌을 0.5∼2.0중량% 함유하는 에틸렌을 반응온도 30∼120℃에서, 반응물 유속 400∼2,400 ml/분 그램 촉매의 속도로 제1항의 촉매와 접촉시켜 아세틸렌을 선택적으로 수소화시키는 방법.A method for selectively hydrogenating acetylene by contacting ethylene containing 0.5 to 2.0% by weight of acetylene at a reaction temperature of 30 to 120 ° C. at a rate of a reactant flow rate of 400 to 2,400 ml / min gram catalyst.
KR10-2003-0019039A 2003-03-26 2003-03-27 Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same KR100505531B1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
KR10-2003-0019039A KR100505531B1 (en) 2003-03-27 2003-03-27 Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same
PCT/EP2004/003263 WO2004085353A2 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
PL04723597T PL1611072T3 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
US10/549,774 US7453017B2 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
KR1020107010847A KR100985309B1 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
EP06115610A EP1700836B1 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
KR1020057017963A KR100951206B1 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
JP2006504885A JP4346642B2 (en) 2003-03-26 2004-03-26 Pd-based catalyst for selective hydrogenation of acetylene
ES04723597T ES2294487T3 (en) 2003-03-26 2004-03-26 PALADIO BASED CATALYST FOR SELECTIVE HYDROGENATION OF ACETYLENE.
CN2009101738568A CN101676025B (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
CA2730846A CA2730846C (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
AT06115610T ATE458711T1 (en) 2003-03-26 2004-03-26 PALLADIUM CATALYST FOR SELECTIVE HYDROGENATION OF ACETYLENE
EP04723597A EP1611072B1 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
MXPA05008643A MXPA05008643A (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene.
CNB2004800081200A CN100558684C (en) 2003-03-26 2004-03-26 The palladium-based catalyst that is used for selective hydrogenation of acetylene
DE602004010242T DE602004010242T2 (en) 2003-03-26 2004-03-26 Palladium Catalyst for the Selective Hydrogenation of Acetyllenes
CA2519994A CA2519994C (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
KR1020097026227A KR100971585B1 (en) 2003-03-26 2004-03-26 Palladium-based catalyst for selective hydrogenation of acetylene
DE602004025740T DE602004025740D1 (en) 2003-03-26 2004-03-26 Palladium catalyst for the selective hydrogenation of acetylenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0019039A KR100505531B1 (en) 2003-03-27 2003-03-27 Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same

Publications (2)

Publication Number Publication Date
KR20040084171A KR20040084171A (en) 2004-10-06
KR100505531B1 true KR100505531B1 (en) 2005-08-04

Family

ID=37367779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0019039A KR100505531B1 (en) 2003-03-26 2003-03-27 Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same

Country Status (1)

Country Link
KR (1) KR100505531B1 (en)

Also Published As

Publication number Publication date
KR20040084171A (en) 2004-10-06

Similar Documents

Publication Publication Date Title
KR100367685B1 (en) Catalytic Hydrogenation Method and Catalyst for Use in the Method
US7919431B2 (en) Catalyst formulation for hydrogenation
US6509292B1 (en) Process for selective hydrogenation of acetylene in an ethylene purification process
US5356851A (en) Catalyst containing a group VIII metal and a group IIIA metal deposited on a support
KR100951206B1 (en) Palladium-based catalyst for selective hydrogenation of acetylene
KR100449965B1 (en) Selective Hydrogenation Catalysts and How to Use the Catalysts
JP2004529759A (en) Process for selective hydrogenation of alkynes and catalyst therefor
US6054409A (en) Selective hydrogenation catalyst and a process using that catalyst
KR101644665B1 (en) Selective catalytic hydrogenation of alkynes to corresponding alkenes
KR101972121B1 (en) Method for producing catalysts of high regeneration efficiency for dehydrogenation of light straight-chain hydrocarbons
JPH01159057A (en) Catalyst for selective hydrogenation of unsaturated hydrocarbon
KR100229236B1 (en) A catalyst for selective hydrogenation of acetylene and its preparation method
KR100505531B1 (en) Pd-La-Si catalyst for selective hydrogenation of acetylene and production method of the same
US6624338B2 (en) Rhenium-and caesium-based metathesis catalyst and a process for converting C4 olefinic cuts by metathesis
KR100478333B1 (en) Pd-Nb catalyst for selective hydrogenation of acetylene and production method of the same
KR100505526B1 (en) Pd-Ti-K catalyst for selective hydrogenation of acetylene and production method of the same
KR100505519B1 (en) Pd-La catalyst for selective hydrogenation of acetylene and production method of the same
KR20000059743A (en) Hydrogenation catalyst for selectively converting a triple bonded, conjugated double bonded or allene-type hydrocarbon and method of preparing the same
KR20230060032A (en) Process for Selectively Hydrogenating Gas Mixture Having Higher Acetylene Contents

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee