KR100503134B1 - A wastewater treatment methods - Google Patents

A wastewater treatment methods Download PDF

Info

Publication number
KR100503134B1
KR100503134B1 KR10-2003-0003717A KR20030003717A KR100503134B1 KR 100503134 B1 KR100503134 B1 KR 100503134B1 KR 20030003717 A KR20030003717 A KR 20030003717A KR 100503134 B1 KR100503134 B1 KR 100503134B1
Authority
KR
South Korea
Prior art keywords
nitrogen
wastewater
denitrification
nitrite
nitrate
Prior art date
Application number
KR10-2003-0003717A
Other languages
Korean (ko)
Other versions
KR20040066600A (en
Inventor
진창숙
전윤중
박재규
주춘성
김윤관
Original Assignee
(주)전테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)전테크 filed Critical (주)전테크
Priority to KR10-2003-0003717A priority Critical patent/KR100503134B1/en
Publication of KR20040066600A publication Critical patent/KR20040066600A/en
Application granted granted Critical
Publication of KR100503134B1 publication Critical patent/KR100503134B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/16Upward filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

종래에도 여러 방법에 의한 폐수처리 방법이 있었으나, 이들은 모두 비 경제적인 문제점과 탈질과 폐수의 색을 동시에 처리하지 못하는 문제점이 있다.Conventionally, there have been wastewater treatment methods using various methods, but all of them have problems of uneconomical problems and a problem of not simultaneously treating denitrification and color of wastewater.

본 발명은 이러한 문제점을 해결하기 의하여 폐수를 자갈층과 황과 탄산칼슘의 혼합체(S0 +CaCO3)를 충진한 반응조의 하부에서 상향류식으로 유입시키면서 암모니아성 질소가 많을 경우나 착색문제가 있는 경우에는 간헐폭기함에 의해 호기조건과 무산소조건을 유지시켜 호기조건에서는 암모니아성 질소를 질산성 질소 및 아질산성 질소로 질산화하면서 호기조건에서의 황산화반응에 의해 탈색하고,In order to solve this problem, the wastewater is introduced into the bottom of the reaction tank filled with a gravel layer and a mixture of sulfur and calcium carbonate (S 0 + CaCO 3) while having a large amount of ammonia nitrogen or when there is a coloring problem. Intermittent aeration maintains aerobic and anoxic conditions. Under aerobic conditions, ammonia nitrogen is nitrated with nitrate nitrogen and nitrite nitrogen, and decolorized by a sulfation reaction under aerobic conditions.

무산소조건에서는 무산소조건에서의 황산화반응에 의해 질산성 질소 또는 아질산성 질소를 질소가스로 탈질하며, 질산성 질소 또는 아질산성 질소가 많을 경우에는 폭기하지 않고 무산소조건을 유지하여 무산소조건에서의 황산화반응에 의해 질산성 질소 또는 아질산성 질소를 질소가스로 탈질을 수행하여 질소성분 및 색을 제거하는 방법에 의해 폐수를 정화시키는데 그 특징이 있다.In anoxic conditions, denitrification of nitrate nitrogen or nitrite nitrogen with nitrogen gas is carried out by a sulfation reaction under anoxic conditions, and in the case of large amounts of nitrate nitrogen or nitrite nitrogen, sulfuric acid is maintained without an aeration without maintaining aeration. It is characterized in that the wastewater is purified by a method of removing the nitrogen component and color by performing denitrification of nitrate nitrogen or nitrite nitrogen with nitrogen gas by the oxidation reaction.

Description

폐수처리 방법{A WASTEWATER TREATMENT METHODS}Wastewater Treatment Methods {A WASTEWATER TREATMENT METHODS}

본 발명은 폐수처리 방법에 관한 것으로 좀 더 상세하게는 황산화반응을 이용한 C/N비가 낮은 폐수의 탈질과 탈색을 행하기 위한 폐수처리 방법에 관한 것이다.The present invention relates to a wastewater treatment method, and more particularly, to a wastewater treatment method for denitrification and decolorization of wastewater having a low C / N ratio using a sulfation reaction.

종래부터 폐수의 정화등에 관하여 많은 기술이 있다.Conventionally, there are many techniques regarding the purification of waste water.

먼저 질소제거에 관한 종래 기술에 대하여 살펴보고 이후에서 탈색에 관한 종래의 기술에 대하여 살펴보기로 한다.First, the conventional technology related to nitrogen removal will be described, and then the conventional technology related to decolorization will be described.

질소제거에 관한 종래의 기술을 살펴보면 다음과 같다.Looking at the prior art with respect to nitrogen removal as follows.

일반적으로 폐수 중에 함유되어 있는 질소제거를 위해 가장 많이 이용되고 있는 방법으로는 종속영양미생물을 이용한 질산화와 탈질에 의한 생물학적 질소제거법이 알려져 있다.In general, as the most widely used method for removing nitrogen contained in wastewater, biological nitrogen removal by nitrification and denitrification using heterotrophic microorganisms is known.

이는 암모니아성 질소(NH4 +-N)가 독립영양미생물에 의해 아질산성 질소(NO2 --N) 또는 질산성 질소(NO3 --N)로 전환하는 과정으로, 암모니아 질소에서 아질산성 질소로 산화될 때는 Nitrosomonas, Nitrosococcus, Nitrosobacillus등의 미생물이 관여하며, 아질산성 질소에서 질산성 질소로 산화될 때는 Nitrobacter, Nitrosocystis등이 관여한다.This is a process in which ammonia nitrogen (NH 4 + -N) is converted to nitrite nitrogen (NO 2 -- N) or nitrate nitrogen (NO 3 -- N) by autotrophic microorganisms. When oxidized to nitrosomonas, Nitrosococcus, Nitrosobacillus, etc., microorganisms are involved. When oxidized from nitrous nitrogen to nitrate nitrogen, Nitrobacter and Nitrosocystis are involved.

그러나, 독립영양미생물의 증식속도는 종속영양미생물에 비해 매우 늦으며, 미생물증식량도 적다.However, the rate of proliferation of autotrophic microorganisms is much slower than that of heterotrophs, and the microbial growth rate is low.

Nitrosomonas와 Nitrobacter의 세포생성율은 0.15mg-cell/mg-NH4 +-N, 0.02mg-cell/mg-NO2 --N이며, 산소소비율은 3.22mg-O2/mg-NH4 +-N, 1.11mg-O2/mg-NO2 --N, 그리고 알칼리도의 감소량은 7.14mg -Alkalinity/mg-NH4 +-N이다.Nitrosomonas and Nitrobacter produced 0.15 mg-cell / mg-NH 4 + -N, 0.02mg-cell / mg-NO 2 -- N, and oxygen consumption was 3.22mg-O 2 / mg-NH 4 + -N , 1.11mg-O 2 / mg-NO 2 -- N, and the decrease in alkalinity are 7.14mg -Alkalinity / mg-NH 4 + -N.

즉, 질산화반응은 산소가 필요하며, 다량의 질산화균을 반응조내에 확보ㆍ유지시키지 않으면 안된다. In other words, the nitrification reaction requires oxygen, and a large amount of nitrification bacteria must be secured and maintained in the reaction tank.

또한 다량의 알칼리도도 필요하므로 저하되는 pH를 조절하기 위해 pH 완충작용이 요구된다. In addition, a large amount of alkalinity is also required, so a pH buffering action is required to control the decreasing pH.

여기에 온도, BOD/TKN비, 암모니아성 질소농도 등도 질산화반응에 영향을 준다.Temperature, BOD / TKN ratio, and ammonia nitrogen concentration also affect nitrification.

탈질은 용존산소(DO)가 존재하지 않는 상태에서 질산성 질소 또는 아질산성 질소 등이 존재하는 상태(무산소상태; Anoxic condition)에서 Pseudomonas, Bacillus, Micrococcus등의 종속영양미생물에 의해 질산성 질소나 아질산성 질소가 질소가스(N2)로 전환되는 과정을 말한다.Denitrification is carried out in the presence of dissolved oxygen (DO) in the presence of nitrate nitrogen or nitrite nitrogen (Anoxic condition), Pseudomonas, It refers to a process in which nitrate nitrogen or nitrite nitrogen is converted to nitrogen gas (N 2 ) by heterotrophic organisms such as Bacillus and Micrococcus.

탈질은 질산성 질소가 아질산성 질소로 변환하는 과정과 아질산성 질소가 NO와 NO2를 경유하여 N2가스로 전환하는 과정으로 이루어진다.Denitrification consists of the conversion of nitrate nitrogen to nitrite nitrogen and the conversion of nitrite nitrogen to N2 gas via NO and NO 2 .

탈질반응에서는 2.3∼3.0mg as CaCO3/mg-N정도의 알칼리도가 생성된다.Denitrification produces an alkalinity of about 2.3 to 3.0 mg as CaCO 3 / mg-N.

질산화와 탈질을 동시에 수행하는 시스템에서는 질산화에서 저하되는 알칼리도를 어느 정도 높여줄 수 있다. In a system that simultaneously performs nitrification and denitrification, the alkalinity lowered in nitrification can be increased to some extent.

그러나, 종래의 종속영양미생물을 이용한 탈질반응에서는 전자공여체로서 유기탄소원을 필요로 한다. However, conventional denitrification using heterotrophic microorganisms requires an organic carbon source as an electron donor.

현재 가장 일반화되어 있는 질소제거법은 현탁활성슬러지를 이용한 순환식 질산화ㆍ탈질법이다.     At present, the most common nitrogen removal method is circulating nitrification and denitrification using suspended activated sludge.

이 방법은 무산소조-호기조로 이루어지며 폐수를 순환시킴에 의해 무산소조에서는 탈질, 호기조에서는 질산화가 일어나게 한다. This method consists of an anaerobic tank and an aerobic tank. By circulating the waste water, denitrification in the anoxic tank and nitrification occur in the aerobic tank.

그러나, 이 방법은 반응조를 각각 별도로 설치하지 않으면 안되므로 넓은 설치부지가 요구되며 호기조 용량을 크게 해야만 한다.However, this method requires a separate installation of the reaction tank, so a large installation site is required and the aerobic capacity must be increased.

반응조 용적이 작으면서 안정된 처리수를 얻기 위해서 현탁활성슬러지 대신에 활성슬러지 또는 질산화균이나 탈질균을 고정화한 담체를 충진하는 방법도 이용되고 있다. 그러나, 담체비용이 높다는 단점이 있다.In order to obtain stable treated water with a small reaction tank volume, a method of filling activated sludge or a carrier immobilized with nitrifying or denitrifying bacteria is also used instead of suspending activated sludge. However, there is a disadvantage that the carrier cost is high.

단일조에서 질산화ㆍ탈질을 행하는 방법으로는, 회분식 활성슬러지법(SBR process)이 있다. As a method of nitrifying and denitrifying in a single bath, there is a batch activated sludge process (SBR process).

이 공정은 활성슬러지법의 변법으로 [유입-반응-침전-방류-대기]의 5과정을 하나의 반응조에서 순차적으로 행하여 침전공정에서는 폭기를 중지하여 무산소조를 만들어 탈질을 수행한다. This process is a variation of the activated sludge method, and five processes of [inflow-reaction-precipitation-discharge-atmosphere] are sequentially performed in one reactor, and in the precipitation process, aeration is stopped to form an oxygen-free tank to perform denitrification.

이 공정은 장치가 간단하고 유지관리가 용이하며 설치 및 운전비용도 낮다는 이점이 있다. This process has the advantage of a simple device, easy maintenance and low installation and operating costs.

다만 반응조에 스컴이 축적되기 쉬우며 상등수의 배출장치가 필요하다. However, scum is easy to accumulate in the reactor and a discharge device of supernatant is required.

회분식 활성슬러지법(SBR)처럼 펙키지화를 목표로 하여 단일반응조식의 질소제거장치로서 개발된 장치의 원리와 장점 및 단점을 표 1에 나타내었다.Table 1 shows the principle, advantages, and disadvantages of the device developed as a nitrogen-removing device for a single reaction tank with the aim of packaging as a batch activated sludge method (SBR).

그리고, 위에 기술한 어떤 방법도 질소농도가 높으면서 유기물농도가 낮은, 즉 C/N비가 낮은 폐수인 경우에는, 질산화에 필요한 산소공급에 많은 에너지가 요구되며, 탈질을 위해서는 전자공여체를 첨가하지 않으면 안된다. In any of the above-described methods, when the nitrogen concentration is high and the organic matter concentration is low, that is, the C / N ratio is low, the waste water requires a lot of energy to supply the oxygen required for nitrification and an electron donor must be added for the denitrification. .

일반적으로 가장 많이 사용되고 있는 것은 메탄올이다. The most commonly used is methanol.

그러나, 메탄올 첨가의 경우에는 적절한 첨가량의 제어가 곤란하고 메탄올 자체의 독성때문에 처리수에 메탄올이 잔존해서는 안된다. However, in the case of methanol addition, it is difficult to control the proper amount of addition and methanol should not remain in the treated water due to the toxicity of methanol itself.

양은 처리해야할 질소량의 3배이상이 필요하며 유지비용도 무시할 수 없다. The amount requires more than three times the amount of nitrogen to be treated and the maintenance costs cannot be ignored.

상기 기술한 단점을 보완한 새로운 기술로 최근 주목받고 있는 것이 황을 이용한 탈질법이다.A new technique that supplements the above disadvantages is the denitrification using sulfur.

황을 이용한 탈질은 Thiobacillus denitrificans로 대표되는 황산화미생물이 최종수용체로서 NO2 -, NO3 -, NO, N2O를 사용하면서 일어나는 탈진반응이다.Denitrification with NO 2 sulfur is a sulfated microorganisms represented by Thiobacillus denitrificans as the final receptor-a, burnout reaction occurs while using the NO, N 2 O -, NO 3.

황탈질반응의 최종산물은 SO4 2-로 O2, NO2 -, NO 3 -, NO, N2O가 황산화의 최종수소수용체로 사용되나, 최종 수소수용체로서는 NO2 -나 NO3 -보다 O2를 선호하므로 황탈질반응은 O2가 존재하지 않고 NO2 -나 NO3 -가 존재하는 무산소상태에서만이 기대할 수 있다.The final product of sulfur in NO x removal reaction is SO 4 2- O 2, NO 2 -, NO 3 -, NO, N 2 O is used, but as the final hydrogen acceptor of sulfation, as the final hydrogen acceptor NO 2 - or NO 3 - more preferred O 2 because the sulfur denitrification without the O 2 present nO 2 - can be expected only in the presence of an oxygen-free state - or nO 3.

T. denitrificans는 절대화학독립영양미생물로 CO2, HCO3 -, CO3 2-등의 무기탄소를 탄소원으로 이용하여 생육한다.T. denitrificans is absolute CO 2, HCO 3 by chemical autotrophic microorganisms - to grow using the arms of carbon, CO 3 2-, etc. as a carbon source.

T. denitrificans의 황산화반응에서는 S0, S2 -, S2O3 2-, S4O6 2-, SO3 2-가 수소공여체로서 이용되므로 산화수가 적은 황화합물이 탈질효율이 높다.The sulfation of the T. denitrificans S 0, S 2 - , S 2 O 3 2-, S 4 O 6 2-, SO 3 2- is a high denitrification efficiencies are low oxidation state sulfur compounds so used as a hydrogen donor.

T. denitrificans에 의한 황탈질반응에 있어서 수소수용체로서 황화합물의 비용을 전자 당량당 약품비용으로 비교한 결과 S0가 가장 경제적인 수소공여체라고 보고되어 있다(Bisogni, J. J.r. & Driscoll, C. T. Jr. : Denitrification using thiosulfate and sulfide, J. Environ. Eng. Div. Proc. ASCE, Vol. 103, p. 593~604(1977)).Comparison of the cost of the sulfur compounds in drug costs per electronic equivalent as a hydrogen acceptor in a sulfur denitrification reaction by the T. denitrificans has been reported that S 0 is the most cost-effective hydrogen donor (Bisogni, JJr & Driscoll, CT Jr.: Denitrification using thiosulfate and sulfide, J. Environ. Eng. Div. Proc. ASCE, Vol. 103, p. 593-604 (1977).

S0는 자원이 풍부하고 가격이 저가이며, 저장이 쉽고 취급성이 좋으며, 독성이 없는 등의 장점이 있으나, 물에 쉽게 용해되지 않는다는 단점이 있다.S 0 has the advantages of abundant resources, low price, easy storage, good handling, no toxicity, etc., but it does not dissolve easily in water.

그리고 황탈질미생물은 응집성이 없어 미생물의 집적과 고액분리가 어렵다고 알려져 있다(橋本奬, バイオテクノロジ-活用の高機能型活性汚泥法). And denitrifying microorganisms are known to be difficult to accumulate microorganisms and solid-liquid separation because they are not cohesive.

또한 황산화반응의 최종산물인 SO4 2-가 pH를 저하시키는 문제도 있다.There is also a problem that SO 4 2- , the final product of the sulfation reaction, lowers the pH.

국내의 황을 이용한 탈질 기술로는 (주)화인프로텍의 응집침전 및 입상황을 이용한 생물막여과 하수처리기술, (주)현대중공업의 황탈질공정을 이용한 알칼리도 첨가형 하 폐수 고도처리기술, (주)동명산업의 SPAD공법이 있다.     As the desulfurization technology using sulfur in Korea, biofilm filtration sewage treatment technology using coagulation sedimentation and granularity of FineProtec Co., Ltd., and advanced alkalinity wastewater treatment technology using desulfurization process of Hyundai Heavy Industries Co., Ltd. There is SPAD method of same name industry.

이들 공정들은 황을 이용한다는 면에서는 유사하나 각각 다르다. These processes are similar in terms of using sulfur but are different.

상기 (주)화인프로텍의 경우에는 입상황(S0)를 충진시킨 무산소반응조에 폐수를 하향류(Down-Current)로 유입시키고, 탈질반응시 소모되는 알카리의 일부를 보충해주기 위하여 정량펌프로 일정량씩 탄산나트륨(Na2CO3)을 생물막여과(질산화조)의 처리수가 입상황탈질조로 이송되는 배관에 라인혼합(Line Mixing)하는 방식으로 혼합되도록 투입하여 사용하고, 알카리제의 투입은 pH와 연동운전으로 투입한다고 한다.In the case of FINEPROTEC Co., Ltd., the wastewater flows into the down-current into an oxygen-free reaction tank filled with a granular state (S 0 ), and a fixed amount is provided with a fixed amount pump to replenish some of the alkali consumed during the denitrification reaction. Thick sodium carbonate (Na 2 CO 3 ) is used to mix the treated water of the biofilm filtration (nitrification tank) into the line conveyed to the granular denitrification tank in a line mixing manner. It is said to be put in operation.

그리고 (주)현대중공업의 경우에는 입상황(S0)를 충진시킨 황탈질조에 폐수를 상향류(Up-Current)로 유입시키고, 탈질반응시 소모되는 알카리의 일부를 보충해주기 위하여 알칼리도 물질 충전조를 두어 석회석, 조개껍질, 굴껍질, 계란껍질, 돌로마이트, 탄산마그네슘 등을 포함한 탄산계 알칼리도 물질을 충전하고 용출된 알칼리도 물질을 정량펌프로 황탈질조에 투입시킨다고 한다.In the case of Hyundai Heavy Industries Co., Ltd., the wastewater is introduced into the denitrification tank filled with the granular state (S 0 ) to the Up-Current, and the alkaline material filling tank is used to replenish some of the alkali consumed during the denitrification reaction. It is said to fill carbonate-based alkalinity materials, including limestone, shells, oyster shells, eggshells, dolomite, magnesium carbonate, etc., and the eluted alkalinity materials are fed into the denitrification tank with a metering pump.

(주)화인프로텍과 (주)현대중공업의 황탈질공정은 알칼리도 물질을 외부에서 투입하며, (주)동명산업의 경우에는 알칼리도 물질을 외부에서 투입하지 않고 입상황과 석회석을 층으로 충진한 황 접촉조에 메탄올을 투입하여 독립영양 탈질과 종속영양 탈질을 동시에 이용하고자 한 공법이다. The denitrification process of FineProtec Co., Ltd. and Hyundai Heavy Industries Co., Ltd. injects alkalinity materials from the outside. In the case of Dongmyung Industrial Co., Ltd. It is a method to use autotrophic and heterotrophic denitrification at the same time by adding methanol to the contact tank.

이러한 황을 이용한 공법은 일본국 공개특허 평4-9119호에도 나타나 있는데 이는 폐수중의 질소와 인을 동시에 제거하는 기술로 기존의 호기-혐기활성슬러지법에 황을 첨가하여 황탈질을 행한 것이다.This method using sulfur is also shown in Japanese Patent Application Laid-open No. Hei 4-9119, which is a technique for simultaneously removing nitrogen and phosphorus in wastewater, and desulfurization is performed by adding sulfur to the existing aerobic-anaerobic activated sludge process.

상기 기술한 황탈질공법들은 기존의 황탈질공법의 탈질시 알칼리도가 파괴되며 특히 고농도의 질산성질소를 함유하고 알칼리도가 낮은 폐수의 경우 pH가 떨어져 탈질이 더 이상 진행되지 않는다는 단점을 보완하기 외부에서 알칼리도 물질을 투입하거나, 메탄올을 소량 투입하거나, 반응조 내에 황과 함께 충진시키는 방법을 채택한 것이다. The above-mentioned denitrification methods deteriorate alkalinity in denitrification of the conventional denitrification method, and especially in the case of wastewater containing high concentration of nitrate nitrogen and low alkalinity, the pH is lowered so that denitrification does not proceed anymore. A method of adding an alkalinity substance, adding a small amount of methanol, or filling with sulfur in a reactor is adopted.

그러나 외부에서 알칼리도 물질이나 메탄올을 투입 시 반응조 내부에 황만이 존재하므로 초기 적용 시 황탈질균의 보유가 어려우며, 투입되는 알칼리도가 낮을 경우에는 탈질이 안 되며 SO4 2-생성량이 많아지면서 pH가 낮아져 탈질이 더 이상 진행되지 않는 단점이 있다.However, since only sulfur is present inside the reactor when the alkali material or methanol is added from the outside, it is difficult to retain the denitrifying bacteria during the initial application, and when the alkalinity is low, the denitrification is not possible and the pH is lowered as the amount of SO 4 2- is increased. There is a disadvantage that denitrification no longer proceeds.

특히 질산성질소나 아질산성질소의 농도가 높은 경우에는 탈질이 곤란한 단점이 있다.In particular, when the concentration of nitrate nitrogen or nitrite nitrogen is high, denitrification is difficult.

그리고 투입되는 알칼리도와 용출되는 황의 비율이 맞지 않을 경우 알칼리도 물질중의 Ca2+와 황이 산화되면서 생성되는 SO4 2-이 반응하여 석고(CaSO 4)를 형성하여 바닥에 가라앉아 굳게 되면서 유입을 방해하는 문제점이 있다.And when the ratio of the alkalinity added and sulfur content is not correct, Ca 2+ in the alkalinity material reacts with SO 4 2- generated by oxidizing sulfur to form gypsum (CaSO 4 ), which sinks to the bottom and hardens the inflow. There is a problem.

다음으로 탈색에 관한 종래의 기술을 살펴보면 다음과 같다.Next, a description will be given of a conventional technology related to decolorization.

폐수의 탈색에 관한 기술로는 이온교환처리법, 산화분해법, 자외선조사법, 과산화수소 첨가 자외선조사법 등이 있다.Techniques related to decolorization of wastewater include ion exchange treatment, oxidative decomposition, ultraviolet irradiation, and hydrogen peroxide-added ultraviolet irradiation.

최근에는 활성탄흡착법이나 오존주입법을 이용한 탈색처리도 행해지고 있다.Recently, decolorization treatment using activated carbon adsorption or ozone injection has also been carried out.

그러나, 이들 방법은 약품비 등의 비용이 많이 들며 전력비용도 높다는 문제점이 있다. However, these methods have a problem in that the cost of chemicals is high and the power cost is high.

이러한 문제점의 해결을 위해 처리비용이 낮은 방법으로는 토양흡착법이 있으나 토양의 폐쇄문제와 사용 후의 토양교환이 어렵다는 단점이 있다. In order to solve this problem, there is a soil adsorption method which has a low treatment cost, but there are disadvantages of soil closure and difficulty in exchanging soil after use.

막여과법의 경우에는 원래 음료수의 색 제거를 위한 기술로 원수의 색 농도가 높을 때는 응집제를 첨가한 후에 막여과 행하던가 활성탄처리를 추가하지 않으면 안되는 문제점이 있다.In the case of the membrane filtration method as a technique for removing the original color of the drink, when the color concentration of the raw water is high, there is a problem that the membrane is filtered or added to the activated carbon treatment after the flocculant is added.

본 발명은 상술한 종래의 선행기술이 가지고 있는 문제점을 해결하기 위한 것으로 본 발명은 다음과 같은 특징이 있다.The present invention is to solve the problems of the prior art described above, the present invention has the following features.

질산성질소 및 아질산성질소를 함유한 C/N비가 낮은 폐수, 즉, 원래부터 유기물농도가 낮고 질소농도(특히 질산성질소나 아질산성질소)가 상대적으로 높은 폐수나 폐수처리과정에서 유기물은 제거되었으나 질소는 거의 제거되지 않고 배출되는 폐수, 예를 들면, 혐기공정을 거친 축산폐수, 화학공장 폐수, 도금폐수, 매립지 침출수, 농업배수, 양식장 폐수, 퇴비화시설의 배출수, 질산성질소에 오염된 지하수 등의 질소제거는 믈론이고 동시에 폐수의 색 제거 방법을 제공하기 위함에 있다.Wastewater with a low C / N ratio containing nitrous and nitrous nitrogen, that is, organic matter was removed during the treatment of wastewater or wastewater, which was originally low in organic matter and relatively high in nitrogen (especially nitrate or nitrous nitrogen). Nitrogen is discharged with little removal, for example, livestock wastewater that has undergone anaerobic processes, chemical plant wastewater, plating wastewater, landfill leachate, agricultural drainage, aquaculture plant wastewater, composting plant wastewater, groundwater contaminated with nitrate nitrogen, etc. Nitrogen removal is melon and at the same time to provide a method for color removal of waste water.

이러한 것은 황산화반응 경로에서 생성되는 아황산이온(SO3 2-)이 환원성을 지니고 있으며, 이 환원력이 표백에 이용되고 있는 점에 착안하여 황산화균의 황산화반응을 이용하여 질소 제거 뿐 아니라 탈색도 가능하게 하였다.This is based on the fact that sulfite ions (SO 3 2- ) generated in the sulfation reaction pathway have reducibility, and the reducing power is used for bleaching. Made it possible.

본 발명의 폐수 처리 방법을 실시하기 위하여 장치의 구성을 첨부한 도면 도 1에 의하여 설명을 하고, 이러한 장치를 이용한 본 발명의 폐수처리 방법에 대하여 실시예를 들어 설명하겠지만, 본 발명의 권리범위는 하기에서 적시하고 있는 실시예들에만 한정되는 것은 아님을 밝힌다.In order to implement the wastewater treatment method of the present invention, a configuration of an apparatus will be described with reference to FIG. 1, and the wastewater treatment method of the present invention using such a device will be described with reference to Examples. It should be noted that the present invention is not limited to the embodiments described below.

먼저 본 발명의 방법을 실시하기 위한 장치를 살펴보면 다음과 같다.First, a device for implementing the method of the present invention will be described.

일정한 크기를 가진 반응조(10)의 하단에 폐수 유입배관(3)과 펌프(4)를 구성하여 상기 반응조(10)의 하부에서 폐수를 유입할 수 있도록 하고, 상기 반응조(10)의 내부에는 반응조바닥(11)에서 일정한 간격을 두고 스틸망(9)를 설치한다음 상기 스틸망(9)의 상단에 자갈층(1)을 형성하고, 상기 자갈층(1)의 상단에는 황과 탄산칼슘의 혼합체(S0+CaCO3: SC pellet)를 적층한 황과 탄산칼슘의 혼합체(S0+CaCO3: SC pellet)층(2)을 구성한다.A waste water inlet pipe 3 and a pump 4 are formed at the lower end of the reaction tank 10 having a predetermined size so that the waste water can be introduced from the lower portion of the reaction tank 10, and the reaction tank 10 is inside the reaction tank 10. After installing the steel mesh 9 at regular intervals at the bottom 11, a gravel layer 1 is formed on the top of the steel mesh 9, and a mixture of sulfur and calcium carbonate is formed on the top of the gravel layer 1 ( S 0 + CaCO 3: SC constitutes the pellet) layer 2: a mixture of sulfur and calcium carbonate stacking the pellet SC) (S 0 + CaCO 3.

그리고 상기 반응조의 상단에는 가스배출구(8)와 측면에 처리수 배출구(7)를 구성한다.In addition, a gas discharge port 8 and a treated water discharge port 7 are formed at an upper end of the reaction tank.

그리고 폐수의 종류에 따라 공기의 공급이 필요한 경우를 위하여 공기유입관(5)을 상기 반응조(10)의 하단에 설치하여 송풍기(6)에 의한 공기의 공급을 행할 수 있도록 구성되어 있다.In order to supply air according to the type of wastewater, the air inlet pipe 5 is installed at the lower end of the reactor 10 so that the air can be supplied by the blower 6.

이러한 본 발명의 폐수처리장치는 폐수를 펌프(4)의 작동을 통하여 폐수 유입배관(3)을 통해 반응조(10)의 하부에서 상향시키는 방법을 통하여 공급한다.The wastewater treatment apparatus of the present invention supplies the wastewater through the operation of the pump (4) through the wastewater inlet pipe (3) through the bottom of the reaction tank (10).

이러한 폐수는 스틸망(9)의 상단에 적층된 자갈층(1)을 통과하면서 1차 정화 및 황과 탄산칼슘의 혼합체(S0+CaCO3: SC pellet)층(2)을 통과하면서 2차로 정화되게 된다.This waste water is first purified while passing through a gravel layer 1 stacked on top of the steel mesh 9 and secondly while passing through a mixture of sulfur and calcium carbonate (S 0 + CaCO 3 : SC pellet) layer (2). Will be.

이때 폐수와 황과 탄산칼슘의 혼합체와의 화학반응에 의해 발생된 N2를 포함한 공기는 가스배출구(8)를 통하여 배출되고, 정화된 처리수는 배출구(7)를 통하여 배출하게 된다.At this time, the air containing N 2 generated by the chemical reaction between the waste water and the mixture of sulfur and calcium carbonate is discharged through the gas outlet 8, and the purified treated water is discharged through the outlet 7.

이때 폐수의 종류에 따라 공기의 공급이 필요한 경우에는 송풍기(6)로 송풍하는 방법에 의하여 공기를 공기유입관(5)을 통해 상기 반응조(10)의 내부로 공급하게 된다.In this case, when air is required according to the type of waste water, air is supplied to the inside of the reaction tank 10 through the air inlet pipe 5 by a method of blowing air to the blower 6.

이러한 본 발명의 폐수처리 장치를 감안하여 아래에서 실시한 실시예에 의하여 본 발명을 상세히 설명한다.In view of the wastewater treatment apparatus of the present invention will be described in detail the present invention by the embodiment carried out below.

실시예 1Example 1

혐기공정처리후의 축산폐수Livestock wastewater after anaerobic treatment

처리대상 원수는 UASB공법으로 혐기처리한 후의 양돈폐수를 이용하였다. The raw water to be treated was swine wastewater after anaerobic treatment using the UASB method.

식종원으로는 축산폐수처리시설의 활성슬러지(MLSS : 6,000mg/L)를 채취하여 상기한 폐수 유입배관(3)을 통해 반응조(10)의 저부에서 상향시키는 상향류식으로 8시간동안 유입시켰다. As a breeding source, activated sludge (MLSS: 6,000 mg / L) of the livestock wastewater treatment facility was collected and introduced for 8 hours in an upward flow type upwardly from the bottom of the reactor 10 through the wastewater inflow pipe 3.

이러한 상태에서 20여 일간 적응시킨 후, 본 실험을 수행하였다. After adapting for 20 days in this state, the experiment was performed.

혐기처리후의 양돈폐수의 경우, 암모니아성질소(NH4-N)농도가 높기 때문에 질산화와 탈질, 그리고 탈색이 필요하므로 간헐폭기방식으로 운전하였다.Swine wastewater after anaerobic treatment was operated by intermittent aeration because of high ammonia nitrogen (NH 4 -N) concentration, which requires nitrification, denitrification, and decolorization.

원수성상은 표 1과 같다.Raw water phase is shown in Table 1.

표1.원수성상(혐기성처리후의양돈폐수)Table 1. Raw water phase (swine wastewater after anaerobic treatment)

pH(-)pH (-) Color(U)Color (U) TOC(mg/L)TOC (mg / L) T-P(mg/L)T-P (mg / L) PO4-PPO4-P Range (범위)Range 7.3∼7.77.3 to 7.7 96.5∼142396.5-1423 258∼354258-354 92.6∼138.992.6 to 138.9 Average (평균)Average -- 12011201 323.1323.1 112.4112.4 T-N(mg/L)T-N (mg / L) NH4-N(mg/L)NH 4 -N (mg / L) NO3-N(mg/L)NO 3 -N (mg / L) NO2-N(mg/L)NO 2 -N (mg / L) SO4-S(mg/L)SO 4 -S (mg / L) Range (범위)Range 228.6∼434.7228.6 ~ 434.7 213.8∼330.1213.8 to 330.1 5.5∼5.65.5 to 5.6 ND*ND * 17.3∼39.017.3-39.0 Average (평균)Average 314.5314.5 276.9276.9 5.55.5 ND*ND * 23.723.7

* ND : 검출 안 됨* ND: Not detected

처리 후의 유출수성상중 pH의 변화는 도 2에 도시하였다. The change in pH in the effluent phase after treatment is shown in FIG. 2.

그리고 T-N, NH4 +-N, T-P, PO4 2--P, TOC, 그리고 폐수의 색(Color)의 제거효율은 표 2에 나타내었다.And the removal efficiency of the color of TN, NH 4 + -N, TP, PO 4 2- -P, TOC, and the waste water is shown in Table 2.

표 2. 혐기성처리후 양돈폐수의 본 발명 적용후의 처리효율(HRT :8 hr)Table 2. Treatment efficiency after application of the present invention to swine wastewater after anaerobic treatment (HRT: 8 hr)

색제거율Color removal rate T-N제거율T-N removal rate NH4-N제거율NH 4 -N removal rate T-P제거율T-P removal rate PO4-P제거율PO 4 -P removal rate TOC제거율TOC removal rate 62.73%62.73% 54.31%54.31% 61.38%61.38% 68.22%68.22% 64.13%64.13% 78.20%78.20%

HRT 8시간으로 간헐폭기한 결과 표 2에 나타낸 것 같이, T-N, NH4 +-N, T-P, PO4 2--P, TOC, 그리고 폐수의 색(Color)이 50%이상 제거되었다.As a result of intermittent aeration with 8 hours of HRT, as shown in Table 2, more than 50% of TN, NH 4 + -N, TP, PO 4 2- -P, TOC, and wastewater were removed.

이때 제거효율을 높이기 위해 HRT를 12시간으로 운전한 결과, 표 3에 나타낸 것과 같이 전체적으로 70%이상의 제거효율을 보였다.At this time, HRT was operated for 12 hours to increase the removal efficiency. As shown in Table 3, the removal efficiency was over 70%.

표 3. 혐기성처리후 양돈폐수의 본 발명 적용후의 처리효율(HRT :12 hr)Table 3. Treatment efficiency after application of the present invention to swine wastewater after anaerobic treatment (HRT: 12 hr)

색제거율Color removal rate T-N제거율T-N removal rate NH4-N제거율NH 4 -N removal rate T-P제거율T-P removal rate PO4-P제거율PO 4 -P removal rate TOC제거율TOC removal rate 70.64%70.64% 73.58%73.58% 71.53%71.53% 80.14%80.14% 76.42%76.42% 72.72%72.72%

실시예 2Example 2

화학공장폐수Chemical Plant Wastewater

화학공장에서 배출된 폐수를 상기한 실시예1과 동일한 방법으로 상기한 폐수 유입배관(3)을 통해 반응조(10)의 저부에서 상향시키는 상향류식으로 공급한 다음, 화학공장에서 배출된 폐수의 경우 착색문제가 거의 없으므로 질소제거만을 목적으로 무산소조건으로 운전하였다. In the case of wastewater discharged from the chemical plant, the wastewater discharged from the chemical plant is supplied in an upflow manner upward from the bottom of the reactor 10 through the wastewater inlet pipe 3 in the same manner as in Example 1 above. Since there is almost no coloring problem, it was operated under anoxic conditions for the purpose of nitrogen removal only.

슬러지 식종 후 2일간 순응시킨 뒤, HRT 12시간으로 운전한 결과를 표 4에 나타내었다. After acclimation for 2 days after the sludge planting, the results of operating in HRT 12 hours are shown in Table 4.

표 4. 화학공장폐수의 본 발명 적용후의 처리효율(HRT :12 hr)Table 4. Treatment efficiency after application of the present invention to chemical plant wastewater (HRT: 12 hr)

Time(days)Time (days) pHpH T-N(ppm)T-N (ppm) T-N(%)T-N (%) NH4-N(ppm)NH 4 -N (ppm) NH4-N(%)NH 4 -N (%) 원수enemy 7.47.4 132132 -- 40.2240.22 -- 2.52.5 7.27.2 4242 68.1868.18 17.6717.67 56.0756.07 3.53.5 7.27.2 3939 70.4570.45 16.3216.32 59.4259.42 4.54.5 7.27.2 3636 72.7372.73 16.7816.78 58.2858.28 5.55.5 7.37.3 3535 73.4873.48 13.9813.98 65.2465.24

pH는 중성에서 거의 변화가 없었으며 T-N제거율은 약 70%로 시간이 경과할수록 제거율은 증가하였다. The pH was almost unchanged from neutral and the removal rate of TN was about 70%.

NH4 +-N 역시 시간 경과에 따라 제거효율이 증가되었다.NH 4 + -N also increased the removal efficiency over time.

통상적으로 황을 이용한 탈질공법의 경우 탈질만 일어나고 질산화(암모니아질소 제거)는 거의 일어나지 않는다. In general, denitrification using sulfur causes only denitrification and little nitrification (ammonia nitrogen removal).

그러나 본 발명의 경우에는 표 3에서 보여주는 것과 같이 간헐폭기한 조건(암모니아 제거율 : 약 70%)뿐만 아니라 표 4에서 보여주는 것과 같이 무산소조건에서도 암모니아의 제거가 약 60%정도 일어난다. However, in the case of the present invention, as shown in Table 3, the removal of ammonia occurs in anoxic conditions as well as in intermittent aeration conditions (ammonia removal rate: about 70%) as shown in Table 4.

이것은 반응조내의 pH 등의 조건이 황산화탈질균만을 위한 것이 아니라 질산화균 등도 존재할 수 있는 조건이 되기 때문이다. This is because conditions such as pH in the reaction tank are not only for desulfurization denitrification bacteria but also conditions for nitrifying bacteria and the like.

즉 본 발명은 탈질(질산성질소 및 아질산성질소의 제거)뿐만 아니라 질산화(암모니아성질소의 제거)에도 매우 유리한 획기적인 공법이라고 할 수 있다. That is, the present invention can be said to be a breakthrough method that is very advantageous for nitrification (removal of ammonia nitrogen) as well as denitrification (removal of nitrate nitrogen and nitrite nitrogen).

또한 상기 결과에서 볼 때 초기에 식종슬러지의 순응기간(표 4에서는 약 2일)을 좀더 길게(약 2주정도) 한다면 좀더 제거효율을 높일 수 있으리라 사료된다.In addition, from the above results, it is considered that if the acclimation period of the seedling sludge (about 2 days in Table 4) is longer (about 2 weeks), the removal efficiency may be increased.

실시예 3 Example 3

반도체생산 공장폐수Semiconductor production plant wastewater

반도체 생산 공장폐수의 경우에는 처리해야 할 유입원수의 T-N농도가 약 450ppm으로 NO3 +-N이 대부분을 차지하고 있으며, CODCr농도가 약 800mg/L이었다.In the case of semiconductor production factory waste water, the concentration of TN inflow raw water to be treated, and accounts for most of the NO 3 -N + to about 450ppm, CODCr concentration was about 800mg / L.

상기한 실시예 1의 경우와 같이 공급하여 2일간 처리대상 폐수를 유입시켜 적응시킨 후, HRT 24시간으로 하여 10일간 운전하였다. After supplying and adapting wastewater to be treated for 2 days in the same manner as in Example 1 described above, HRT was operated for 24 hours for 10 days.

그 결과 도 3에 나타낸 것과 같이 시간이 경과할수록 T-N과 CODCr이 감소되어 10일후에는 90%이상의 제거율을 보였다. As a result, as shown in FIG. 3, T-N and CODCr decreased as time passed, and the removal rate was more than 90% after 10 days.

도 4에 나타낸 pH변화를 보면 유입수의 pH는 6.8∼7.2였으나 본 발명의 황산화탈질조를 거친후의 처리수는 7.5∼8.0으로 약간 증가하였다. 4, the pH of the influent was 6.8 to 7.2, but the treated water after the sulphate denitrification tank of the present invention slightly increased to 7.5 to 8.0.

통상적으로 황탈질반응의 경우, 시간경과에 따라 pH가 저하되어 황탈질성능이 저하되거나 더 이상 탈질이 이루어지지 않는다는 점이 큰 단점으로 알려져 있다. In general, in the case of the denitrification reaction, it is known that the pH is lowered with time, so that the denitrification performance is lowered or denitrification is no longer performed.

그러나 도 4, 그리고 도 2에서 보여주듯이 본 발명에서는 이러한 문제점을 해결하고 있을 뿐만 아니라 오히려 pH가 상승하였다. However, as shown in FIG. 4 and FIG. 2, the present invention not only solves this problem but also raises the pH.

이는 충진 담체인 상기 황과 탄산칼슘의 혼합체(S0+CaCO3: SC pellet)의 특성상 용출되는 SO4 2-이온, Ca2+이온, 그리고 CO3 -이온의 양이 균형을 이루고 있기 때문이라고 사료된다.This is because the amount of SO 4 2- ions, Ca 2+ ions, and CO 3 - ions eluted due to the characteristics of the mixture of sulfur and calcium carbonate (S 0 + CaCO 3 : SC pellet) as a filling carrier is balanced. It is feed.

실시예 4Example 4

가. 도금폐수(통합 폐수처리장에 유입된 도금폐수)end. Plating wastewater (plating wastewater flowing into the integrated wastewater treatment plant)

도금공단의 통합폐수처리장에 유입되는 폐수는 각 업체에서 금속 산처리 공정에서 사용하고 있는 질산에 의해 질소 농도가 높고 농도 및 량의 변동이 크다. 이러한 폐수를 상기한 실시예 1과 같이 공급하고, HRT 12시간으로 운전한 결과, 표 5에 나타낸 것과 같이 질소제거효율은 약 56.87 %였다. The wastewater flowing into the integrated wastewater treatment plant of the Plating Corporation has high nitrogen concentration and fluctuations in concentration and quantity due to nitric acid used by each company in the metal acid treatment process. The wastewater was supplied in the same manner as in Example 1 and operated for 12 hours in HRT, and as shown in Table 5, the nitrogen removal efficiency was about 56.87%.

CODCr의 경우에는 약 48.78%가 제거되었다. 이 결과로부터, In the case of CODCr, approximately 48.78% were removed. From this result,

HRT를 좀더 길게(약 12시간)하고 황산화탈질균의 실폐수 적응기간을 조금 더 길게 한다면 기존 폐수처리공정에 본 공정을 추가할 경우, 안정적인 질소 및 유기물제거가 가능하리라 판단된다. If the HRT is longer (approximately 12 hours) and the fluorinated denitrification bacteria have a longer period of adaptation to the actual wastewater, the addition of this process to the existing wastewater treatment process will enable stable nitrogen and organics removal.

표 5. 도금폐수의 본 발명에 의한 처리결과 (HRT: 6 hr)Table 5. Treatment result of the present invention of plating wastewater (HRT: 6 hr)

항 목 Item 배출허용기준 Emission allowance standard 유입수 Influent 유출수 Runoff 제거율(%) % Removal pHpH 5.8∼8.65.8-8.6 6.86.8 7.77.7 -- CODCrCODCr 130130 164164 8484 48.7848.78 T-NT-N 6060 211211 9191 56.8756.87 NH3-NNH 3 -N -- 3.23.2 9.069.06 -- NO2-NNO 2 -N -- 11.2411.24 00 100100 NO3-NNO 3 -N -- 164.95164.95 22.8922.89 86.1286.12 PO4-PPO 4 -P -- 0.270.27 0.550.55 -- T-PT-P 88 1.341.34 1.061.06 20.9020.90

나. 도금폐수(금속 가공과정에서 발생된 도금공정후의 폐수)I. Plating wastewater (wastewater after plating process generated during metal processing)

금속을 가공하는 과정에 도금공정이 있는 곳의 폐수를 채수하여 상기한 실시예1의 방법고 동일하게 공급함 다음, 4시간(HRT)동안 운전한 결과를 다음의 표 6에 나타내었다. In the process of metal processing, the wastewater of the place where the plating process is taken is supplied in the same manner as in Example 1, and then the result of operation for 4 hours (HRT) is shown in Table 6 below.

운전 결과 총질소 및 중금속 제거에 높은 처리효율을 나타냈으며 처리 후 수질은 규제기준을 안정적으로 달성하였다. The operation resulted in high treatment efficiency for the removal of total nitrogen and heavy metals, and the water quality after the treatment achieved stable regulatory standards.

이 공장에서는 크롬(Cr)도금을 하므로 T-Cr도 분석해 본 결과, 약 65%의 제거율을 보였다. Since the plant is chromium (Cr) plated, T-Cr was also analyzed, and the removal rate was about 65%.

즉, 중금속도 제거할 수 있는 가능성을 보여주었다.In other words, it showed the possibility of removing heavy metals.

표 6. 금속가공공장의 도금공정배출수의 본 발명의 적용 후 처리결과 (HRT: 4 hr)Table 6. Post-Application Treatment Results of Plating Process Effluent from Metal Processing Plant (HRT: 4 hr)

pHpH TNTN NH3-NNH 3 -N NO2-NNO 2 -N NO3-NNO 3 -N 유입수Influent 8.48.4 98.298.2 3.53.5 3.53.5 81.081.0 유출수Runoff 8.08.0 46.646.6 12.412.4 3.93.9 30.330.3 제거율(%)% Removal -- 53.053.0 -- -- 62.662.6 CODCrCODCr T-PT-P PO4-PPO 4 -P SO4 SO 4 CrCr 유입수Influent 38.038.0 0.30.3 0.00.0 609.5609.5 1.771.77 유출수Runoff 20.020.0 0.10.1 0.00.0 687.3687.3 0.620.62 제거율(%)% Removal 47.447.4 54.054.0 -- -- 6565

이상 상기에서 살펴 본 바와 같이 본 발명은 단일구조의 반응조에서 아질산까지의 아질산화와 황 탈질에 의한 질소제거, 그리고 황산화반응에 의한 탈색이 동시에 가능하고, 황산화반응에 의한 탈질 및 탈색방법은 비교적 가격이 싸고 다루기 쉬운 황과 탄산칼슘이라는 재료를 이용하여 간단한 운전으로 질소와 색이라는 곤란한 문제를 동시에 해결하고 있는 매우 경제적이다.As described above, the present invention enables simultaneous denitrification by nitrite oxidation, sulfur denitrification, and desulfation by nitrous acid from a single reactor, and desulfurization and decolorization by sulphation. It is very economical to solve the difficult problems of nitrogen and color at the same time by using simple materials such as sulfur and calcium carbonate, which are relatively inexpensive and easy to handle.

특히, 본 발명은 질소농도 또는 색도가 높고 C/N비가 낮아 종속영양탈질법을 이용하기 곤란한 폐수의 질소 및 색의 제거에 적합하다. 즉, 원래부터 유기물농도가 낮고 질소농도(특히 질산성질소나 아질산성질소)가 상대적으로 높은 폐수나 폐수처리과정에서 유기물은 제거되었으나 질소는 거의 제거되지 않고 배출되는 폐수, 예를 들면, 혐기공정을 거친 축산폐수, 화학공장 폐수, 도금폐수, 매립지 침출수, 농업배수, 양어장 폐수, 질산성질소에 오염된 지하수 등의 질소제거를 위한 방법을 제공함과 동시에 색 제거 방법을 제공하는 매우 유용한 발명임이 분명하다.In particular, the present invention is suitable for the removal of nitrogen and color of the wastewater, which is difficult to use heterotrophic denitrification because of high nitrogen concentration or color and low C / N ratio. In other words, wastewater or wastewater that is organically removed but little nitrogen is removed from the wastewater or wastewater treatment process, which has a low organic matter concentration and relatively high nitrogen concentration (especially nitrate or nitrite nitrogen). It is obvious that this invention is a very useful invention that provides a method for removing nitrogen from coarse animal wastewater, chemical plant wastewater, plating wastewater, landfill leachate, agricultural drainage, fish farm wastewater, and groundwater contaminated with nitrate nitrogen. .

도 1은 본 발명의 방법을 실시하기 위한 장치를 모식적으로 도시한 단면 구성도,1 is a cross-sectional configuration diagram schematically showing an apparatus for implementing the method of the present invention;

도 2는 본 발명의 실시예 1에서 얻은 pH의 변화를 나타낸 그래프,2 is a graph showing a change in pH obtained in Example 1 of the present invention,

도 3은 본 발명의 실시예 3에서 얻은 총질소(T-N)와 암모니아성 질소(NH4 +-N)의 변화를 나타낸 그래프,Figure 3 is a graph showing the change in total nitrogen (TN) and ammonia nitrogen (NH 4 + -N) obtained in Example 3 of the present invention,

도 4는 본 발명의 실시예 3에서 얻은 pH의 변화를 나타낸 그래프.Figure 4 is a graph showing the change in pH obtained in Example 3 of the present invention.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1: 자갈층 2: 황과 탄산칼슘의 혼합체(S0+CaCO3)층1: gravel layer 2: a mixture of sulfur and calcium carbonate (S 0 + CaCO 3 ) layer

3: 유입배관 4: 펌프 3: inlet line 4: pump

5: 공기유입관 6: 송풍기 5: air inlet pipe 6: blower

7: 배츨구 8: 가스배출구 7: gas outlet 8: gas outlet

9: 스틸망 10: 반응조9: steel mesh 10: reactor

Claims (5)

처리하고자 하는 폐수를 자갈층과 황과 탄산칼슘의 혼합체(S0+CaCO3)층을 충진한 반응조의 하부에서 상부로 이동시키는 상향류식으로 유입시키면서 반응조 내에서 황산화 탈질균을 우점화시켜 질소 및 색을 제거하는 것을 특징으로 하는 폐수 처리방법에 있어서,The wastewater to be treated is introduced into the upflow type, which moves from the lower part of the reaction tank filled with the gravel layer and the mixture of sulfur and calcium carbonate (S 0 + CaCO3) to the upper part, and the sulfated denitrification bacteria dominates in the reaction tank. In the wastewater treatment method, characterized in that to remove the 상기 폐수에 암모니아성 질소가 많을 경우나 착색문제가 있는 경우에는 간헐폭기함에 의해 호기조건과 무산소조건을 유지시키되 호기조건에서는 암모니아성 질소를 질산성 질소나 아질산성 질소로 질산화하면서 황산화반응에 의해 탈색하고, 무산소조건에서는 황산화반응에 의해 질산성 질소나 아질산성 질소를 질소가스화하여 탈질과 탈색을 동시에 수행하는 것을 특징으로 하는 폐수 처리방법.If the waste water contains ammonia nitrogen, or if there is a coloring problem, the aeration and anoxic conditions are maintained by intermittent aeration, but under aerobic conditions, the ammonia nitrogen is nitrated with nitrate nitrogen or nitrite nitrogen by a sulfation reaction. Decolorization, waste water treatment method characterized in that the denitrification and decolorization at the same time by nitrogen gasification of nitrate nitrogen or nitrite nitrogen by the sulfation reaction under anoxic conditions. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 폐수에 질산성 질소나 아질산성 질소가 많을 경우에는 폭기하지 않고 무산소조건을 유지하여 무산소조건에서의 황산화반응에 의해 질산성 질소나 아질산성 질소를 질소가스로 탈질을 수행하여 질소성분 및 색을 제거하는 것을 특징으로 하는 폐수 처리방법.When the wastewater contains a lot of nitrate nitrogen or nitrite nitrogen, it is not aerated and maintained in anoxic conditions, and denitrification of nitrate nitrogen or nitrite nitrogen with nitrogen gas is carried out by a sulfation reaction under anoxic conditions. Wastewater treatment method characterized in that to remove. 삭제delete 삭제delete
KR10-2003-0003717A 2003-01-20 2003-01-20 A wastewater treatment methods KR100503134B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0003717A KR100503134B1 (en) 2003-01-20 2003-01-20 A wastewater treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0003717A KR100503134B1 (en) 2003-01-20 2003-01-20 A wastewater treatment methods

Publications (2)

Publication Number Publication Date
KR20040066600A KR20040066600A (en) 2004-07-27
KR100503134B1 true KR100503134B1 (en) 2005-07-21

Family

ID=37356412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0003717A KR100503134B1 (en) 2003-01-20 2003-01-20 A wastewater treatment methods

Country Status (1)

Country Link
KR (1) KR100503134B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793405A (en) * 2018-04-12 2018-11-13 北京林业大学 Build sewage water denitrification dephosphorization apparatus method, denitrification dephosphorization apparatus and denitrification and dephosphorization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182393A (en) * 1992-12-18 1994-07-05 Kurita Water Ind Ltd Fluidized bed type denitrification treating device
KR20010026410A (en) * 1999-09-06 2001-04-06 김형벽 Advanced sewage and wastewater treatment process applied with filtration bed
KR20010088116A (en) * 2000-03-10 2001-09-26 조양호 Autotrophic denitrification using sulfur and sea shell
KR20020002451A (en) * 2001-11-22 2002-01-09 황용우 Manufature and Method of using the Media Sulfur-utilizing Autotrophic denitrification Reactor
KR20030085936A (en) * 2002-05-02 2003-11-07 한국과학기술연구원 Biological Nitrogen Removal Device
KR20040016728A (en) * 2002-08-19 2004-02-25 (주)전테크 Sulfuric media for wastewater treatment and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182393A (en) * 1992-12-18 1994-07-05 Kurita Water Ind Ltd Fluidized bed type denitrification treating device
KR20010026410A (en) * 1999-09-06 2001-04-06 김형벽 Advanced sewage and wastewater treatment process applied with filtration bed
KR20010088116A (en) * 2000-03-10 2001-09-26 조양호 Autotrophic denitrification using sulfur and sea shell
KR20020002451A (en) * 2001-11-22 2002-01-09 황용우 Manufature and Method of using the Media Sulfur-utilizing Autotrophic denitrification Reactor
KR20030085936A (en) * 2002-05-02 2003-11-07 한국과학기술연구원 Biological Nitrogen Removal Device
KR20040016728A (en) * 2002-08-19 2004-02-25 (주)전테크 Sulfuric media for wastewater treatment and manufacturing method thereof

Also Published As

Publication number Publication date
KR20040066600A (en) 2004-07-27

Similar Documents

Publication Publication Date Title
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
Ryu et al. Application of struvite precipitation as a pretreatment in treating swine wastewater
US8021551B2 (en) Eco-treatment system
CN102485668A (en) Wastewater pretreatment method and application thereof
KR100953058B1 (en) Natural high-treatment system
Rajesh Banu et al. Trends in biological nutrient removal for the treatment of low strength organic wastewaters
JP4106203B2 (en) How to remove nitrogen from water
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
KR100970576B1 (en) The apparatus and method of removing BOD, N, and P removal from an animal wastewater
KR100346910B1 (en) Autotrophic denitrification using sulfur and sea shell
KR100673831B1 (en) Treatment methods of swine wastewater, landfill leachate and night soil
JP4104311B2 (en) How to remove nitrogen from wastewater
KR101345642B1 (en) Method for removing nitrogen in waste water
KR101179049B1 (en) Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
KR100503134B1 (en) A wastewater treatment methods
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
KR200315887Y1 (en) A wastewater treatment device
KR101306805B1 (en) The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater
KR100519263B1 (en) Sewage treatment system
KR100438323B1 (en) High intergated Biological Nutrient Removal System
Moosavi et al. Simultaneous organics and nutrients removal from municipal wastewater in an up-flow anaerobic/aerobic fixed bed reactor
KR101129292B1 (en) Apparatus and method for recycling of processed waste water
Dangcong et al. Biological denitrification in a sequencing batch reactor
KR100398061B1 (en) Alternatedly circulated process with alternated aeration to simultaneously remove organics, solids, nitrogen and phosphorus
Buha et al. Review on wastewater treatment technologies for nitrogen removal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140702

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170614

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190613

Year of fee payment: 15